27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical study on multiphase fluid dynamics of coal and blends with biomass (sugarcane bagasse) in a lab-scale full-loop circulating fluidized bed gasifier

, , &
Received 20 Jun 2023, Accepted 28 Apr 2024, Published online: 08 May 2024

References

  • Basu, D., K. Das, K. Smart, and G. Ofoegbu. 2015. “Comparison of Eulerian-Granular and Discrete Element Models for Simulation of Proppant Flows in Fractured Reservoirs.” In ASME International Mechanical Engineering Congress and exposition, edited by M. Walker, V07BT09A012. Vol. 57472. Houston, Taxes: American Society of Mechanical Engineers.
  • Berruti, F., T. S. Pugsley, L. Godfroy, J. Chaouki, and G. S. Patience. 1995. “Hydrodynamics of Circulating Fluidized Bed Risers: A Review.” The Canadian Journal of Chemical Engineering 73 (5): 579–602. https://doi.org/10.1002/cjce.5450730502.
  • Cabuk, B., G. Duman, J. Yanik, and H. Olgun. 2020. “Effect of Fuel Blend Composition on Hydrogen Yield in Co-Gasification of Coal and Non-Woody Biomass.” International Journal of Hydrogen Energy 45 (5): 3435–3443. https://doi.org/10.1016/j.ijhydene.2019.02.130.
  • Cardoso, J., V. Silva, D. Eusébio, P. Brito, and L. Tarelho. 2018. “Improved Numerical Approaches to Predict Hydrodynamics in a Pilot-Scale Bubbling Fluidized Bed Biomass Reactor: A Numerical Study with Experimental Validation.” Energy Conversion and Management 156 (15): 53–67. https://doi.org/10.1016/j.enconman.2017.11.005.
  • Cui, J., L. Duan, Y. Jiang, C. Zhao, and E. J. Anthony. 2018. “Migration and Emission of Mercury from Circulating Fluidized Bed Boilers Co-Firing Petroleum Coke and Coal.” Fuel 215 (March): 638–646. https://doi.org/10.1016/j.fuel.2017.11.062.
  • Cui, H., and J. R. Grace. 2007. “Fluidization of Biomass Particles: A Review of Experimental Multiphase Flow Aspects.” Chemical Engineering Science 62 (1–2): 45–55. https://doi.org/10.1016/j.ces.2006.08.006.
  • Delebarre, A. 2004. “Revisiting the Wen and Yu Equations for Minimum Fluidization Velocity Prediction.” Chemical Engineering Research and Design 82 (5): 587–590. https://doi.org/10.1205/026387604323142621.
  • Ding, J., and D. Gidaspow. 1990. “A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow.” AichE Journal 36 (4): 523–538. https://doi.org/10.1002/aic.690360404.
  • Duan, L., D. Liu, X. Chen, and C. Zhao. 2012. “Fly Ash Recirculation by Bottom Feeding on a Circulating Fluidized Bed Boiler Co-Burning Coal Sludge and Coal.” Applied Energy 95 (July): 295–299. https://doi.org/10.1016/j.apenergy.2012.02.063.
  • Dudley, B. 2018. “BP Statistical Review of World Energy.” BP statistical review, London, UK: 00116.
  • Emanuel, G. 1990. “Bulk Viscosity of a Dilute Polyatomic Gas.” Physics of Fluids A: Fluid Dynamics 2 (12): 2252–2254. https://doi.org/10.1063/1.857813.
  • Gerber, S., F. Behrendt, and M. Oevermann. 2010. “An Eulerian Modeling Approach of Wood Gasification in a Bubbling Fluidized Bed Reactor Using Char As Bed Material.” Fuel 89 (10): 2903–2917. https://doi.org/10.1016/j.fuel.2010.03.034.
  • Gidaspow, D. 1994. Multiphase flow and fluidization: Continuum and kinetic theory descriptions. New York: Academic press.
  • Gidaspow, D., J. Jung, and R. K. Singh. 2004. “Hydrodynamics of Fluidization Using Kinetic Theory: An Emerging Paradigm: 2002 Flour-Daniel Lecture.” Powder Technology 148 (2–3): 123–141. https://doi.org/10.1016/j.powtec.2004.09.025.
  • Hamzehei, M. 2011. “CFD Modeling and Simulation of Hydrodynamics in a Fluidized Bed Dryer with Experimental Validation.” ISRN Mechanical Engineering 2011 (May 15): 1–9. https://doi.org/10.5402/2011/131087.
  • Hoang, A. T. 2018. “A Review on Fuels Used for Marine Diesel Engines.” Journal of Mechanical Engineering Research and Developments 41 (4): 22–23. https://doi.org/10.26480/jmerd.04.2018.22.32.
  • Kaczmarczyk, G. 2021. “Application of Fluidized Bed Furnance Bottom Ash in Civil Engineering–A Review.” IOP Conference Series: Materials Science and Engineering, 032013. Vol. 1203. Cracow, Poland: IOP Publishing.
  • Kalita, P., U. K. Saha, and P. Mahanta. 2013. “Parametric Study on the Hydrodynamics and Heat Transfer Along the Riser of a Pressurized Circulating Fluidized Bed Unit.” Experimental Thermal and Fluid Science 44 (January): 620–630. https://doi.org/10.1016/j.expthermflusci.2012.09.001.
  • Ku, X., T. Li, and T. Løvås. 2013. “Influence of Drag Force Correlations on Periodic Fluidization Behavior in Eulerian–Lagrangian Simulation of a Bubbling Fluidized Bed.” Chemical Engineering Science 95:94–106. https://doi.org/10.1016/j.ces.2013.03.038.
  • Kumar, R., and R. Inder Singh. 2018a. “Co-Firing of Coal with Pine Needles in a 20kw Oxy-Fired Bubbling Fluidized Bed: Experimental Investigation.” Materials Today: Proceedings 5 (11): 23007–23013. https://doi.org/10.1016/j.matpr.2018.11.029.
  • Kumar, R., and R. Inder Singh. 2018b. “Co-Firing of Coal with Pine Needles in a 20kw Oxy-Fired Bubbling Fluidized Bed: Experimental Investigation.” Materials Today: Proceedings 5 (11): 23007–23013. https://doi.org/10.1016/j.matpr.2018.11.029.
  • Kunii, D., and O. Levenspiel. 1991. Fluidization engineering. Stoneham, USA: Butterworth-Heinemann.
  • Lan, X., W. Yan, C. Xu, J. Gao, and Z.-H. Luo. 2014. “Hydrodynamics of Gas–Solid Turbulent Fluidized Bed of Polydisperse Binary Particles.” Powder Technology 262 (August): 106–123. https://doi.org/10.1016/j.powtec.2014.04.056.
  • Leckner, B. 2022. “Fluid Dynamic Regimes in Circulating Fluidized Bed Boilers—A Mini-Review.” Chemical Engineering Science 247:117089. https://doi.org/10.1016/j.ces.2021.117089.
  • Lun, C. K. K. 1991. “Kinetic Theory for Granular Flow of Dense, Slightly Inelastic, Slightly Rough Spheres.” Journal of Fluid Mechanics 233 (December): 539–559. https://doi.org/10.1017/S0022112091000599.
  • Mahapatro, A., P. Mahanta, and K. Jana. 2019. “Hydrodynamic Study of Low-Grade Indian Coal and Sawdust as Bed Inventory in a Pressurized Circulating Fluidized Bed.” Energy 189 (December 15): 116234. https://doi.org/10.1016/j.energy.2019.116234.
  • Mallick, D., P. Mahanta, and V. S. Moholkar. 2020. “Co–Gasification of Coal/Biomass Blends in 50 KWe Circulating Fluidized Bed Gasifier.” Journal of the Energy Institute 93 (1): 99–111. https://doi.org/10.1016/j.joei.2019.04.005.
  • Mattisson, T., M. Keller, C. Linderholm, P. Moldenhauer, M. Rydén, H. Leion, and A. Lyngfelt. 2018. “Chemical-Looping Technologies Using Circulating Fluidized Bed Systems: Status of Development.” Fuel Processing Technology 172 (April): 1–12. https://doi.org/10.1016/j.fuproc.2017.11.016.
  • Mineto, A., M. Braun, H. Navarro, and L. Cabezas-Gómez. 2014. “Influence of the Granular Temperature in the Numerical Simulation of Gas-Solid Flow in a Bubbling Fluidized Bed.” Chemical Engineering Communications 201 (8): 1003–1020. https://doi.org/10.1080/00986445.2013.794138.
  • Moraga, F. J., F. J. Bonetto, and R. T. Lahey. 1999. “Lateral Forces on Spheres in Turbulent Uniform Shear Flow.” International Journal of Multiphase Flow 25 (6–7): 1321–1372. https://doi.org/10.1016/S0301-9322(99)00045-2.
  • Naghibzadeh, S. M., M. Goharkhah, M. Sharifpur, and J. P. Meyer. 2020. “Effects of Interphase Momentum Exchange Models on Simulation of Subcooled Flow Boiling.” International Communications in Heat and Mass Transfer 118 (November 1): 104863. https://doi.org/10.1016/j.icheatmasstransfer.2020.104863.
  • Neri, A., and D. Gidaspow. 2000. “Riser Hydrodynamics: Simulation Using Kinetic Theory.” AichE Journal 46 (1): 52–67. https://doi.org/10.1002/aic.690460108.
  • Özkaya, B., A. H. Kaksonen, E. Sahinkaya, and J. A. Puhakka. 2019. “Fluidized Bed Bioreactor for Multiple Environmental Engineering Solutions.” Water Research 150:452–465. https://doi.org/10.1016/j.watres.2018.11.061.
  • Seçer, A., N. Küçet, E. Fakı, and A. Hasanoğlu. 2018. “Comparison of Co–Gasification Efficiencies of Coal, Lignocellulosic Biomass and Biomass Hydrolysate for High Yield Hydrogen Production.” International Journal of Hydrogen Energy 43 (46): 21269–21278. https://doi.org/10.1016/j.ijhydene.2018.09.144.
  • Solovev, S. A., A. V. Antipin, O. V. Soloveva, and R. R. Khusainov. 2019. “Determination of Effective Diameter of Solid Particles for the Eulerian–Eulerian Modelling Approach of Fluidized Bed.” Journal of Physics: Conference Series 1210 (March): 012133. https://doi.org/10.1088/1742-6596/1210/1/012133.
  • Sun, Z., B. Han, T. Bai, S. Barghi, and J. Zhu. 2022. “Comparison of Hydrodynamics in a Gas-Solids Fluidized Bed with Binary Particle Systems for Dry Coal Beneficiation.” Chemical Engineering Science 247:117028. https://doi.org/10.1016/j.ces.2021.117028.
  • Syamlal, M., and T. J. O’brien. 1988. “Simulation of Granular Layer Inversion in Liquid Fluidized Beds.” International Journal of Multiphase Flow 14 (4): 473–481. https://doi.org/10.1016/0301-9322(88)90023-7.
  • Upadhyay, M., A. Kim, H. Kim, D. Lim, and H. Lim. 2020. “An Assessment of Drag Models in Eulerian–Eulerian CFD Simulation of Gas–Solid Flow Hydrodynamics in Circulating Fluidized Bed Riser.” ChemEngineering 4 (2): 37. https://doi.org/10.3390/chemengineering4020037.
  • Upadhyay, M., and J.-H. Park. 2015. “CFD Simulation via Conventional Two-Fluid Model of a Circulating Fluidized Bed Riser: Influence of Models and Model Parameters on Hydrodynamic Behavior.” Powder Technology 272:260–268. https://doi.org/10.1016/j.powtec.2014.12.011.
  • Upadhyay, M., H. C. Park, and H. S. Choi. 2018. “Multiphase Fluid Dynamics Coupled Fast Pyrolysis of Biomass in a Rectangular Bubbling Fluidized Bed Reactor: Process Intensification.” Chemical Engineering & Processing - Process Intensification 128 (June): 180–187. https://doi.org/10.1016/j.cep.2018.04.028.
  • Van Caneghem, J., A. Brems, P. Lievens, C. Block, P. Billen, I. Vermeulen, R. Dewil, J. Baeyens, and C. Vandecasteele. 2012. “Fluidized Bed Waste Incinerators: Design, Operational and Environmental Issues.” Progress in Energy and Combustion Science 38 (4): 551–582. https://doi.org/10.1016/j.pecs.2012.03.001.
  • Varghese, M. M., T. R. Vakamalla, B. Mantravadi, and N. Mangadoddy. 2021. “Effect of Drag Models on the Numerical Simulations of Bubbling and Turbulent Fluidized Beds.” Chemical Engineering & Technology 44 (5): 865–874. https://doi.org/10.1002/ceat.202000516.
  • Villanueva-Chávez, J. G., and W. A. Bizzo. 2019. “Fluid Dynamic Modeling of a Large Bubbling Fluidized Bed for Biomass Combustion: Mass Transfer in Bubbles.” Chemical Engineering Science 196 (March): 414–424. https://doi.org/10.1016/j.ces.2018.11.023.
  • Virnave, S., and S. Jain. 2021. “Latest Scenario of World Energy Demand, Electricity Consumption and Their Development Trend.” Research Journal of Engineering Technology and Medical Sciences 4 (4): 840–846. https://doi.org/10.1016/j.partic.2017.09.003.
  • Wang, T., S. Wang, and Y. Shen. 2021. “Particle-Scale Study of Gas-Solid Flows in a Bubbling Fluidised Bed: Effect of Drag Force and Collision Models.” Powder Technology 384 (May): 353–367. https://doi.org/10.1016/j.powtec.2021.02.034.
  • Wan, Z., J. Hu, and X. Qi. 2021. “Numerical Analysis of Hydrodynamics and Thermochemical Property of Biomass Gasification in a Pilot-Scale Circulating Fluidized Bed.” Energy 225 (June): 120254. https://doi.org/10.1016/j.energy.2021.120254.
  • Wen, C. Y., and Y. H. Yu. 1966. “A Generalized Method for Predicting the Minimum Fluidization Velocity.” AichE Journal 12 (3): 610–612. https://doi.org/10.1002/aic.690120343.
  • Wichliński, M., G. Wielgosz, and R. Kobyłecki. 2019. “The Effect of Circulating Fluidized Bed Boiler Load on the Emission of Mercury.” Journal of the Energy Institute 92 (6): 1800–1806. https://doi.org/10.1016/j.joei.2018.12.002.
  • Xie, L., J. Zhu, and C. Jiang. 2021. “Quantitative Study of Mixing/Segregation Behaviors of Binary-Mixture Particles in Pilot-Scale Fluidized Bed Reactor.” Powder Technology 377 (January): 103–114. https://doi.org/10.1016/j.powtec.2020.08.069.
  • Xue, Z., Z. Zhong, and X. Lai. 2020. “Investigation on Gaseous Pollutants Emissions During Co-Combustion of Coal and Wheat Straw in a Fluidized Bed Combustor.” Chemosphere 240 (February): 124853. https://doi.org/10.1016/j.chemosphere.2019.124853.
  • Yates, J. G. 1997. “Experimental Observations of Voidage in Gas Fluidized Beds.” In Non-invasive monitoring of multiphase flows, edited by S. Islam, 141–160. Isfahan, Iran: Elsevier.
  • Yeoh, G. H., and J. Tu. 2019. Computational techniques for multiphase flows. Heinemann, USA: Butterworth-Heinemann.
  • Zhang, Y., K.-L. Goh, Y. L. Ng, Y. Chow, S. Wang, and V. Zivkovic. 2021. “Process Intensification in Micro-Fluidized Bed Systems: A Review.” Chemical Engineering and Processing-Process Intensification 164:108397. https://doi.org/10.1016/j.cep.2021.108397.
  • Zhang, K., B. Yu, J. Chang, G. Wu, T. Wang, and D. Wen. 2012. “Hydrodynamics of a Fluidized Bed Co-Combustor for Tobacco Waste and Coal.” Bioresource Technology 119:339–348. https://doi.org/10.1016/j.biortech.2012.05.132.
  • Zhao, Y., L. Tang, Z. Luo, C. Liang, H. Xing, W. Wu, and C. Duan. 2010. “Experimental and Numerical Simulation Studies of the Fluidization Characteristics of a Separating Gas–Solid Fluidized Bed.” Fuel Processing Technology 91 (12): 1819–1825. https://doi.org/10.1016/j.fuproc.2010.08.004.
  • Zhou, M., S. Wang, K. Luo, and J. Fan. 2022. “Three-Dimensional Modeling Study of the Oxy-Fuel Co-Firing of Coal and Biomass in a Bubbling Fluidized Bed.” Energy 247 (May 15): 123496. https://doi.org/10.1016/j.energy.2022.123496.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.