2,011
Views
15
CrossRef citations to date
0
Altmetric
Research Paper

Microbial amelioration of salinity stress in HD 2967 wheat cultivar by up-regulating antioxidant defense

&
Pages 136-150 | Received 20 Apr 2021, Accepted 28 May 2021, Published online: 24 Jun 2021

References

  • Zhang S, Fan C, Wang Y, et al. Salt-tolerant and plant growth-promoting bacteria isolated from high-yield paddy soil. Can J Microbiol. 2018;64(12):968–978.
  • Sarkar A, Ghosh PK, Pramanik K, et al. A halotolerant Enterobacter sp. displaying acc deaminase activity promotes rice seedling growth under salt stress. Res Microbiol. 2018;169(1):20–32.
  • Shrivastava P, Kumar R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 2015;22(2):123–131.
  • Jamil A, Riaz S, Ashraf M, et al. Gene expression profiling of plants under salt stress. Crit Rev Plant Sci. 2011;30(5):435–458.
  • Gengmao Z, Quanmei S, Yu H, et al. The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L.) to stress caused by various concentrations of NaCl. PLOS ONE. 2014;9(2):e89624.
  • Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ros-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:53.
  • Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot. 2009;104(7):1263–1280.
  • Sharma P, Jha AB, Dubey RS, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot 2012;1–26. DOI:https://doi.org/10.1155/2012/217037
  • Yu D, Boughton BA, Hill CB, et al. Insights into oxidized lipid modification in barley roots as an adaptation mechanism to salinity stress. Front Plant Sci. 2020;11:1.
  • Mansour MMF, Salama KHA. Cellular basis of salinity tolerance in plants. Environ Exp Bot. 2004;52(2):113–122.
  • Lim CW, Han SW, Hwang IS, et al. The pepper lipoxygenase CaLoX1 plays a role iosmotic, droughtn and high salinity stress response. Plant Cell Physiol. 2015;56(5):930–942.
  • Blée E. Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 2002;7(7):315–322.
  • Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;59(2):206–216.
  • Saxena SC, Joshi PK, Grimm B, et al. Alleviation of ultraviolet-C induced oxidative through overexpression of cytosolic ascorbate peroxidase. Biologia. 2011;66(6):1052–1059.
  • Sadiq M, Akram NA, Ashraf M, et al. Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. J. Plant Growth Regul 2019;38(4):1325–1340.
  • Qian HF, Peng XF, Han X, et al. The stress factor, exogenous ascorbic acid, affects plant growth and the antioxidant system in Arabidopsis thaliana. Russ. J. Plant Physiol. 2014;61(4):467–475.
  • Naz H, Akram NA, Ashraf M. Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumis sativus) plants under water-deficit conditions. Pak. J. Bot. 2016;48(3):877–883.
  • Agami RA. Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biol. Plant. 2014;58(2):341–347.
  • Şirin S, Aslım B. Determination of antioxidant capacity, phenolic acid composition and antiproliferative effect associated with phenylalanine ammonia lyase (PAL) activity in some plants naturally growing under salt stress. Med Chem Res. 2019;28(3):229–238.
  • Tuladhar P, Sasidharan S, Saudagar P. Role of phenols, and polyphenols in plant defense response to biotic and abiotic stresses. Editors: Sudisha Jogaiah (Ed.). Biocontrol Agents and Secondary Metabolites. Woodhead Publishing, 2021. p. 419–441
  • Havaux M. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci. 1998;3(4):147–151.
  • Johnson MP, Havaux M, Triantaphylidès C, et al. Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of Arabidopsis to photooxidative stress by a lipid-protective, antioxidant mechanism. J Biol Chem. 2007;282(31):22605–22618.
  • Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331–1341.
  • Jaleel CA, Riadh K, Gopi R, et al. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant 2009;31(3):427–436.
  • Khan A, Sirajuddin Z, Zhao XQ, et al. Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ. Exp. Bot. 2016;124:120–129.
  • Zhang S, Gan Y, Xu B. Application of plant-growth promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci. 2016;7:1405.
  • Jogawat A, Saha S, Bakshi M, et al. Piriformospora indica Rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav. 2013;8(10):e26891.
  • Husaini AM, Abdin MZ, Khan S, et al. Modifying strawberry for better adaptability to adverse impact of climate change. Curr Sci. 2012;102:1660–1673.
  • Waller F, Achatz B, Baltruschat H, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A. 2005;102(38):13386–13391.
  • Islam F, Yasmeen T, Arif MS, et al. Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul. 2016;80(1):23–36.
  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, et al. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl. Soil Ecol 2012;61:264–272.
  • Kasotia A, Varma A, Choudhary DK. Pseudomonas-mediated mitigation of salt stress and growth promotion in Glycine max. Agric Res. 2015;4(1):31–41.
  • Evelin H, Kapoor R. Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza. 2014;24(3):197–208.
  • Munné-Bosch S. The role of alpha-tocopherol in plant stress tolerance. J Plant Physiol. 2005;162(7):743–748.
  • Ha-Tran DM, Nguyen TTM, Hung SH, et al. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review. Int J Mol Sci. 2021;22(6):3154.
  • Xu L, Wang A, Wang J, et al. Piriformospora indica Confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes. Crop J 2017;5(3):251–258.
  • Zwiazek JJ, Blake TJ. Early detection of membrane injury in black spruce (Picea mariana). Can. J. Forest Res. 1991;21(3):401–404.
  • Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125(1):189–198.
  • Doderer A, Kokkelink I, Van Der Veen S, et al. Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochim Biophys Acta. 1992;1120(1):97–104.
  • Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39(1):205–207.
  • Sadasivam S, Manickam A. Biochemical Methods. 3rd Edition, New Age International Publishers, New Delhi, India, 2008, p. 196–197
  • Hiscox JD, Israelstam GFA. Method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot. 1979;57(12):1332–1334.
  • Arnon DI. Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1–15.
  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot. 1981;32(1):93–101.
  • Teranishi Y, Tanaka A, Osumi M, et al. Catalase activities of hydrocarbon-utilizing Candida yeasts. Agric Biol Chem. 1974;38(6):1213–1220.
  • Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol. 1981;22:867–880.
  • Khan NA, Khan MIR, Asgher M, et al. Salinity tolerance in plants: revisiting the role of sulphur metabolites. J. Plant Biochem. Physiol 2014;2:120.
  • Barra PJ, Inostroza NG, Acuña JJ, et al. Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Appl. Soil Ecol. 2016;102:80–91.
  • Eker S, Cömertpay G, Konuskan O, et al. Effect of salinity stress on dry matter production and ion accumulation in hybrid maize varieties. Turk J Agric For. 2006;30(5):365–373.
  • Abdelaziz ME, Kim D, Ali S, et al. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Sci. 2017;263:107–115.
  • Yun P, Xu L, Wang S, et al. Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regul. 2018;86(2):323–331.
  • Upadhyay SK, Singh JS, Singh DP. Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere. 2011;21(2):214–222.
  • Misra S, Chauhan PS. ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech. 2020;10(3):119.
  • Oxidative Stress MR. Antioxidants and Stress Tolerance. Trends Plant Sci. 2002;7(9):405–410.
  • Chang W, Sui X, Fan XX, et al. Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Front Microbiol. 2018;9:652.
  • Wi SG, Chung BY, Kim J-H, et al. Deposition pattern of hydrogen peroxide in the leaf sheaths of rice under salt stress. Biol Plant. 2006;50(3):469–472.
  • Maccarrone M, Melino G, Finazzi-Agrò A. Lipoxygenases and their Involvement in programmed cell death. Cell Death Differ. 2001;8(8):776–784.
  • Tsai HJ, Shao KH, Chan MT, et al. Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems. Plant Signal Behav. 2020;15(2):1722447.
  • Li HQ, Jiang XW. Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ. J. Plant Physiol 2017;64(2):235–241.
  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, et al. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil. 2010;331(1–2):313–327.
  • Chatterjee P, Samaddar S, Niinemets Ü, et al. Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity. Microbiol Res. 2018;215: 89–101.
  • Kumari S, Vaishnav A, Jain S, et al. Bacterial-mediated induction of systemic tolerance to salinity with expression of defense related proteins in soybean (Glycine max L. Merrill). J. Plant Growth Regul. 2015;34(3):558–573.
  • Ahmad P, Jaleel CA, Salem MA, et al. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 2010;30(3):161–175.
  • Serbinova EA, Packer L. Antioxidant properties of tocopherol and tocotrienol. Methods Enzymol. 1994;234:354–366.
  • Fyfe P, Cogdell RJ, Hunter CN, et al. Study of the carotenoid binding pocket of the photosynthetic reaction center from the purple bacterium Rhodobacter sphaeroides. Editors: Mathis P (Ed.). Photosynthesis: from Light to Biosphere. Proceedings of 10th International Photosynthesis Congress, Montpelleir, France; Kluwer Academic Publishers, Dordrecht, Boston, 1995. p. 47–50
  • Younesi O, Moradi A. Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt stressed bean (Phaseolus vulgaris L.). Agriculture. 2014;60:10–21.
  • Rafiq K, Akram MS, Shahid M, et al. Enhancement of salt tolerance in maize (Zea mays L.) using locally isolated Bacillus sp. Biologia. 2020;75(9):1425–1436.
  • Han HS, Lee KD. Physiological Responses of soybean inoculation of Bradyrhizobium japonicum PGPR in saline soil conditions. Res. J. Agric. Biol. Sci 2005;1(3):216–221.
  • Shim IS, Momose Y, Yamamoto A, et al. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regul. 2003;39(3):285–292.
  • Foyer CH, Noctor G. Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 2005;28(8):1056–1071.
  • Feierabend J, Engel S. Photoinactivation of Catalase in vitro and in leaves. Arch Biochem Biophys. 1986;251(2):567–576.