1,040
Views
0
CrossRef citations to date
0
Altmetric
Commentary

A scale-free universal relational information matrix (N-space) reconciles the information problem: N-space as the fabric of reality

ORCID Icon
Article: 2193006 | Received 17 Feb 2023, Accepted 15 Mar 2023, Published online: 11 May 2023

References

  • Miller WB Jr, Torday JS, Baluška F. The N-space episenome unifies cellular information space-time within cognition-based evolution. Prog Biophys Mol Biol. 2020;150:112–31.
  • Baluška F, Miller WB Jr, Reber AS. Biomolecular basis of cellular consciousness via subcellular nanobrains. Int J Mol Sci. 2021;22(5):2545.
  • Miller WB Jr, Baluška F, Torday JS. Cellular senomic measurements in cognition-based evolution. Prog Biophys Mol Biol. 2020;156:20–33.
  • Stonier T. Towards a new theory of information. Telecomm Policy. 1986;10(4):278–281.
  • Davies P, Gregersen NH, editors. Information and the nature of reality: from physics to metaphysics. Cambridge, UK: Cambridge University Press; 2014.
  • Umpleby SA. Physical relationships among matter, energy and information. Syst Res Behav Sci. 2007;24(3):369–372.
  • Brillouin L. Maxwell’s demon cannot operate: information and entropy. I. J Appl Phys. 1951;22(3):334–337.
  • Addazi A. Hidden non-locality and self-superrenormalization of quantum gravity. Mod Phys Lett A. 2020;35(35):2050288.
  • Kauffman SA. Quantum gravity if non-locality is fundamental. Entropy. 2022;24(4):554.
  • Laszlo E (2010). The connectivity hypothesis: Foundations of an integral science of quantum, cosmos, life, and consciousness. SUNY Press: Albany, N.Y.
  • Lloyd S. Computational capacity of the universe. Phys Rev Lett. 2002;88(23):237901.
  • Marijuán PC, Navarro J, Del Moral R. How the living is in the world: an inquiry into the informational choreographies of life. Prog Biophys Mol Biol. 2015;119(3):469–480.
  • Marijuán PC, Navarro J. From molecular recognition to the “vehicles” of evolutionary complexity: an informational approach. Int J Mol Sci. 2021;22(21):11965.
  • Marijuán PC, Navarro J, Del Moral R. How prokaryotes ‘encode’ their environment: systemic tools for organizing the information flow. Biosystems. 2018;164:164.
  • Marijuán PC, Navarro J. The biological information flow: from cell theory to a new evolutionary synthesis. Biosystems. 2022;213:104631.
  • Chalmers DJ. Is the hard problem of consciousness universal? J Conscious Stud. 2020;27(5–6):227–257.
  • Chopra D, Kafatos MC. You are the universe: discovering your cosmic self and why it matters. New York: Harmony; 2017.
  • Di Biase F. Quantum entanglement of consciousness and space-time a unified field of consciousness. NeuroQuantology. 2019;17(3):80.
  • Rakočević MM, I Metodija Ć (1997). The universal consciousness as a universal comprehension of the universal code. Brain and Consciousness, 107–114. http://www.rakocevcode.rs/wp-content/uploads/2014/01/rakocevic.pdf
  • Lombardi O, Fortin S, Vanni L. A pluralist view about information. Philosophy of Science. 2015;82(5):1248–1259.
  • Roederer JG. When and where did information first appear in the universe?. In Seckback, J., Rubin, E., editors. The new avenues in bioinformatics. Dordrecht: Springer; 2004. p. 23–37.
  • Küppers B-O. Information and the Origin of Life. Cambridge Mass: The MIT Press; 1990.
  • Schroeder MJ. The difference that makes a difference for the conceptualization of information. Multidiscip Digital Publishing Inst Proc. 2017;1(3):221.
  • Fisher RA. Statistical methods for research workers. Edinburgh, Scotland: Oliver and Boyd; 1925.
  • Floridi L. From data to semantic information. Entropy. 2003;5(2):125–145.
  • Farnsworth KD, Nelson J, Gershenson C. Living is information processing: from molecules to global systems. Acta Biotheor. 2013;61(2):203–222.
  • MacKay DM. Information, mechanism and meaning. Cambridge, MA: MIT Press; 1969.
  • Bateson G. Steps to an ecology of mind. Frogmore: Paladin; 1973.
  • Dretske F. Knowledge and the Flow of Information. Blackwell: Oxford; 1981.
  • Fresco N, Ginsburg S, Jablonka E. Functional information: a graded taxonomy of difference makers. Rev Philos Psychol. 2020;11(3):547–567.
  • Preskill J 2022 Quantum computation (Physics 219/Computer Science 219). Pasadena, California: California Institute of Technology, http://theory.caltech.edu/~preskill/ph229/
  • Meijer DKF (2019). Universal consciousness. Collective evidence on the basis of current physics and philosophy of mind. ResearchGate. https://www.researchgate.net/publication/328538224_Universal_Consciousness_Collective_Evidence_on_the_Basis_of_Current_Physics_and_Philosophy_of_Mind_Part_1
  • Meijer DK. The information universe. On the missing link in concepts on the architecture of reality. Syntropy Journal. 2012;1:1–64.
  • Afshordi N, Corianò C, Delle Rose L, et al. From Planck data to Planck era: observational tests of holographic cosmology. Phys Rev Lett. 2017;118(4):041301.
  • Fields C, Glazebrook JF, Marciano A. The physical meaning of the holographic principle. Quanta. 2022;11(1):72–96. 10.48550/arXiv.2210.16021. arXiv preprint arXiv:2210.16021.
  • Glattfelder JB. A Universe built of information. In: Information—consciousness—reality. Cham: Springer; 2019. pp. 473–514.
  • Gaiseanu F. Human/Humanity, consciousness and universe: informational relation. NeuroQuantology. 2019;17(5). DOI:10.14704/nq.2019.17.5.2122
  • Lloyd S. The universe as quantum computer. A Computable Universe: Understanding and Exploring Nature as Computation. 2013;567–581. DOI:10.1142/9789814374309_0029
  • Whitworth B (2008). The physical world as a virtual reality. arXiv preprint arXiv:0801.0337. DOI:10.48550/arXiv.0801.0337
  • Stonier T. Information as a basic property of the universe. Biosystems. 1996;38(2–3):135–140.
  • Wiener N. Cybernetics. New York: John Wiley & Sons; 1948.
  • Cárdenas-García JF. The process of info-autopoiesis–the source of all information. Biosemiotics. 2020;13(2):199–221.
  • Dodig-Crnkovic G, Giovagnoli, R, editors. Alan turing’s legacy: info-computational philosophy of nature. In: Computing nature. Berlin, Heidelberg: Springer; 2013. pp. 115–123.
  • Akama K (2014). A universal origin of information accumulation in nature. arXiv preprint arXiv:1408 p. 6201. 10.48550/arXiv.1408.6201
  • Lohrey A, Boreham B. Lifting the veil on Bohm’s holomovement. Communicative & Integrative Biology. 2021;14(1):221–229.
  • de Gosson M, Hiley BJ. Hamiltonian flows and the holomovement. Mind and Matter. 2013;11(2):205–221.
  • Hiley BJ. Quantum reality unveiled through process and the implicate order. Birkbeck: University of London; 2008.
  • Bohm DJ, Hiley BJ. On the intuitive understanding of nonlocality as implied by quantum theory. Found Phys. 1975;5(1):93–109.
  • Rusu B. Whitehead and green: the metaphysics of universal relatedness. Chromatikon: Annales de la Philosophie En Procès/Yearbook of Philosophy in Process. 2011;7:169–201.
  • Forshaw SD. The third state: toward a quantum information theory of consciousness. NeuroQuantology. 2016;14(1):49–6113.
  • Goswami A. Consciousness in quantum physics and the mind-body problem. The Journal of Mind and Behavior. 1990;75–96.
  • Meijer DK, Geesink HJ. Consciousness in the universe is scale invariant and implies an event horizon of the human brain. NeuroQuantology. 2017;15(3). DOI:10.14704/nq.2017.15.3.1079
  • Meijer DK, Jerman I, Melkikh AV, et al. Biophysics of consciousness: a scale-invariant acoustic information code of a superfluid quantum space guides the mental attribute of the universe. In Bandyopadhyay, A, Ray, Kanad, editors. Rhythmic oscillations in proteins to human cognition. Singapore: Springer; 2021. pp. 213–361.
  • Germine M. The holographic principle of mind and the evolution of consciousness. World Futures. 2008;64(3):151–178.
  • Stonier T. Information and the internal structure of the universe: an exploration into information physics. Berlin, Heidelberg: Springer Science & Business Media; 2012.
  • Mackay DM. XXIV. Quantal aspects of scientific information. London, Edinburgh, Dublin Philos Mag J Sci. 1950;41(314):31–289.
  • Roederer JG. Pragmatic information in biology and physics. philosophical transactions of the royal society A: mathematical. Philos Trans R Soc a Math Phys Eng Sci. 2016;374(2063):20150152.
  • Lev LL, Maiboroda IO, Husanu MA, et al. K-space imaging of anisotropic 2D electron gas in GaN/GaAlN high-electron-mobility transistor heterostructures. Nat Commun. 2018;9(1):2653.
  • Moratal D, Vallés-Luch A, Martí-Bonmatí L, et al. K-space tutorial: an MRI educational tool for a better understanding of k-space. Biomed Imaging Interv J. 2008;4(1). DOI:10.2349/biij.4.1.e15
  • Mezrich R. A Perspective on k-space. Radiology. 1995;195(2):297–315.
  • Matsui T. Gauge symmetry and neural networks. Fluctuating Paths and Fields: Festschrift Dedicated to Hagen Kleinert on the Occasion of His 60th Birthday. 2001;271–280. DOI:10.1016/j.neuron.2020.01.026
  • Tozzi A, Peters JF. A topological approach unveils system invariances and broken symmetries in the brain. J Neurosci Res. 2016;94(5):351–365.
  • Marcer P, Rowlands P. Nilpotent quantum mechanics: analogs and applications. Front Phys. 2017;5:28.
  • Friston K, Kilner J, Harrison L. A free energy principle for the brain. J Physiol Paris. 2006;100(1–3):70–87.
  • Twieg DB. The k‐trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods. Med Phys. 1983;10(5):610–621.
  • Sýkora S (2005). K-space formulation of MRI. In: Stan’s Library, Ed. Sykora S, Vol. 1, pp. 11–21. DOI: 10.3247/SL1Mri05.001
  • Mitteroecker P, Huttegger SM. The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biol Theory. 2009;4(1):54–67.
  • Landauer R. Information is physical. Phys Today. 1991;44(5):23–29.
  • Landauer R. The physical nature of information. Phys Lett A. 1996;217(4–5):188–193.
  • Lombardi O, Fortin S, Holik F, et al., editors. What is quantum information? Cambridge, UK: Cambridge University Press; 2017.
  • Jablonka E. Information: its interpretation, its inheritance, and its sharing. Philosophy of Science. 2002;69(4):578–605.
  • Queiroz J, Emmeche C, El-Hani CN. A Peircean approach to ‘information’and its relationship with Bateson’s and Jablonka’s ideas. The American Journal of Semiotics. 2016;24(1/3):75–94.
  • Baluška F, Miller WB, Reber AS. Cellular and evolutionary perspectives on organismal cognition: from unicellular to multicellular organisms. Biol J Linn Soc 2022. 2022;XX:1–12.
  • Kirchhoff M, Parr T, Palacios E, et al. The Markov blankets of life: autonomy, active inference and the free energy principle. J Royal Soc Interface. 2018;15(138):20170792.
  • Kuchling F, Friston K, Georgiev G, et al. Morphogenesis as Bayesian inference: a variational approach to pattern formation and control in complex biological systems. Phys Life Rev. 2020;33:88–108.
  • Palacios ER, Razi A, Parr T, et al. On Markov blankets and hierarchical self-organisation. J Theor Biol. 2020;486:110089.
  • Raychev N. Fundamental limit for universal entanglement detection. J appl math phys. 2016;4(08):1567.
  • Williams P. Entanglement, complexity, and causal asymmetry in quantum theories. Found Phys. 2022;52(2):1–38.
  • Chen EK. From time asymmetry to quantum entanglement: the Humean unification. Noûs. 2022;56(1):227–255.
  • Kak S. Quantum information and entropy. Int J Theor Phys. 2007;46(4):860–876.
  • Salem WKA, Fröhlich J. Status of the fundamental laws of thermodynamics. J Stat Mech. 2007;126(4):1045–1068.
  • Ball P 2022 Physicists rewrite the fundamental law that leads to Disorder. retrieved May 30, 2022 https://www.quantamagazine.org/physicists-trace-the-rise-in-entropy-to-quantum-information.
  • Richard J, Kneib JP, Ebeling H, et al. Discovery of a possibly old galaxy at z= 6.027, multiply imaged by the massive cluster Abell 383. Mon Notices Royal Astron Soc: Letters. 2011;414(1):L31–35.
  • Życzkowski K, Horodecki P, Horodecki M, et al. Dynamics of quantum entanglement. Phys Rev A. 2001;65(1):012101.
  • Bu K, Anand N, Singh U. Asymmetry and coherence weight of quantum states. Phys Rev A. 2018;97(3):032342.
  • Mashhoon B. The hypothesis of locality and its limitations. Relativity Rotating Frames: Relativistic Phy Rotating Reference Frames. 2003;135:43.
  • Semon MD, Taylor JR. The Aharonov-Bohm effect: still a thought-provoking experiment. Found Phys. 1988;18(7):731–740.
  • De Nicola S, Michailidis AA, Serbyn M. Entanglement and precession in two-dimensional dynamical quantum phase transitions. Phys Rev B. 2022;105(16):165149.
  • Hamette AC, Ludescher SL, Mueller MP (2021). Entanglement/Asymmetry correspondence for internal quantum reference frames. arXiv preprint arXiv:2112.00046;
  • Giacomini F, Castro-Ruiz E, Brukner Č. Quantum mechanics and the covariance of physical laws in quantum reference frames. Nat Commun. 2019;10(1):1–13.
  • Miller WB Jr. Biological information systems: evolution as cognition-based information management. Prog Biophys Mol Biol. 2018;134:1–26.
  • Torday J, Miller W Jr. The singularity of nature. London: Royal Society of Chemistry.; 2020.
  • Barve A, Wagner A. A latent capacity for evolutionary innovation through exaptation in metabolic systems. Nature. 2013;500(7461):203–206.
  • Gould SJ, Eldredge N. Punctuated equilibria: an alternative to phyletic gradualism. In T.M. J. Schofp ed. Model Paleobiology. 1972;82–115. San Francisco, Ca: Freeman, Cooper.
  • Torday JS, Miller WB Jr. The unicellular state as a point source in a quantum biological system. Biology (Basel). 2016;5(2):25.
  • Torday JS, Miller WB Jr. Cellular-molecular mechanisms in epigenetic evolutionary biology. Cham, Switzerland: Springer Nature; 2020.
  • Miller WB Jr. Cognition, information fields and hologenomic entanglement: evolution in light and shadow. Biology (Basel). 2016;5(2):21.
  • Hohwy J (2017). How to entrain your evil demon. In: Metzinger T Wiese W (editors). Philosophy and Predictive Processing: 2. Frankfurt am Main: MIND Group. doi: 10.15502/9783958573048
  • Rubin S, Parr T, Da Costa L, et al. Future climates: Markov blankets and active inference in the biosphere. J Royal Soc Interface. 2020;17(172):20200503.
  • Hipólito I, Ramstead MJ, Convertino L, et al. Markov blankets in the brain. Neurosci Biobehav Rev. 2021;125:88–97.
  • Friston K, Heins C, Ueltzhöffer K, et al. Stochastic chaos and Markov blankets. Entropy. 2021;23(9):1220.
  • Meijer DK, Geesink HJ. Guided folding of life’s proteins in integrate cells with holographic memory and GM-biophysical steering. Open J Biophysics. 2018;8(3):117–154.
  • De Loof A. The cell’s self-generated “electrome”: the biophysical essence of the immaterial dimension of Life? Commun Integr Biol. 2016;9(5):e1197446.
  • Redozubov A. Holographic memory: a novel model of information processing by neuronal microcircuits. In Opris, I., Casanova, M. F, editors. The physics of the mind and brain disorders. Cham: Springer; 2017. pp. 271–295.
  • Agnati LF, Marcoli M, Maura G, et al. The multi-facet aspects of cell sentience and their relevance for the integrative brain actions: role of membrane protein energy landscape. Rev Neurosci. 2016;27(4):347–363.
  • Baluška F, Reber AS, Miller WB Jr. Cellular sentience as the primary source of biological order and evolution. Biosystems. 2022;218:104694.
  • Schrödinger E. What is life? The physical aspect of the living cell. Cambridge at the. Cambridge, UK: University Press; 1951.
  • Torday JS, Miller WB Jr. The resolution of ambiguity as the basis for life: a cellular bridge between Western reductionism and Eastern holism. Prog Biophys Mol Biol. 2017;131:288–297.
  • Ford BJ. Cellular intelligence: microphenomenology and the realities of being. Prog Biophys Mol Biol. 2017;131:273–287.
  • Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol. 2012;13(12):780–788.
  • Fields C, Levin M. Competency in navigating arbitrary spaces: intelligence as an invariant for analyzing cognition in diverse embodiments. Entropy 2022. 2022;24(6):819.
  • Miller WB Jr, Torday JS, Baluška F. Biological evolution as defense of’self’. Prog Biophys Mol Biol. 2019;142:54–74.
  • Li F, Ye Y, Lei X, et al. Effects of microgravity on early embryonic development and embryonic stem cell differentiation: phenotypic characterization and potential mechanisms. Front Cell Dev Biol. 2021;9:3417.
  • Wakayama S, Kawahara Y, Li C, et al. Detrimental effects of microgravity on mouse preimplantation development in vitro. PLoS ONE. 2009;4(8):e6753.
  • Shinde V, Brungs S, Henry M, et al. Simulated microgravity modulates differentiation processes of embryonic stem cells.Cellular. J Physiol Biochem. 2016;38(4):1483–1499.
  • Lobachevska OV, Khorkavtsiv YD, Kyyak NY, et al. Gravimorphogenesisgametophytes of mosses. Kosmìčna nauka ì tehnologìâ. 2015;21(4):94–102.
  • Hanson LG. Is quantum mechanics necessary for understanding magnetic resonance? Concepts Magn Reson Part a. 2008;32A(5):329–340.
  • Harris MP. Bioelectric signaling as a unique regulator of development and regeneration. Development. 2021;148(10):dev180794.
  • Levin M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell. 2021;184(8):1971–1989.
  • Blank M, Goodman R. DNA is a fractal antenna in electromagnetic fields. Int J Radiat Biol. 2011;87(4):409–415.
  • Sepehri A. A mathematical model for DNA. Int J Geom Methods Mod. 2017;14(11):1750152.
  • Castellanos M, Mothi N, Muñoz V. Eukaryotic transcription factors can track and control their target genes using DNA antennas. Nat Commun. 2020;11(1):1–13.
  • Singh P, Doti R, Lugo JE, et al. DNA as an electromagnetic fractal cavity resonator: its universal sensing and fractal antenna behavior. In Kumar, R., Verma, A.K, Sharma, T. K., Verma, O. P., Sharma, S., editors. Soft computing: theories and applications. Singapore: Springer; 2018. pp. 213–223.
  • Keshwala U, Rawat S, Ray K. Design and analysis of DNA shaped antenna for terahertz and sub-terahertz applications. Optik. 2021;232:166512.
  • Betzalel N, Ben Ishai P, Puzenko A, et al. Emission from human skin in the sub THz frequency band. Sci Rep. 2022;12(1):1–11.
  • Behnia S, Nemati F, Fathizadeh S. Modulation of spin transport in DNA-based nanodevices by temperature gradient: a spin caloritronics approach. Chaos, Solitons & Fractals. 2018;116:8–13.
  • Salazar SV, Mujica V, Medina E. Spin-orbit coupling modulation in DNA by mechanical deformations. CHIMIA Int J Chem. 2018;72(6):411–417.
  • Aharonov Y, Kaufherr T. Quantum frames of reference. Phys Rev D. 1984;30(2):368.
  • Szabó A, Mayor R. Mechanisms of neural crest migration. Annu Rev Genet. 2018;52(1):43–63.
  • Taillefumier T, Magnasco MO. A phase transition in the first passage of a Brownian process through a fluctuating boundary with implications for neural coding. Proc Nat Acad Sci. 2013;110(16):E1438–1443.
  • Walker SI, Davies PC. The algorithmic origins of life. J Royal Soc Interface. 2013;10(79):20120869.
  • Krishnan VV, Bailes M, Van Straten W, et al. Lense–thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system. Science. 2020;367(6477):577–580.
  • Jaeger G. Entanglement, information, and the interpretation of quantum mechanics. Berlin/Heidelberg: Springer Science & Business Media; 2009.
  • Poulin D, Yard J. Dynamics of a quantum reference frame. New J Phys. 2007;9(5):156.
  • Fields C, Glazebrook JF, Levin M. Neurons as hierarchies of quantum reference frames. Biosystems. 2022;219:104714.
  • Fields C, Friston K, Glazebrook JF, et al. The free energy principle induces neuromorphic development. Neuromorphic Comput Eng. 2022;2(4):042002.
  • Ginsburg S, Jablonka E. Are your cells conscious? Am J Psychol. 2020;133(1):117–121.
  • Reber AS, Baluška F, Miller WB Jr. All living organisms are sentient: commentary on rowan et al. on sentience history. Anim Sentience. 2022;6(31): 405. DOI:10.51291/2377-7478.1700
  • Reber AS. The first minds: caterpillars, karyotes, and consciousness. New York: Oxford University Press; 2019.
  • Milton F, Fulford J, Dance C, et al. Behavioral and neural signatures of visual imagery vividness extremes: aphantasia versus hyperphantasia. Cereb Cortex Comm. 2021;2(2):tgab035.
  • Debono MW, Souza GM. Plants as electromic plastic interfaces: a mesological approach. Prog Biophys Mol Biol. 2019;146:123–133.
  • Fields C, Glazebrook JF, Levin M. Minimal physicalism as a scale-free substrate for cognition and consciousness. Neurosci Conscious. 2021;2021(2): niab013. DOI:10.1093/nc/niab013
  • Aguilera M, Millidge B, Tschantz A, et al. How particular is the physics of the free energy principle? Phys Life Rev. 2021;40:24–50.
  • Sakthivadivel DA (2022). Weak Markov blankets in high-dimensional, sparsely-coupled random dynamical systems. arXiv preprint arXiv:2207.07620. 2022arXiv220707620S
  • Fields C, Friston K, Glazebrook JF, et al. A free energy principle for generic quantum systems. Prog Biophys Mol Biol. 2022;173:36–59.
  • Whitehead AN. Science and the modern world. New York: The Free Press; 1967.
  • Whitehead AN. Symbolism: its meaning and effect. New York: Fordham University Press; 1985.
  • Igamberdiev AU, Shklovskiy-Kordi NE. The quantum basis of spatiotemporality in perception and consciousness. Prog Biophys Mol Biol. 2017;130:15–25.
  • Shapiro JA. Evolution: a View from the 21st Century. Upper Saddle River, NJ: FT Press Science; 2011.
  • Baluška F, Miller WB Jr. Senomic view of the cell: senome versus genome. Commun Integr Biol. 2018;11(3):1–9.
  • Fields C, Levin M. Does evolution have a target morphology? Organisms J Biol Sci. 2020;4(1):57–76.
  • Friston K. Life as we know it. J Royal Soc Interface. 2013;10(86):20130475.
  • Lieff J. The secret language of cells. Dallas, TX: Ben Bella Books; 2020.
  • De Loof A. From darwin’s on the origin of species by means of natural selection. to the evolution of life with communication activity as its very essence and driving force (= mega-evolution). Life Excit Biol. 2015;3(3):153–187.
  • De Loof A. The evolution of “Life”: a metadarwinian integrative approach. Commun Integr Biol. 2017;10(3):e1301335.
  • Tononi G, Koch C. The neural correlates of consciousness: an update. Ann N Y Acad Sci. 2008;1124(1):239–261.
  • Oizumi M, Albantakis L, Tononi G. From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS Computat Biol. 2014;10(5):e1003588.
  • Lombardi O, López C. What does ‘information’mean in integrated information theory? Entropy. 2018;20(12):894.
  • Jamali M, Grannan BL, Fedorenko E, et al. Single-neuronal predictions of others’ beliefs in humans. Nature. 2021;591(7851):610–614.
  • Steinmetz NA, Zatka-Haas P, Carandini M, et al. Distributed coding of choice, action and engagement across the mouse brain. Nature. 2019;576(7786):266–273.
  • Mashour GA, Roelfsema P, Changeux JP, et al. Conscious processing and the global neuronal workspace hypothesis. Neuron. 2020;105(5):776–798.
  • Al-Khalili J, McFadden J. Life on the edge. the coming of age of quantum biology. London: Bantam Press; 2014.
  • Heylighen F. Self-organization of complex, intelligent systems: an action ontology for transdisciplinary integration. Integr Rev. 2011;134(6):1–39.
  • Georgiev DD. Inner privacy of conscious experiences and quantum information. Biosystems. 2020;187:104051.
  • Meijer DK. The universe as a cyclic organized information system: John Wheeler’s world revisited. NeuroQuantology. 2014;13(1). DOI:10.14704/nq.2015.13.1.798
  • Torday JS, Miller WB Jr. Terminal addition in a cellular world. Prog Biophys Mol Biol. 2018;135:1–10.
  • Rowlands S, Rowlands P (2022, March). The universal rewrite system coded. In Journal of Physics: Conference Series (Vol. 2197, No. 1, p. 012023). IOP Publishing. doi:10.1088/1742-6596/2197/1/012023
  • Wheeler, J.A. (1989) Information, physics, quantum: The search for Links. Proceedings. 3rd Int. Symp. Foundations of Quantum Mechanics, Tokyo, 1989, pp.354368.) Information, physics, quantum: The search for Links. Proceedings. 3rd Int. Symp. Foundations of Quantum Mechanics, Tokyo, 1989, pp.354368. https://philpapers.org/archive/WHEIPQ.pdf
  • Gatenby, R. A. (2019). The role of cell membrane information reception, processing, and communication in the structure and function of multicellular tissue. International journal of molecular sciences, 20(15), 3609.
  • Guidolin, D., Marcoli, M., Tortorella, C., Maura, G., & Agnati, L. F. (2019). From the hierarchical organization of the central nervous system to the hierarchical aspects of biocodes. Biosystems, 183, 103975.