83
Views
7
CrossRef citations to date
0
Altmetric
Articles

Possibilities for analysis of selected nanometals in solid environmental samples

Pages 1598-1610 | Received 14 Oct 2014, Accepted 21 Feb 2015, Published online: 09 Apr 2015

References

  • A. Gastens, Where next for nanomaterials policy in Europe? Global Business Briefing, December 2013/January 2014.
  • GAO-10-549, NANOTECHNOLOGY: Nanomaterials are widely used in commerce, but epa faces challenges in regulating risk (2010). Available from: <http://www.gao.gov/assets/310/304648.pdf>.
  • Nano-materials: Prevalence in personal care products, Comments to U.S. Food and Drug Administration, A Survey of Ingredients in 25,000 Personal Care Products Reveals Widespread Use of Nano-Scale Materials, Not Assessed for Safety, in Everyday Products, Environmental Working Group, Washington, DC, Docket: FDA Regulated Products Containing Nanotechnology Materials, Docket number: 2006 N-0107, 2006.
  • A. Chisvert, A. Salvador, Analysis of Cosmetic Products, Elsevier Science, 2007.
  • J. Sanford, R. Venkatapathy, A. El-Badawy, D. Feldhake, R. Venkatapathy. State of the Science Literature Review: Everything Nanosilver and More. (2010). Scientific, Technical, Research, Engineering and Modeling Support Final Report. Contract No. EP-C-05-057. Task Order No. 95. Prepared for Katrina Varner, Task Order Manager. U.S. Environmental Protection Agency. National Exposure Research Laboratory. Environmental Sciences Division Las Vegas, NV. EPA/600/R-10/084 August 2010, p. 197.
  • X. Chen, H.J. Schluesener, Nanosilver: A nanoproduct in medical application, Toxicol. Lett. 176 (2008) 1–12.10.1016/j.toxlet.2007.10.004
  • S. Goel, F. Chen, W. Cai, Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics, Small, 10 W. (2014) 631–645.10.1002/smll.201301174
  • M. Kooti, S. Gharineh, M. Mehrkhah, A. Shaker, H. Motamedi, Preparation and antibacterial activity of CoFe2O4/SiO2/Ag composite impregnated with streptomycin, Chem. Eng. J. 259 (2015) 34–42.10.1016/j.cej.2014.07.139
  • R. Behra, L. Sigg, M. Clift, F. Herzog, M. Minghetti, B. Johnston, A. Petri-Fink, B. Rothen-Rutishauser, Bioavailability of silver nanoparticles and ions: From a chemical and biochemical perspective, J. Royal Soc. Interface 10(87) (2013) 1–6 ( 20130396).10.1098/rsif.2013.0396
  • N. Talebian, H. Sadeghi Haddad Zavvare, Enhanced bactericidal action of SnO2 nanostructures having different morphologies under visible light: Influence of surfactant, J. Photochem. Photobiol., B 130 (2013) 132–139.
  • G. Burdett, D. Bard, An Inventory of Fibres to Classify their Potential Hazard and Risk, Health and Safety Executive, Sudbury, 2006, p. 116.
  • I.M. El-Nahhal, S.M. Zourab, F.S. Kodeh, M. Selmane, I. Genois, F. Babonneau, Nanostructured copper oxide-cotton fibers: Synthesis, characterization, and applications, Int. Nano Lett. 2 (2012) 14–18.10.1186/2228-5326-2-14
  • D.P. Chattopadhyay, B.H. Patel, Preparation, characterization and stabilization of nanosized copper particles, Int. J. Pure Appl. Sci. Technol. 9(1) (2012) 1–8.
  • S. Brzeziński, G. Malinowska, D. Kowalczyk, A. Kaleta, B. Borak, M. Jasiorski, K. Dąbek, A. Baszczuk, A. Tracz, Antibacterial and fungicidal coating of textile-polymeric materials filled with bioactive nano- and submicro-particles. Fibres Text. East. Eur. 20, Nr 1(90) (2012) 70–77.
  • S.S. Mahdi, R. Vadood, N. Rokni, Study on the antimicrobial effect of nanosilver tray packaging of minced beef at refrigerator temperature, Global Veterinaria 9(3) (2012) 284–289.
  • J. Tiju, M. Morrison, Nanotechnology in Agriculture and Food, Nanoforum Report, Institute of Nanotechnology, 2006. Available from: <www.nanoforum.org>.
  • L.J. Frewer, W. Norde, A. Fischer, F. Kampers (Eds.), Nanotechnology in the Agri-Food Sector: Implications for the Future, Wiley-VCH, Weinheim, 2011, p. 328.
  • C.A. Clausen, IRG/WP 07-30415, The International Research Group on Wood Protection Section 3 Wood Protecting Chemicals, Nanotechnology: Implications for the Wood Preservation Industry, USDA Forest Service Forest Products Laboratory One Gifford Pinchot Drive Madison, Wisconsin 53726 USA, Paper prepared for the 38th Annual Meeting Jackson Lake Lodge, Wyoming 20–24 (May 2007).
  • J. McCrank, Nanotechnology applications in the forest sector, J. Nat. Resour. Canada, Canadian Forest Service, Headquarters, Science and Programs Branch, Ottawa, 2009.
  • R. Chandrappa, D.B. Das, Water Quality Issues, in Sustainable Water Engineering: Theory and Practice, Wiley, Chichester, 2014.
  • Y. Hu, N. Milne, S. Gray, G. Morris, W. Jin, M. Duke, B. Zhu, Combined TiO2 membrane filtration and ozonation for efficient water treatment to enhance the reuse of wastewater, Desalin. Water Treat. 34 (2011) 57–62.10.5004/dwt.2011.2867
  • P.S. Goh, B.C. Ng, W.J. Lau, A.F. Ismail, Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment, Separ. Purif. Rev. 44(3) (2015) 216–249.10.1080/15422119.2014.926274
  • B. Naik, C.H. Manoratne, A. Chandrashekhar, A. Iyer, V.S. Prasad, N.N. Ghosh, Preparation of TiO2, Ag-doped TiO2 nanoparticle and TiO2 –SBA-15 nanocomposites using simple aqueous solution-based chemical method and study of their photocatalytical activity, J. Exp. Nanosci. 8(4) (2013) 462–479.10.1080/17458080.2011.597435
  • L. Mpenyana-Monyatsi, N.H. Mthombeni, M.S. Onyango, M.N. Momba, Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater, Int. J. Environ. Res. Public Health 9 (2012) 244–271.10.3390/ijerph9010244
  • K. Chelladurai, M. Rajamanickam, Environmentally benign neem biodiesel synthesis using nano-zn-mg-al hydrotalcite as solid base catalysts, J. Catalysts, 2014, Article ID 326575, Available from: <http://dx.doi.org/10.1155/2014/326575>.
  • R. Balamurugan, S. Sundarrajan, S. Ramakrishna, Recent trends in nanofibrous membranes and their suitability for air and water filtrations, Membranes 1 (2011) 232–248.10.3390/membranes1030232
  • M. Werner, M. Markanović, Nanotechnologies in automobiles, innovation potential in hesse for the automotive industry and its subcontractors, Hessen-Nanotech Ser. 3 (2008) 51.
  • R. Goyal, M. Sharma, U.K. Amberiya, Innovative nano composite materials and applications in automobiles, IJERT 3(1) (2014) 3001–3009.
  • B. Adhithan, A.S. Bava Bakrudeen, H.P.R. Pydi, Contemplation of mechanical and thermal properties of aluminum (1100) with silicon carbide, Int. J. Eng. Adv. Technol. 2/2 (2012) 252–259.
  • V. Viswanathan, T. Laha, K. Balani, A. Agarwal, S. Seal, Challenges and advances in nanocomposite processing techniques, Mater. Sci. Eng. R 54 (2006) 121–285.10.1016/j.mser.2006.11.002
  • V. Kantser, Topological insulator materials and nanostructures for future electronics, spintronics and energy conversion, Proceedings of the International Conference on Nanotechnologies and Biomedical Engineering, Chişinău, Moldova 7–8 July 2011, pp. 157–160.
  • M.M. Asimov, R.M. Asimov, A.N. Rubinov, A.I. Gisbrecht, Optical dosimetry for controlling the efficiency of laser phototherap, Proceedings of the International Conference on Nanotechnologies and Biomedical Engineering, Chişinău, Moldova 7–8 July 2011, pp. 257–262.
  • E. Monaico, I. Tiginyanu, G. Colibaba, D.D. Nedeoglo, A. Cojocaru, H. Föll, Development of conductive nanotemplates on ZnSe, Proceedings of the International Conference on Nanotechnologies and Biomedical Engineering, Chişinău, Moldova 7–8 July 2011, pp. 39–42.
  • Cathryn Bang and Partners, Integration of Nanotechnology Materials for Green Building, Impacting Design and Construction Healthcare Architecture Planning Interiors, New York, Los Angeles, Seoul. Available from: <www.cbparch.com>.
  • EU, European Commission Health & Consumers, Opinion on: Nanosilver: Safety, Health and Environmental Effects and Role in Antimicrobial Resistance, Scientific Committee on Emerging and Newly Identified Health Risks, SCENIHR, 2014.
  • Nanotechnology and the Built Environment, Investing in Green Infrastructure, Report, Second ed., Crystal Research Associates, LLC and Livingston Securities LLC. New York, NY, 2012.
  • P.V. Khandve, Nanotechnology for building material, Int. J. Basic Appl. Res. 4 (2014) 146–151.
  • B. Siegfried, NanoTextiles: Functions, nanoparticles and commercial applications, Master Thesis ETHZ, Technology & Society Laboratory, Empa St. Gallen, 2007, p. 44.
  • R. Vijayaraghavan, Zinc oxide based inorganic antimicrobial agents, Int. J. Sci. Res. 1(2) (2012) 35–46.
  • V.A. Black, G. Njewel, Search for the next “Silver Bullet”: A review of literature, J. Arkansas Acad. Sci. 64 (2010) 50–56.
  • A.A. Hashim (Ed.), Smart Nanoparticles Technology, InTech, Croatia, 2012.
  • F. Moerman, Antimicrobial materials, coatings and biomimetic surfaces with modified microtography to control microbial fouling of product contact surfaces within food processing equipment: Legislation, requirements, effectiveness and challenges, J. Hygienic Eng. Design 7 (2014) 8–29.
  • B. Fubini, M. Ghiazza, I. Fenoglio, Physico–chemical features of engineered nanoparticles relevant to their toxicity, Nanotoxicology 4 (2010) 347–363.10.3109/17435390.2010.509519
  • F. Gottschalk, B. Nowack, The release of engineered nanomaterials to the environment, J. Environ. Monit. 13(5) (2011) 1145–1155, doi: 10.1039/c0em00547a.
  • R.D. Handy, F. von der Kammer, J.R. Lead, M. Hassellöv, R. Owen, M. Crane, The ecotoxicology and chemistry of manufactured nanoparticles, Ecotoxicology 17 (2008) 287–314.10.1007/s10646-008-0199-8
  • C. Hendren, X. Mesnard, J. Dröge, M. Wiesner, Estimating production data for five engineered nanomaterials as a basis for exposure assessment, Environ. Sci. Technol. 45 (2011) 2562–2569.10.1021/es103300g
  • Y. Guo, B. Jiang, J. Chen, S. Zhang, A catalytic oxidation approach to coat copper powder with polyaniline, Surf. Coat. Technol. 202 (2007) 555–558.10.1016/j.surfcoat.2007.06.062
  • Y.R. Uhm, W.W. Kim, C.K. Rhee, A study of synthesis and phase transition of nanofibrous Fe2O3 derived from hydrolysis of Fe nanopowders, Scr. Mater. 50(5) (2004) 561–564.10.1016/j.scriptamat.2003.11.060
  • R. Wahab, Y.-S. Kim, H.-S. Shin, Fabrication, characterization and growth mechanism of heterostructured zinc oxide nanostructures via solution method, Curr. Appl. Phys. 11(3) (2011) 334–340.10.1016/j.cap.2010.07.030
  • D. Yuvaraj, K. Narasimha Rao, K.K. Nanda, Effect of oxygen partial pressure on the growth of zinc micro and nanostructures, J. Cryst. Growth 311 (2009) 4329–4333.10.1016/j.jcrysgro.2009.07.006
  • European Union (2008). Council Regulation (EC) No 440/2008 of 30 May 2008 laying down test methods pursuant to Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Official Journal L 142, 30.5.2008, p.1
  • European Agency for Safety and Health at Work, Nanomaterials in the healthcare sector: Occupational risks and prevention, E-fact 73 (2013) 1–14.
  • European Commission (EC), Commission Staff Working Paper: Types and Uses of Nanomaterials, Including Safety Aspects. Accompanying the Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee on the Second Regulatory Review on Nanomaterials, SWD (2012) 288 final, Brussels (2012).
  • A.A. Ranaware, S.T. Satpute, Correlation between effects of cerium oxide nanoparticles and ferrofluid on the performance and emission characteristics of a C.I. Engine, IOSR-JMCE, 2278–1684 (2013) 55–59.
  • M.B. Shafii, F. Daneshvar, N. Jahani, K. Mobini, Effect of ferrofluid on the performance and emission patterns of a four-stroke diesel engine, Adv. Mech. Eng. 2011 (2011), Article ID 529049, 5. Available from: http://dx.doi.org/10.1155/2011/529049.
  • R. Kaegi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser, S. Zuleeg, H. Simmler, S. Brunner, H. Vonmont, M. Burkhardt, M. Boller, Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment, Environ. Pollut. 156(2) (2008) 233–239.10.1016/j.envpol.2008.08.004
  • Y. Ju-Nam, J.R. Lead, Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications, Sci. Total. Environ. 400(1–3) (2008) 396–414.10.1016/j.scitotenv.2008.06.042
  • H. Schwegmann, F.H. Frimmel, Nanoparticles: Interaction with microorganisms. in: F.H. Frimmel, R. Niessner (Eds.), Nanoparticles in the Water Cycle. Springer, Heidelberg, NY, 2010, pp. 165–182. 10.1007/978-3-642-10318-6
  • B. Nowack, H.F. Krug, M. Height, 120 years of nanosilver history: Implications for policy makers, Environ. Sci. Technol. 45 (2011) 1177–1183.10.1021/es103316q
  • W. Soutter, Nanotechnology in Clothing, AZoNano.com (2012).
  • K. Tiede, P. Westerhoff, S. Foss Hansen, G.J. Fern, S.M. Hankin, R.J. Aitken, Q. Chaudhry, A.B.A. Boxall, DWI 70/2/246, Review of the Risks Posed to Drinking Water By Man-Made Nanoparticles, Food and Environment Research Agency Sand Hutton, York, YO41 1LZ (2011).
  • S.L. Chen, A.J. Wang, C.T. Hu, C. Dai, J.B. Benziger, Enhanced photocatalytic performance of nanocrystalline TiO2 membrane by both slow photons and stop-band reflection of photonic crystals, AlChE J. 58(2) (2012) 568–572.10.1002/aic.v58.2
  • N. Kumar, E.O. Omoregie, J. Rose, A. Masion, J.R. Lloyd, L. Diels, L. Bastiaens, Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles, Water Res. 51(51) (2014) 64–72.10.1016/j.watres.2013.09.042
  • Z. Xiong, F. He, D. Zhao, M.O. Barnett, Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles, Water Res. 43(20) (2009) 5171–5179.10.1016/j.watres.2009.08.018
  • Y. Gong, Y. Liu, Z. Xiong, D. Kaback, D. Zhao, Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles, Nanotechnology 23(29) (2012) 13 (Article ID 294007), doi: 10.1088/0957-4484/23/29/294007.
  • D. Dickson, The Effect of Iron Oxide Nanoparticles on the Fate and Transformation of Arsenic in Aquatic Environments, FIU Electronic Theses and Dissertations 858, Florida International University, Miami, FL, 2013, p. 132.
  • J. Fabrega, S.N. Luoma, C.R. Tyler, T.S. Galloway, J.R. Lead, Silver nanoparticles: Behaviour and effects in the aquatic environment, Environ. Int. 37 (2011) 517–531.10.1016/j.envint.2010.10.012
  • M.A. Zazouli, R.A.D. Tilaki, M. Safarpour, Modeling nitrate removal by nano-scaled zero-valent iron using response surface methodology, Health Scope 3(3) (2014) e15728-1–e15728-7.
  • S. Ziajahromi, M. Khanizadeh, M. Khiadani, A. Daryabeigi Zand M. Mehrdad, Experimental evaluation of nitrate reduction from water using synthesis nanoscale zero-valent iron (NZVI) under aerobic conditions, middle-east, J. Sci. Res. 16(2) (2013) 205–209.
  • B. Ferreira da Silva, S. Pérez, P. Gardinalli, R.K. Singhald, A.A. Mozeto, D. Barceló, Analytical chemistry of metallic nanoparticles in natural environments, TrAC Trac-Trend, Anal. Chem. 30(3) (2011) 528–540.
  • T. Ben-Moshe, I. Dror, B. Berkowitz, Transport of metal oxide nanoparticles in saturated porous media, Chemosphere 81(3) (2010) 387–393.10.1016/j.chemosphere.2010.07.007
  • G. Cornelis, J.K. Kirby, D. Beak, D. Chittleborough, M.J. McLaughlin, A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils, Environ. Chem. 7 (2010) 298–308.10.1071/EN10013
  • L. Duester, C. Prasse, J.V. Vogel, J.P. Vink, G.E. Schaumann, Translocation of Sb and Ti in an undisturbed floodplain soil after application of Sb2O3 and TiO2 nanoparticles to the surface, J. Environ. Monit. 13(5) (2011) 1204–1211.10.1039/c1em10056d
  • J. Fang, X.Q. Shan, B. Wen, J.M. Lin, G. Owens, Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environ. Pollut. 157(4) (2009) 1101–1109.10.1016/j.envpol.2008.11.006
  • J. Fang, X.Q. Shan, B. Wen, J.M. Lin, G. Owens, S.R. Zhou, Transport of copper as affected by titania nanoparticles in soil columns, Environ. Pollut. 159(5) (2011) 1248–1256.10.1016/j.envpol.2011.01.039
  • I. Heidmann, Metal oxide nanoparticle transport in porous media—An analysis about (un)certainties in environmental research, J. Phys. Conf. Ser. 429 (2013) 012042 doi: 10.1088/1742-6596/429/1/012042.
  • M.F. Hochella, J.N. Moore, U. Golla, A. Putnis, A TEM study of samples from acid mine drainage systems: Metal-mineral association with implications for transport, Geochim. Cosmochim. Ac. 63 (1999) 3395–3406.10.1016/S0016-7037(99)00260-4
  • M.F. Hochella, J.N. Moore, C.V. Putnis, A. Putnis, T. Kasama, D.D. Eberl, Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability, Geochim. Cosmochim. Ac. 69 (2005) 1651–1663.10.1016/j.gca.2004.07.038
  • EPA, Sampling and Analysis of Nanomaterials in the Environment: A State-of-the-Science Review Final Report, EPA/600/R-08/098, U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, (2008).
  • N.S. Wigginton, K.L. Haus, M.F. Hochella Jr, Aquatic environmental nanoparticles, J. Environ. Monit. 9(12) (2007) 1306–1316.10.1039/b712709j
  • F. Laborda, J. Jiménez-Lamana, E. Bolea, J.R. Castillo, Selective identification, characterization and determination of dissolved silver(i) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 26 (2011) 1362–1371.10.1039/c0ja00098a
  • K. Tiede, A.B.A. Boxall, X. Wang, Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge, J. Anal. At Spectrom. 25 (2010) 1149–1154.10.1039/b926029c
  • K. Tiede, M. Hassellöv, E. Breitbarth, Q. Chaudhry, A.B.A. Boxall, Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles, J. Chromatogr. A. 1216 (2009) 503–509.10.1016/j.chroma.2008.09.008
  • A.J. Kennedy, M.S. Hull, A.J. Bednar, J.D. Goss, J.C. Gunter, J.L. Bouldin, P.J. Vikesland, J.A. Steevens, Fractionating nanosilver: Importance for determining toxicity to aquatic test organisms, Environ. Sci. Technol. 44 (2010) 9571–9577.10.1021/es1025382
  • M. Hassellöv, J.W. Readman, J.F. Ranville, K. Tiede, Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles, Ecotoxicology 17 (2008) 344–361.10.1007/s10646-008-0225-x
  • D.R. Baer, D.J. Gaspar, P. Nachimuthu, S.D. Techane, D.G. Castner, Application of surface chemical analysis tools for characterization of nanoparticles, Anal. Bioanal. Chem. 396 (2010) 983–1002.10.1007/s00216-009-3360-1
  • T.M. Tsao, Y.M. Chen, M.K. Wang, Origin, separation and identification of environmental nanoparticles: a review, J. Environ. Monit. 13(5) (2011) 1156–1163.10.1039/c1em10013k
  • H. Weinberg, A. Galyean, M. Leopold, Evaluating engineered nanoparticles in natural waters, TrAC, Trends Anal. Chem 30(1) (2011) 72–83.10.1016/j.trac.2010.09.006
  • D. Barceló, M. Farré, Characterization, analysis and risks of nanomaterials in environmental and food samples, TrAC, Trends Anal. Chem 30(1) (2011) 1–3.10.1016/j.trac.2010.11.002
  • S. Stürup, H. Hansen, B. Gammelgaard, Application of enriched stable isotopes as tracers in biological systems: A critical review, Anal. Bioanal. Chem. 390 (2008) 541–554.10.1007/s00216-007-1638-8
  • J.S. Becker, H. Sela, J. Dobrowolska, M. Zoriy, J. Su. Becker, Recent applications on isotope ratio measurements by ICP-MS and LA-ICP-MS on biological samples and single particles, Int. J. Mass. Spectrom. 270 (2008) 1–7.10.1016/j.ijms.2007.10.008
  • M.-N. Croteau, A.D. Dybowska, S.N. Luoma, E. Valsami-Jones, A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures, Nanotoxicology 5 (2011) 79–90.10.3109/17435390.2010.501914
  • L. Fei, W. Junshu, Ch Kunfeng, X. Dongfeng, Morphology study by using scanning electron microscopy. in: A. Méndez-Vilas, J. Díaz (Eds.), Microscopy: Science, Technology, Applications and Education, Formatex, Badajoz, 2010, pp. 1781–1792.
  • An Introduction to electron microscopy, FEI Company 2010, http://www.fei.com.
  • E.K. Lesher, A.R. Poda, A.J. Bednar, J.F. Ranville, Field-flow fractionation coupled to inductively coupled plasma-mass spectrometry (FFF-ICP-MS): Methodology and application to environmental nanoparticle research, in: S. Kim, R. Williams, Karin D. Caldwel (Eds.), Field-Flow Fractionation in Biopolymer Analysis, Springer-Verlag, Wiena, 2012, pp. 277–299.10.1007/978-3-7091-0154-4
  • M-M. Pornwilard, A. Siripinyanond, Field-flow fractionation with inductively coupled plasma mass spectrometry: Past, present, and future, J. Anal. At. Spectrom. 29 (2014) 1739–1752.
  • K.L. Plathe, F. von der Kammer, M. Hassellöv, J.N. Moore, M. Murayama, T. Hofmann, M.F. HochellaJr, The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: Field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation, Geochim. Cosmochim. Ac. 102(1) (2013) 213–225.10.1016/j.gca.2012.10.029
  • K.L. Plathe, Nanoparticle—Heavy Metal Associations in River Sediments, Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA (2010).
  • A. Ulrich, S. Losert, N. Bendixen, A. Al-Kattan, H. Hagendorfer, B. Nowack, C. Adlhart, J. Ebert, M. Lattuada, K. Hungerbühler, Critical aspects of sample handling for direct nanoparticle analysis and analytical challenges using asymmetric field flow fractionation in a multi-detector approach, J. Anal. At. Spectrom. 27 (2012) 1120–1130.10.1039/c2ja30024a
  • J. Jiménez-Lamana, M.A. Gómez-González, F. Laborda, E. Bolea, S. Serrano, P.A. O’Day, F. Garrido, J.R. Castillo, Using AsFLFFF-ICP-MS for the study of colloidal arsenic speciation in mine soils, FFF2013, 16th International Symposium on Field- and Flow-Based Separtions, PAU 107 (2013).
  • L.E. Manangon, Mass recoveries in nano to microparticle analysis of environmental samples via flow field flow fractionation-inductively-coupled plasma mass spectrometry, Master thesis, The University of Utah, USA (2013).
  • A.L. Fabricius, L. Duester, B. Meermann, T.A. Ternes, ICP-MS-based characterization of inorganic nanoparticles—Sample preparation and off-line fractionation strategies, Anal. Bioanal. Chem. 406(2) (2014) 467–479. doi: 10.1007/s00216-013-7480-2.
  • S.K. Sahoo, K. Agarwal, A.K. Singh, B.G. Polke, K.C. Raha, Characterization of γ- and α-Fe2O3 nano powders synthesized by emulsion precipitation–calcination route and rheological behaviour of α-Fe2O3, Int. J. Eng. Sci. Tech. 2(8) (2010) 118–126.
  • V.B. Mane, L.H. Mahind, K.D. Jadhav, S.A. Waghmode, S.P. Dagade, Structural Characterization of Nanosized Fe2O3-CeO2 catalysts by XRD, EDX and TEM Techniques, Applied Science Innovations Pvt. Ltd., India, Carbon—Sci. Technol. 5/2 (2013) 260–264.
  • M. Baalousha, Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter, Sci. Total Environ. 407(6) (2009) 2093–2101.10.1016/j.scitotenv.2008.11.022
  • B.J.R. Thio, D. Zhou, A.A. Keller, Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles, J. Hazard. Mater. 189 (2011) 556–563.10.1016/j.jhazmat.2011.02.072
  • D.P. Stankus, S.E. Lohse, J.E. Hutchison, J.A. Nason, Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents, Environ. Sci. Technol. 45 (2011) 3238–3244.10.1021/es102603p
  • A. Rabajczyk, D. Leszczynska, D. Yegorova, Possibilities of using FTIR for rapid characteristic of metal oxides in nano-forms, NANOTECHNOLOGIA-PL, 19 (2011) science24.com/conferences. Available from: <http://science24.com/paper/25049>.
  • P. Beneš, M. de, M. Rodrigo, P. Mašín, M. Kubal, Nanoiron’s activity measurement technique and soil enrichment possibilities, NANOCON Conference, Czech Republic (2009) 1–9.
  • C. Gunawan, W.Y. Teoh, C.P. Marquis, R. Amal, Induced Adaptation of Bacillus sp. to Antimicrobial Nanosilver, Small 9(21) (2013) 3554–3560.10.1002/smll.201300761
  • R.F. Hamilton, N. Wu, D. Porter, M. Buford, M. Wolfarth, A. Holian, Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity, Part Fibre Toxicol. 6 (2009) 35, doi: 10.1186/1743-8977-6-35.
  • N. O’Brien, E. Cummins, Development of a three-level risk assessment strategy for nanomaterials, in: I. Linkov, J. Steevens (Eds.), Nanomaterials: Risks and Benefits, Springer, Netherlands, pp. 161–178 (2009).
  • H. Bouwmeester, I. Lynch, H.J.P. Marvin, K.A. Dawson, M. Berges, D. Braguer, H.J. Byrne, A. Casey, G. Chambers, M.J.D. Clift, G. Elia, T.F. Fernandes, L.B. Fjellsbø, P. Hatto, L. Juillerat, C. Klein, W.G. Kreyling, C. Nickel, M. Riediker, V. Stone, Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices, Nanotoxicology 5(1) (2010) 1–11, doi: 10.3109/17435391003775266.
  • R. Arvidsson, S. Molander, B.A. Sandén, M. Hassellov, Challenges in exposure modeling of nanoparticles in aquatic environments, Hum. Ecol. Risk. Assess. 17(201) 245–262.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.