152
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Testing the suitability of v-Support Vector Machine for hyperspectral image classification

, , , , &
Received 30 Dec 2023, Accepted 27 Apr 2024, Published online: 06 May 2024

References

  • Archibald, R. and Fann, G., 2007. Feature selection and classification of hyperspectral images with support vector machines. IEEE Geoscience and Remote Sensing Letters, 4 (4), 674–677. doi:10.1109/LGRS.2007.905116
  • Arshad, T., Zhang, J., and Ullah, I., 2024. A hybrid convolution transformer for hyperspectral image classification. European Journal of Remote Sensing, 2330979. doi:10.1080/22797254.2024.2330979
  • Bai, J., Wang, J., and Zhang, X., 2013. A parameters optimization method of v-Support Vector Machineupport vector machine and its application in speech recognition. Journal of Computing, 8 (1), 113–120. doi:10.4304/jcp.8.1.113-120
  • Belghit, A., et al. 2023. Optimization of one versus all-SVM using AdaBoost algorithm for rainfall classification and estimation from multispectral MSG data. Advances in Space Research, 71 (1), 946–963. doi:10.1016/j.asr.2022.08.075
  • Cao, C., Duan, H., and Gao, X., 2023. Hyperspectral image classification based on three-dimensional adaptive sampling and improved iterative shrinkage-threshold algorithm. Journal of Visual Communication and Image Representation, 90, 103693. doi:10.1016/j.jvcir.2022.103693
  • Cavalcanti, G.D., Soares, R.J., and Araújo, E.L., 2024. Subconcept perturbation-based classifier for within-class multimodal data. Neural Computing and Applications, 36 (5), 2479–2491. doi:10.1007/s00521-023-09144-1
  • Chang, C.C. and Lin, C.J., 2001. Training v-support vector classifiers: theory and algorithms. Neural Computation, 13 (9), 2119–2147. doi:10.1162/089976601750399335
  • Chang, L.Y. and Wang, H.W., 2006. Analysis of traffic injury severity: an application of non-parametric classification tree techniques. Accident Analysis & Prevention, 38 (5), 1019–1027. doi:10.1016/j.aap.2006.04.009
  • Chen, H., et al. 2023. Incremental learning for transductive Support Vector Machine. Pattern Recognition, 133, 108982. doi:10.1016/j.patcog.2022.108982
  • Chen, Y., Wang, K., and Zhong, P., 2016. One-class support tensor machine. Knowledge-Based Systems, 96, 14–28. doi:10.1016/j.knosys.2016.01.007
  • Chui, K.T., et al. 2020. Predicting students’ performance with school and family tutoring using generative adversarial network-based deep Support Vector Machine. IEEE Access, 8, 86745–86752. doi:10.1109/ACCESS.2020.2992869
  • Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine Learning, 20 (3), 273–297. doi:10.1007/BF00994018
  • Dalal, A.A., et al. 2023. ETR: enhancing transformation reduction for reducing dimensionality and classification complexity in hyperspectral images. Expert Systems with Applications, 213, 118971. doi:10.1016/j.eswa.2022.118971
  • Dhiman, G., Bhattacharya, J., and Roy, S., 2023. Soil textures and nutrients estimation using remote sensing data in north india-punjab region. Procedia computer science, 218, 2041–2048. doi:10.1016/j.procs.2023.01.180
  • Ding, Y., et al. 2023. Multi-scale receptive fields: Graph attention neural network for hyperspectral image classification. Expert Systems with Applications, 223, 119858. doi:10.1016/j.eswa.2023.119858
  • Egashira, K., 2024. Asymptotic properties of multiclass Support Vector Machine under high dimensional settings. Communications in Statistics - Simulation and Computation, 53 (4), 1991–2005. doi:10.1080/03610918.2022.2066693
  • Gao, Q., Wu, T., and Wang, S., 2024. SSC-SFN: spectral-spatial non-local segment federated network for hyperspectral image classification with limited labeled samples. International Journal of Digital Earth, 17 (1), 2300319. doi:10.1080/17538947.2023.2300319
  • Guo, C., et al. 2016. Hyperspectral imaging analysis for ripeness evaluation of strawberry with Support Vector Machine. Journal of Food Engineering, 179, 11–18. doi:10.1016/j.jfoodeng.2016.01.002
  • Guo, Y., et al. 2018. K-Nearest neighbor combined with guided filter for hyperspectral image classification. Procedia Computer Science, 129, 159–165. doi:10.1016/j.procs.2018.03.066
  • Hasan, N., Ahmed, N., and Ali, S.M., 2024. Improving sporadic demand forecasting using a modified k-nearest neighbor framework. Engineering Applications of Artificial Intelligence, 129, 107633. doi:10.1016/j.engappai.2023.107633
  • He, Z., et al. 2022. Semi-supervised anchor graph ensemble for large-scale hyperspectral image classification. International Journal of Remote Sensing, 43 (5), 1894–1918. doi:10.1080/01431161.2022.2048916
  • Huang, S., et al. 2024. Superpixel-based multi-scale multi-instance learning for hyperspectral image classification. Pattern Recognition, 149, 110257. doi:10.1016/j.patcog.2024.110257
  • Imani, M. and Ghassemian, H., 2020. An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges. Information Fusion, 59, 59–83. doi:10.1016/j.inffus.2020.01.007
  • Jiang, C., et al. 2024. A vehicle imaging approach to acquire ground truth data for upscaling to satellite data: a case study for estimating harvesting dates. Remote Sensing of Environment, 300, 113894. doi:10.1016/j.rse.2023.113894
  • Lahmiri, S., 2023. Integrating convolutional neural networks, kNN, and Bayesian optimization for efficient diagnosis of Alzheimer’s disease in magnetic resonance images. Biomedical Signal Processing and Control, 80, 104375. doi:10.1016/j.bspc.2022.104375
  • Lin, C.F. and Wang, S.D., 2002. Fuzzy Support Vector Machines. IEEE Transactions on Neural Networks, 13 (2), 464–471. doi:10.1109/72.991432
  • Li, W., Prasad, S., and Fowler, J.E., 2013. Hyperspectral image classification using Gaussian mixture models and Markov random fields. IEEE Geoscience and Remote Sensing Letters, 11 (1), 153–157. doi:10.1109/LGRS.2013.2250905
  • Liu, Y. and Pender, G., 2015. A flood inundation modelling using v-Support Vector Machine regression model. Engineering Applications of Artificial Intelligence, 46, 223–231. doi:10.1016/j.engappai.2015.09.014
  • Lv, H., et al. 2024. Multi-dimensional deep dense residual networks and multiple kernel learning for hyperspectral image classification. Infrared Physics & Technology, 138, 105265. doi:10.1016/j.infrared.2024.105265
  • Melgani, F. and Bruzzone, L., 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42 (8), 1778–1790. doi:10.1109/TGRS.2004.831865
  • Nagai, S., et al. 2020.Importance of the collection of abundant ground‐truth data for accurate detection of spatial and temporal variability of vegetation by satellite remote sensing. In:K. Dontsova, Z. Balogh-Brunstad, and G. Le Roux, ed. Biogeochemical Cycles: Ecological Drivers and Environmental Impact, 223–244 doi:10.1002/9781119413332.ch11
  • Okwuashi, O., et al. 2021. Deep support vector machine for PolSAR image classification. International Journal of Remote Sensing, 42 (17), 6498–6536. doi:10.1080/01431161.2021.1939910
  • Okwuashi, O. and Ikediashi, D.I., 2013. GIS-based simulation of land use change. Applied GIS, 10 (1), 1–18.
  • Okwuashi, O. and Ndehedehe, C., 2015. Digital terrain model height estimation using support vector machine regression. South African Journal of Science, 111 (9/10), 01–05. doi:10.17159/sajs.2015/20140153
  • Okwuashi, O. and Ndehedehe, C.E., 2020. Deep support vector machine for hyperspectral image classification. Pattern Recognition, 103, 107298. doi:10.1016/j.patcog.2020.107298
  • Okwuashi, O. and Ndehedehe, C.E., 2021. Integrating machine learning with Markov chain and cellular automata models for modelling urban land use change. Remote Sensing Applications: Society and Environment, 21, 100461. doi:10.1016/j.rsase.2020.100461
  • Okwuashi, O., Ndehedehe, C.E., and Olayinka, D.N., 2022. Tensor partial least squares for hyperspectral image classification. Geocarto International, 37 (27), 1–16. doi:10.1080/10106049.2022.2129833
  • Paoletti, M.E., et al. 2018. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 120–147. doi:10.1016/j.isprsjprs.2017.11.021
  • Park, J., et al. 2023. Efficient differentially private kernel support vector classifier for multi-class classification. Information Sciences, 619, 889–907. doi:10.1016/j.ins.2022.10.075
  • Parr, T., Hamrick, J., and Wilson, J.D., 2024. Nonparametric feature impact and importance. Information Sciences, 653, 119563. doi:10.1016/j.ins.2023.119563
  • Sahu, S.K. and Pandey, M., 2023. An optimal hybrid multiclass SVM for plant leaf disease detection using spatial fuzzy C-Means model. Expert Systems with Applications, 214, 118989. doi:10.1016/j.eswa.2022.118989
  • Schölkopf, B., et al. 2000. New support vector algorithms. Neural Computation, 12 (5), 1207–1245. doi:10.1162/089976600300015565
  • Sellami, A., Farah, M., and Dalla Mura, M., 2023. Shcnet: a semi-supervised hypergraph convolutional networks based on relevant feature selection for hyperspectral image classification. Pattern Recognition Letters, 165, 98–106. doi:10.1016/j.patrec.2022.12.004
  • Sheng, H. and Yu, G., 2023. TNN: a transfer learning classifier based on weighted nearest neighbors. Journal of Multivariate Analysis, 193, 105126. doi:10.1016/j.jmva.2022.105126
  • Shi, C., et al. 2022. Explainable scale distillation for hyperspectral image classification. Pattern Recognition, 122, 108316. doi:10.1016/j.patcog.2021.108316
  • Suykens, J.A. and Vandewalle, J., 1999. Least squares support vector machine classifiers. Neural Processing Letters, 9 (3), 293–300. doi:10.1023/A:1018628609742
  • Tejasree, G. and Agilandeeswari, L., 2024. An extensive review of hyperspectral image classification and prediction: techniques and challenges. Multimedia Tools and Applications, 1–98. doi:10.1007/s11042-024-18562-9
  • Wan, H.P., et al. 2024. SS-MASVM: an advanced technique for assessing failure probability of high-dimensional complex systems using the multi-class adaptive support vector machine. Computer Methods in Applied Mechanics and Engineering, 418, 116568. doi:10.1016/j.cma.2023.116568
  • Wang, G.F., et al. 2014. Vibration sensor based tool condition monitoring using ν Support Vector Machine and locality preserving projection. Sensors and Actuators A: Physical, 209, 24–32. doi:10.1016/j.sna.2014.01.004
  • Wang, Y., Pan, Z., and Dong, J., 2022. A new two-layer nearest neighbor selection method for kNN classifier. Knowledge-Based Systems, 235, 107604. doi:10.1016/j.knosys.2021.107604
  • Wang, A., Wang, Y., and Chen, Y., 2019. Hyperspectral image classification based on convolutional neural network and random forest. Remote Sensing Letters, 10 (11), 1086–1094. doi:10.1080/2150704X.2019.1649736
  • Warren, P.H. and Korotev, R.L., 2022. Ground truth constraints and remote sensing of lunar highland crust composition. Meteoritics & Planetary Science, 57 (2), 527–557. doi:10.1111/maps.13780
  • Xing, C., et al. 2023. Binary feature learning with local spectral context-aware attention for classification of hyperspectral images. Pattern Recognition, 134, 109123. doi:10.1016/j.patcog.2022.109123
  • Yang, J., Du, B., and Zhang, L., 2023. From center to surrounding: an interactive learning framework for hyperspectral image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 197, 145–166. doi:10.1016/j.isprsjprs.2023.01.024
  • Zhang, B., et al. 2013. A neighbourhood-constrained k-means approach to classify very high spatial resolution hyperspectral imagery. Remote Sensing Letters, 4 (2), 161–170. doi:10.1080/2150704X.2012.713139
  • Zhang, P., et al. 2022. Nondestructive prediction of mechanical parameters to apple using hyperspectral imaging by support vector machine. Food Analytical Methods, 15 (5), 1397–1406. doi:10.1007/s12161-021-02201-2
  • Zhang, Y. and Xie, Y., 2007. Forecasting of short-term freeway volume with v-Support Vector Machines. Transportation Research Record, 2024 (1), 92–99. doi:10.3141/2024-11
  • Zhao, G., et al. 2019. Multiple convolutional layers fusion framework for hyperspectral image classification. Neurocomputing, 339, 149–160. doi:10.1016/j.neucom.2019.02.019
  • Zhao, Y. and He, Q., 2006. An unbalanced dataset classification approach based on v-Support Vector Machine. In: 2006 6th world congress on intelligent control and automation. Dalian, China: IEEE, 10496–10501. doi:10.1109/WCICA.2006.1714061
  • Zhou, X., et al. 2023. Detection of lead content in oilseed rape leaves and roots based on deep transfer learning and hyperspectral imaging technology. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 290, 122288. doi:10.1016/j.saa.2022.122288
  • Zhu, F., et al. 2024. Analysis and mitigation of illumination influences on canopy close-range hyperspectral imaging for the in situ detection of chlorophyll distribution of basil crops. Computers and Electronics in Agriculture, 217, 108553. doi:10.1016/j.compag.2023.108553
  • Zou, Z., et al. 2023. Classification and adulteration of mengding mountain green tea varieties based on fluorescence hyperspectral image method. Journal of Food Composition and Analysis, 117, 105141. doi:10.1016/j.jfca.2023.105141