15,476
Views
60
CrossRef citations to date
0
Altmetric
Review

The effects of dairy and dairy derivatives on the gut microbiota: a systematic literature review

ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Article: 1799533 | Received 17 Apr 2020, Accepted 13 Jul 2020, Published online: 23 Aug 2020

References

  • Heaney RP. Calcium, dairy products and osteoporosis. J Am Coll Nutr. 2000;19:83S–19. doi:10.1080/07315724.2000.10718088.
  • Murphy S, Khaw K-T, May H, Compston JE. Milk consumption and bone mineral density in middle aged and elderly women. BMJ. 1994;308:939–941. doi:10.1136/bmj.308.6934.939.
  • Barr SI, McCARRON DA, Heaney RP, Dawson-Hughes B, Berga SL, Stern JS, Oparil S. Effects of increased consumption of fluid milk on energy and nutrient intake, body weight, and cardiovascular risk factors in healthy older adults. J Am Diet Assoc. 2000;100:810–817. doi:10.1016/S0002-8223(00)00236-4.
  • Elwood PC, Pickering JE, Fehily AM. Milk and dairy consumption, diabetes and the metabolic syndrome: the Caerphilly prospective study. J Epidemiol Community Health. 2007;61:695–698. doi:10.1136/jech.2006.053157.
  • Rangan AM, Flood VM, Denyer G, Webb K, Marks GB, Gill TP. Dairy consumption and diet quality in a sample of Australian children. J Am Coll Nutr. 2012;31:185–193. doi:10.1080/07315724.2012.10720026.
  • Fulgoni III VL, Keast DR, Auestad N, Quann EE. Nutrients from dairy foods are difficult to replace in diets of Americans: food pattern modeling and an analyses of the national health and nutrition examination survey 2003–2006. Nutr Res. 2011;31:759–765. doi:10.1016/j.nutres.2011.09.017.
  • Alexander DD, Bylsma LC, Vargas AJ, Cohen SS, Doucette a, Mohamed M, Irvin SR, Miller PE, Watson H, Fryzek JP. Dairy consumption and CVD: a systematic review and meta-analysis. Br J Nutr. 2016;115:737–750. doi:10.1017/S0007114515005000.
  • Lamarche B, Givens DI, Soedamah-Muthu S, Krauss RM, Jakobsen MU, Bischoff-Ferrari HA, Pan a, Després J-P. Does milk consumption contribute to cardiometabolic health and overall diet quality? Can J Cardiol. 2016;32:1026–1032. doi:10.1016/j.cjca.2015.12.033.
  • Soedamah-Muthu SS, Ding EL, Al-Delaimy WK, Hu FB, Engberink MF, Willett WC, Geleijnse JM. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am J Clin Nutr. 2011;93:158–171. doi:10.3945/ajcn.2010.29866.
  • Tapsell LC. Fermented dairy food and CVD risk. Br J Nutr. 2015;113:S131–S135. doi:10.1017/S0007114514002359.
  • Louie J, Flood V, Rangan a, Burlutsky G, Gill T, Gopinath B, Mitchell P. Higher regular fat dairy consumption is associated with lower incidence of metabolic syndrome but not type 2 diabetes. Nutr Metab Cardiovas Dis. 2013;23:816–821. doi:10.1016/j.numecd.2012.08.004.
  • Soedamah-Muthu SS, Masset G, Verberne L, Geleijnse JM, Brunner EJ. Consumption of dairy products and associations with incident diabetes, CHD and mortality in the Whitehall II study. Br J Nutr. 2013;109:718–726. doi:10.1017/S0007114512001845.
  • Sluijs I, Forouhi NG, Beulens JW, van der Schouw YT, Agnoli C, Arriola L, Balkau B, Barricarte a, Boeing H, Bueno-de-Mesquita HB. The amount and type of dairy product intake and incident type 2 diabetes: results from the EPIC-InterAct Study. Am J Clin Nutr. 2012;96:382–390. doi:10.3945/ajcn.111.021907.
  • Drehmer M, Pereira MA, Schmidt MI, Molina MDCB, Alvim S, Lotufo PA, Duncan BB. Associations of dairy intake with glycemia and insulinemia, independent of obesity, in Brazilian adults: the Brazilian longitudinal study of adult health (ELSA-Brasil). Am J Clin Nutr. 2015;101:775–782. doi:10.3945/ajcn.114.102152.
  • Marques-Vidal P, Goncalves a, Dias C. Milk intake is inversely related to obesity in men and in young women: data from the Portuguese health interview survey 1998–1999. Int J Obes. 2006;30:88–93. doi:10.1038/sj.ijo.0803045.
  • Barba G, Troiano E, Russo P, Venezia a, Siani a. Inverse association between body mass and frequency of milk consumption in children. Br J Nutr. 2005;93:15–19. doi:10.1079/BJN20041300.
  • International Osteoporosis Foundation Fact sheet: milk and dairy products are good for bone health. 2015.
  • Ebeling PR, Eisman J. Recommendations from the vitamin D and calcium forum. 2005.
  • Michaelsson K, Wolk a, Langenskiold S, Basu S, Lemming EW, Melhus H, Byberg L. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ. 2014;349:g6015. doi:10.1136/bmj.g6015.
  • Pasco JA, Williams LJ, Brennan-Olsen SL, Berk M, Jacka FN. Milk consumption and the risk for incident major depressive disorder. Psychother Psychosom. 2015;84:384–386. doi:10.1159/000381831.
  • Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15:73. doi:10.1186/s12967-017-1175-y.
  • Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–2379. doi:10.1056/NEJMra1600266.
  • Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog. 2013;9:e1003726. doi:10.1371/journal.ppat.1003726.
  • Lopez-Legarrea P, Fuller NR, Zulet MA, Martinez JA, Caterson ID. The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state. Asia Pac J Clin Nutr. 2014;23:360–368. doi:10.6133/apjcn.2014.23.3.16.
  • Ussar S, Griffin NW, Bezy O, Fujisaka S, Vienberg S, Softic S, Deng L, Bry L, Gordon JI, Kahn CR. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 2015;22:516–530. doi:10.1016/j.cmet.2015.07.007.
  • Schmidt TS, Raes J, Bork P. The human gut microbiome: from association to modulation. Cell. 2018;172:1198–1215. doi:10.1016/j.cell.2018.02.044.
  • de Vos WM, de Vos EA. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev. 2012;70:S45–S56. doi:10.1111/j.1753-4887.2012.00505.x.
  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. U.S.a. 2010;107:14691–14696. doi:10.1073/pnas.1005963107.
  • De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia a, Laghi L, Serrazanetti DI, Di Cagno R, Ferrocino I, Lazzi C. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65:1812–1821. doi:10.1136/gutjnl-2015-309957.
  • Biesalski HK. Nutrition meets the microbiome: micronutrients and the microbiota. Ann N Y Acad Sci. 2016;1372:53–64. doi:10.1111/nyas.13145.
  • National Health and Medical Research Council. Australian dietary guidelines national health and medical research council. 2013.
  • Agriculture. USDoHaHSaUSDo. Dietary Guidelines for Americans; 2015.
  • Huang EY, Leone VA, Devkota S, Wang Y, Brady MJ, Chang EB. Composition of dietary fat source shapes gut microbiota architecture and alters host inflammatory mediators in mouse adipose tissue. J Parenter Enter Nut. 2013;37:746–754. doi:10.1177/0148607113486931.
  • Bai G, Ni K, Tsuruta T, Nishino N. Dietary casein and soy protein isolate modulate the effects of raffinose and fructooligosaccharides on the composition and fermentation of gut microbiota in rats. J Food Sci. 2016;81:H2093–H2098. doi:10.1111/1750-3841.13391.
  • Masarwi M, Solnik HI, Phillip M, Yaron S, Shamir R, Pasmanic-Chor M, Gat-Yablonski G. Food restriction followed by refeeding with a casein-or whey-based diet differentially affects the gut microbiota of pre-pubertal male rats. J Nutr Biochem. 2018;51:27–39. doi:10.1016/j.jnutbio.2017.08.014.
  • Burton KJ, Rosikiewicz M, Pimentel G, Bütikofer U, von Ah U, Voirol M-J, Croxatto a, Aeby S, Drai J, McTernan PG. Probiotic yogurt and acidified milk similarly reduce postprandial inflammation and both alter the gut microbiota of healthy, young men. Br J Nutr. 2017;117:1312–1322. doi:10.1017/S0007114517000885.
  • Moher D, Liberati a, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8:336–341. doi:10.1016/j.ijsu.2010.02.007.
  • Cochrane Methods Bias. 2019. [cited 2020 Jun 1]. https://methods.cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-tool-randomized-trials.
  • Fernandez-Raudales D, Hoeflinger JL, Bringe NA, Cox SB, Dowd SE, Miller MJ, Gonzalez de Mejia E. Consumption of different soymilk formulations differentially affects the gut microbiomes of overweight and obese men. Gut Microbes. 2012;3:490–500. doi:10.4161/gmic.21578.
  • Link-Amster H, Rochat F, Saudan K, Mignot O, Aeschlimann J. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol Med Microbiol. 1994;10:55–63. doi:10.1111/j.1574-695X.1994.tb00011.x.
  • Odamaki T, Kato K, Sugahara H, Xiao J, Abe F, Benno Y. Effect of probiotic yoghurt on animal-based diet-induced change in gut microbiota: an open, randomised, parallel-group study. Benef Microbes. 2016;7:473–484. doi:10.3920/BM2015.0173.
  • Odamaki T, Sugahara H, Yonezawa S, Yaeshima T, Iwatsuki K, Tanabe S, Tominaga T, Togashi H, Benno Y, Xiao J-Z. Effect of the oral intake of yogurt containing Bifidobacterium longum BB536 on the cell numbers of enterotoxigenic Bacteroides fragilis in microbiota. Anaerobe. 2012;18:14–18. doi:10.1016/j.anaerobe.2011.11.004.
  • Yılmaz İ, Dolar ME, Özpınar H. Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: a randomized controlled trial. Turk J Gastroenterol. 2019;30:242. doi:10.5152/tjg.2018.18227.
  • Beaumont M, Portune KJ, Steuer N, Lan a, Cerrudo V, Audebert M, Dumont F, Mancano G, Khodorova N, Andriamihaja M. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr. 2017;106:1005–1019. doi:10.3945/ajcn.117.158816.
  • Reimer RA, Willis HJ, Tunnicliffe JM, Park H, Madsen KL, Soto‐Vaca a. Inulin‐type fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: a randomized controlled trial. Mol Nutr Food Res. 2017;61:1700484. doi:10.1002/mnfr.201700484.
  • Bendtsen LQ, Blædel T, Holm JB, Lorenzen JK, Mark AB, Kiilerich P, Kristiansen K, Astrup a, Larsen LH. High intake of dairy during energy restriction does not affect energy balance or the intestinal microflora compared with low dairy intake in overweight individuals in a randomized controlled trial. Appl Physiol Nutr Metab. 2018;43:1–10. doi:10.1139/apnm-2017-0234.
  • Rastall RA, Gibson GR, Gill HS, Guarner F, Klaenhammer TR, Pot B, Reid G, Rowland IR, Sanders ME. Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications. FEMS Microbiol Ecol. 2005;52:145–152. doi:10.1016/j.femsec.2005.01.003.
  • Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto J-M, Kennedy S. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546. doi:10.1038/nature12506.
  • Nowak P, Troseid M, Avershina E, Barqasho B, Neogi U, Holm K, Hov JR, Noyan K, Vesterbacka J, Svärd J. Gut microbiota diversity predicts immune status in HIV-1 infection. AIDS. 2015;29:2409–2418. doi:10.1097/QAD.0000000000000869.
  • Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017;151:363–374. doi:10.1111/imm.12760.
  • Field TR, Sibley CD, Parkins MD, Rabin HR, Surette MG. The genus Prevotella in cystic fibrosis airways. Anaerobe. 2010;16:337–344. doi:10.1016/j.anaerobe.2010.04.002.
  • Kahan BC, Cro S, Doré CJ, Bratton DJ, Rehal S, Maskell NA, Rahman N, Jairath V. Reducing bias in open-label trials where blinded outcome assessment is not feasible: strategies from two randomised trials. Trials. 2014;15:456. doi:10.1186/1745-6215-15-456.
  • Byrd DA, Sinha R, Hoffman KL, Chen J, Hua X, Shi J, Chia N, Petrosino J, Vogtmann E. Comparison of methods to collect fecal samples for microbiome studies using whole-genome shotgun metagenomic sequencing. Msphere. 2020;5. doi:10.1128/mSphere.00827-19.
  • Wu W-K, Chen -C-C, Panyod S, Chen R-a, Wu M-S, Sheen L-Y, Chang S-C. Optimization of fecal sample processing for microbiome study—the journey from bathroom to bench. J Formos Med Assoc. 2019;118:545–555. doi:10.1016/j.jfma.2018.02.005.
  • Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti a, Levenez F, Tramontano M, Driessen M, Hercog R, Jung F-E. Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol. 2017;35:1069. doi:10.1038/nbt.3960.
  • Chen -C-C, Wu W-K, Chang C-M, Panyod S, Lu T-P, Liou J-M, Fang Y-J, Chuang EY, Wu M-S. Comparison of DNA stabilizers and storage conditions on preserving fecal microbiota profiles. J Formos Med Assoc. 2020;25;S0929-6646(20)30017-6. doi:10.1016/j.jfma.2020.01.013
  • Liang Y, Dong T, Chen M, He L, Wang T, Liu X, Chang H, Mao J-H, Hang B, Snijders AM. Systematic analysis of impact of sampling regions and storage methods on fecal gut microbiome and metabolome profiles. mSphere. 2020;5. doi:10.1128/mSphere.00763-19.
  • Szopinska JW, Gresse R, van der Marel S, Boekhorst J, Lukovac S, van Swam I, Franke B, Timmerman H, Belzer C, Vasquez AA. Reliability of a participant-friendly fecal collection method for microbiome analyses: a step towards large sample size investigation. BMC Microbiol. 2018;18:110. doi:10.1186/s12866-018-1249-x.
  • Videnska P, Smerkova K, Zwinsova B, Popovici V, Micenkova L, Sedlar K, Budinska E. Stool sampling and DNA isolation kits affect DNA quality and bacterial composition following 16S rRNA gene sequencing using MiSeq Illumina platform. Sci Rep. 2019;9:1–14. doi:10.1038/s41598-019-49520-3.
  • Mattiello F, Verbist B, Faust K, Raes J, Shannon WD, Bijnens L, Thas O. a web application for sample size and power calculation in case-control microbiome studies. Bioinformatics. 2016;32:2038–2040. doi:10.1093/bioinformatics/btw099.
  • Zhang S, Chen D-C. Facing a new challenge: the adverse effects of antibiotics on gut microbiota and host immunity. Chin Med J. 2019;132:1135. doi:10.1097/CM9.0000000000000245.
  • Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013;6:39–51. doi:10.1177/1756283X12459294.
  • Aslam H, Green J, Jacka FN, Collier F, Berk M, Pasco J, Dawson SL. Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety. Nutr Neurosci. 2018;1–13. doi:10.1080/1028415X.2018.1544332.
  • Swidsinski a, Loening-Baucke V, Lochs H, Hale LP. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol. 2005;11:1131. doi:10.3748/wjg.v11.i8.1131.
  • Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini a, Mele MC. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7:14. doi:10.3390/microorganisms7010014.
  • McBurney MI, Davis C, Fraser CM, Schneeman BO, Huttenhower C, Verbeke K, Walter J, Latulippe ME. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J Nutr. 2019;149:1882–1895. doi:10.1093/jn/nxz154.
  • MAeKIVUOKKO HA, Saarinen MT, Ouwehand AC, Rautonen NE. Effects of lactose on colon microbial community structure and function in a four-stage semi-continuous culture system. Biosci Biotechnol Biochem. 2006;70:2056–2063. doi:10.1271/bbb.60022.
  • KEHAGIAS C, Jao Y, Mikolajcik E, Hansen P. Growth response of Bifidobacterium bifidum to a hydrolytic product isolated from bovine casein. J Food Sci. 1977;42:146–150. doi:10.1111/j.1365-2621.1977.tb01238.x.
  • Sanz ML, Gibson GR, Rastall RA. Influence of disaccharide structure on prebiotic selectivity in vitro. J Agric Food Chem. 2005;53:5192–5199. doi:10.1021/jf050276w.
  • Nagpal R, Behare P, Rana R, Kumar a, Kumar M, Arora S, Morotta F, Jain S, Yadav H. Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct. 2011;2:18–27. doi:10.1039/C0FO00016G.
  • Kaminski S, Cieslinska a, Kostyra E. Polymorphism of bovine beta-casein and its potential effect on human health. J Appl Genet. 2007;48:189–198. doi:10.1007/BF03195213.
  • Haq MRU, Kapila R, Shandilya UK, Kapila S. Impact of milk derived β-casomorphins on physiological functions and trends in research: a review. Int J Food Prop. 2014;17:1726–1741. doi:10.1080/10942912.2012.712077.
  • Turroni F, Ventura M, Buttó LF, Duranti S, O’Toole PW, Motherway MOC, van Sinderen D. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci. 2014;71:183–203. doi:10.1007/s00018-013-1318-0.
  • Haug a, Hostmark AT, Harstad OM. Bovine milk in human nutrition–a review. Lipids Health Dis. 2007;6:25. doi:10.1186/1476-511X-6-25.
  • Daly K, Darby AC, Hall N, Nau a, Bravo D, Shirazi-Beechey SP. Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance. Br J Nutr. 2014;111:S30–S35. doi:10.1017/S0007114513002274.
  • Szilagyi a. Adaptation to lactose in lactase non persistent people: effects on intolerance and the relationship between dairy food consumption and evaluation of diseases. Nutrients. 2015;7:6751–6779. doi:10.3390/nu7085309.
  • Poltronieri P, Cappello MS, D’Urso OF Bioactive peptides with health benefit and their differential content in whey of different origin. Whey Types, Composition and Health Implications; 2012:153–168.
  • Titov EI, Tikhomirova NA, Ionova II, Gorlov IF, Slozhenkina MI, Mosolova NI, Zlobina EY. Growth stimulating effect of bovine milk lactoferrin on dermal cells and probiotic bacteria. Emir J Food Agr. 2016;28:540–546. doi:10.9755/ejfa.2015-06-447.
  • Nguyen MH, Yu VL, Morris AJ, McDermott L, Wagener MW, Harrell L, Snydman DR. Antimicrobial resistance and clinical outcome of Bacteroides bacteremia: findings of a multicenter prospective observational trial. Clin Infect Dis. 2000;30:870–876. doi:10.1086/313805.
  • Carolyn Redondo M, Arbo MD, Grindlinger J, Snydman DR. Attributable mortality of bacteremia associated with the Bacteroides fragilis group. Clin Infect Dis. 1995;20:1492–1496. doi:10.1093/clinids/20.6.1492.
  • Pellegrini a, Thomas U, Bramaz N, Hunziker P, von Fellenberg R. Isolation and identification of three bactericidal domains in the bovine α-lactalbumin molecule. Bba-gen Subjects. 1999;1426:439–448. doi:10.1016/S0304-4165(98)00165-2.
  • Shah NP. Effects of milk-derived bioactives: an overview. Br J Nutr. 2000;84:3–10. doi:10.1017/S000711450000218X.
  • Banerjee S, Sindberg G, Wang F, Meng J, Sharma U, Zhang L, Dauer P, Chen C, Dalluge J, Johnson T. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol. 2016;9:1418–1428. doi:10.1038/mi.2016.9.
  • Gómez-Hurtado I, Santacruz a, Peiró G, Zapater P, Gutiérrez a, Pérez-Mateo M, Sanz Y, Francés R. Gut microbiota dysbiosis is associated with inflammation and bacterial translocation in mice with CCl4-induced fibrosis. PLoS One. 2011;6:e23037. doi:10.1371/journal.pone.0023037.
  • Rowin J, Xia Y, Jung B, Sun J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol Rep. 2017;5:e13443. doi:10.14814/phy2.13443.
  • Becker a, Hempel G, Grecksch G, Matthies H. Effects of beta-casomorphin derivatives on gastrointestinal transit in mice. Biomed Biochim Acta. 1990;49:1203–1207.
  • Defilippi C, Gomez E, Charlin V, Silva C. Inhibition of small intestinal motility by casein: a role of beta casomorphins? Nutrition. 1995;11:751–754.
  • Barnett MP, McNabb WC, Roy NC, Woodford KB, Clarke AJ. Dietary A1 β-casein affects gastrointestinal transit time, dipeptidyl peptidase-4 activity, and inflammatory status relative to A2 β-casein in Wistar rats. Int J Food Sci Nutr. 2014;65:720–727. doi:10.3109/09637486.2014.898260.
  • Haq MRU, Kapila R, Saliganti V. Consumption of β-casomorphins-7/5 induce inflammatory immune response in mice gut through Th 2 pathway. J Funct Foods. 2014;8:150–160. doi:10.1016/j.jff.2014.03.018.
  • Haq MRU, Kapila R, Sharma R, Saliganti V, Kapila S. Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. Eur J Nutr. 2014;53:1039–1049. doi:10.1007/s00394-013-0606-7.
  • Ho S, Woodford K, Kukuljan S, Pal S. Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: a blinded randomised cross-over pilot study. Eur J Clin Nutr. 2014;68:994–1000. doi:10.1038/ejcn.2014.127.
  • Jianqin S, Leiming X, Lu X, Yelland GW, Ni J, Clarke AJ. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr J. 2016;15:35. doi:10.1186/s12937-016-0147-z.