1,493
Views
17
CrossRef citations to date
0
Altmetric
Review Article

A systematic review on bio-sequestration of carbon dioxide in bio-concrete systems: a future direction

ORCID Icon, , , ORCID Icon &
Pages 1209-1228 | Received 30 Sep 2018, Accepted 04 Jan 2020, Published online: 10 Feb 2020

References

  • Abdeen, F. R. H., Mel, M., Jami, M. S., Ihsan, S. I., & Ismail, A. F. (2016). A review of chemical absorption of carbon dioxide for biogas upgrading. Chinese Journal of Chemical Engineering, 24(6), 693–702. doi:10.1016/j.cjche.2016.05.006
  • Ahn, C. K., Lee, H. W., Chang, Y. S., Han, K., Kim, J. Y., Rhee, C. H., … Park, J. M. (2011). Characterization of ammonia-based CO2 capture process using ion speciation. International Journal of Greenhouse Gas Control, 5(6), 1606–1613. doi:10.1016/j.ijggc.2011.09.007
  • Al-Thawadi, S. M. (2011). Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. Journal of Advanced Science and Engineering Research, 1(1), 98–114.
  • Alonso, M. J. C., Ortiz, C. E. L., Perez, S. O. G., Narayanasamy, R., Fajardo San Miguel, G. D. J., Hernández, H. H., & Balagurusamy, N. (2017). Improved strength and durability of concrete through metabolic activity of ureolytic bacteria. Environmental Science and Pollution Research, 25(22),1–8. doi:10.1007/s11356-017-9347-0
  • Alshalif, A. F., Irwan, J. M., Othman, N., Al-Gheethi, A., & Hassan, A. (2018). Potential of carbonic anhydrase and urease bacteria for sequestration of CO2 into aerated concrete. MATEC Web of Conferences, 250, 03004. doi:10.1051/matecconf/201825003004
  • Alshalif, A. F., Juki, M. I., Othman, N., & Al-Gheethi, A. A. (2019). Improvement of mechanical properties of bio-concrete using Enterococcus faecalis and Bacillus cereus. Environmental Engineering Research, 24(4), 630–637. doi:10.4491/eer.2018.306
  • Aminu, M. D., Nabavi, S. A., Rochelle, C. A., & Manovic, V. (2017). A review of developments in carbon dioxide storage. Applied Energy, 208, 1389–1419. doi:10.1016/j.apenergy.2017.09.015
  • Amran, Y. H. M., Farzadnia, N., & Ali, A. A. A. (2015). Properties and applications of foamed concrete: A review. Construction and Building Materials, 101, 990–1005.
  • Arora, N. K. (2018). Bioremediation: A green approach for restoration of polluted ecosystems. Environmental Sustainability, 1(4), 305–307. doi:10.1007/s42398-018-00036-y
  • Atics, C. D. (2003). Accelerated carbonation and testing of concrete made with fly ash. Construction and Building Materials, 17(3), 147–152.
  • Bai, J., Wild, S., & Sabir, B. B. (2002). Sorptivity and strength of air-cured and water-cured PC-PFA-MK concrete and the influence of binder composition on carbonation depth. Cement and Concrete Research, 32(11), 1813–1821. doi:10.1016/S0008-8846(02)00872-4
  • Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production, 51, 142–161.
  • Branch, J. L., Kosson, D. S., Garrabrants, A. C., & He, P. J. (2016). The impact of carbonation on the microstructure and solubility of major constituents in microconcrete materials with varying alkalinities due to fly ash replacement of ordinary Portland cement. Cement and Concrete Research, 89, 297–309. doi:10.1016/j.cemconres.2016.08.019
  • Branko, S., & Lukovic, M. (2016). Carbonation of cement paste: Understanding. Challenges, and Opportunities, 117, 285–301.
  • Carmona-Salazar, L., El Hafidi, M., Enriquez-Arredondo, C., Vazquez-Vazquez, C., Gonzalez De La Vara, L. E., & Gavilanes-Ruiz, M. (2011). Isolation of detergent-resistant membranes from plant photosynthetic and non-photosynthetic tissues. Analytical Biochemistry, 417(2), 220–227. doi:10.1016/j.ab.2011.05.044
  • Chang, C. F., & Chen, J. W. (2006). The experimental investigation of concrete carbonation depth. Cement and Concrete Research, 36(9), 1760–1767. doi:10.1016/j.cemconres.2004.07.025
  • Chang, E. E., Pan, S. Y., Chen, Y. H., Tan, C. S., & Chiang, P. C. (2012). Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. Journal of Hazardous Materials, 227–228, 97–106. doi:10.1016/j.jhazmat.2012.05.021
  • Chang, J., Wang, D., & Fang, Y. (2018). Effects of mineralogical changes in BOFS during carbonation on pH and Ca and Si leaching. Construction and Building Materials, 192, 584–592. doi:10.1016/j.conbuildmat.2018.10.057
  • Chen, B., Harp, D. R., Lin, Y., Keating, E. H., & Pawar, R. J. (2018). Geologic CO2 sequestration monitoring design: A machine learning and uncertainty quantification based approach. Applied Energy, 225, 332–345. doi:10.1016/j.apenergy.2018.05.044
  • Chun, Y., Naik, T., & Kraus, R. (2007). Carbon dioxide sequestration in concrete in different curing environments. Paper presented at the International Conference on Sustainable Construction Materials and Technologies, Coventry, UK, 18–24.
  • Cizer, O., Ruiz-Agudo, E., & Rodriguez-Navarro, C. (2018). Kinetic effect of carbonic anhydrase enzyme on the carbonation reaction of lime mortar. International Journal of Architectural Heritage, 12(5), 779–789. doi:10.1080/15583058.2017.1413604
  • Costa, B. L. d. S., Freitas, J. C. d. O., Melo, D. M. d. A., Araujo, R. G. d. S., Oliveira, Y. H. d., & Simão, C. A. (2019). Evaluation of density influence on resistance to carbonation process in oil well cement slurries. Construction and Building Materials, 197, 331–338. doi:10.1016/j.conbuildmat.2018.11.232
  • De Ceukelaire, L., & Van Nieuwenburg, D. (1993). Accelerated carbonation of a blast-furnace cement concrete. Cement and Concrete Research, 23(2), 442–452. doi:10.1016/0008-8846(93)90109-M
  • Demirdağ, R., Yerlikaya, E., Şenturk, M., Küfrevioğlu, O. I., & Supuran, C. T. (2014). Heavy metal ion inhibition studies of human, sheep and fish α-carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(2), 278–282. doi:10.3109/14756366.2011.640633
  • Dhir, R. K., Limbachiya, M. C., McCarthy, M. J., & Chaipanich, A. (2007). Evaluation of Portland limestone cements for use in concrete construction. Materials and Structures, 40(5), 459–473. doi:10.1617/s11527-006-9143-7
  • Dri, M., Sanna, A., & Maroto-Valer, M. M. (2014). Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products. Applied Energy, 113, 515–523. doi:10.1016/j.apenergy.2013.07.064
  • Drouet, E., Poyet, S., Le Bescop, P., Torrenti, J. M., & Bourbon, X. (2019). Carbonation of hardened cement pastes: Influence of temperature. Cement and Concrete Research, 115, 445–459. doi:10.1016/j.cemconres.2018.09.019
  • Duan, H., Wang, L., Zhang, Y., Fu, X., Tsang, Y., Wu, J., & Le, Y. (2018). Variable decomposition of two plant litters and their effects on the carbon sequestration ability of wetland soil in the Yangtze River estuary. Geoderma, 319, 230–238. doi:10.1016/j.geoderma.2017.10.050
  • Eatmon, T. D. (2015). A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17(7), 668–675. doi:10.1016/j.jclepro.2008.04.007
  • Ekolu, S. O. (2016). A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete. Construction and Building Materials, 127, 306–320. doi:10.1016/j.conbuildmat.2016.09.056
  • Fang, J., Yu, G., Liu, L., Hu, S., & Stuart Chapin, F. (2018). Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115(16), 4015–4020. doi:10.1073/pnas.1700304115
  • Fulke, A. B., Mudliar, S. N., Yadav, R., Shekh, A., Srinivasan, N., Ramanan, R., … Chakrabarti, T. (2010). Bio-mitigation of CO2, calcite formation and simultaneous biodiesel precursors production using Chlorella sp. Bioresource Technology, 101(21), 8473–8476. doi:10.1016/j.biortech.2010.06.012
  • Galan, I., Andrade, C., Mora, P., & Sanjuan, M. A. (2010). Sequestration of CO2 by concrete carbonation. Environmental Science & Technology, 44(8), 3181–3186. doi:10.1021/es903581d
  • Gao, L., Fang, M., Li, H., & Hetland, J. (2011). Cost analysis of CO2 transportation: Case study in China. Energy Procedia, 4, 5974–5981. doi:10.1016/j.egypro.2011.02.600
  • Goldberg, D., Aston, L., Bonneville, A., Demirkanli, I., Evans, C., Fisher, A., … White, S. (2018). Geological storage of CO2 in sub-seafloor basalt: The CarbonSAFE pre-feasibility study offshore Washington State and British Columbia. Energy Procedia, 146, 158–165. doi:10.1016/j.egypro.2018.07.020
  • Gonen, T., & Yazicioglu, S. (2007). The influence of compaction pores on sorptivity and carbonation of concrete. Construction and Building Materials, 21(5), 1040–1045.
  • Habert, G., Billard, C., Rossi, P., Chen, C., & Roussel, N. (2010). Cement production technology improvement compared to factor 4 objectives. Cement and Concrete Research, 40(5), 820–826. doi:10.1016/j.cemconres.2009.09.031
  • Harith, I. K. (2018). Study on polyurethane foamed concrete for use in structural applications. Case Studies in Construction Materials, 8, 79–86. doi:10.1016/j.cscm.2017.11.005
  • Harp, D. R., Oldenburg, C. M., & Pawar, R. (2019). A metric for evaluating conformance robustness during geologic CO2 sequestration operations. International Journal of Greenhouse Gas Control, 85, 100–108. doi:10.1016/j.ijggc.2019.03.023
  • Huppert, H. E., & Neufeld, J. A. (2014). The fluid mechanics of carbon dioxide sequestration. Annual Review of Fluid Mechanics, 46(1), 255–272. doi:10.1146/annurev-fluid-011212-140627
  • Idi, A., Md Nor, M. H., Abdul Wahab, M. F., & Ibrahim, Z. (2015). Photosynthetic bacteria: An eco-friendly and cheap tool for bioremediation. Reviews in Environmental Science and Bio/Technology, 14(2), 271–285. doi:10.1007/s11157-014-9355-1
  • IEA, Medium-Term Oil and Gas Markets. (2010). International Energy Agency, Paris, France.
  • Jang, J. G., Kim, G. M., Kim, H. J., & Lee, H. K. (2016). Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials. Construction and Building Materials, 127, 762–773. doi:10.1016/j.conbuildmat.2016.10.017
  • Jaya, P., Nathan, V. K., & Ammini, P. (2019). Characterization of marine bacterial carbonic anhydrase and their CO2 sequestration abilities based on a soil microcosm. Preparative Biochemistry and Biotechnology, 49(9), 891–899.
  • Jeong, J. H., Jo, Y. S., Park, C. S., Kang, C. H., & So, J. S. (2017). Biocementation of concrete pavements using microbially induced calcite precipitation. Journal of Microbiology and Biotechnology, 27(7), 1331–1335. doi:10.4014/jmb.1701.01041
  • Ji, L., Yu, H., Yu, B., Zhang, R., French, D., Grigore, M., … Zhao, S. (2018). Insights into Carbonation Kinetics of Fly Ash from Victorian Lignite for CO2 Sequestration. Energy & Fuels, 32(4), 4569–4578. doi:10.1021/acs.energyfuels.7b03137
  • Jiang, J., Lu, Z., Niu, Y., Li, J., & Zhang, Y. (2016). Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement. Materials & Design, 92, 949–959. doi:10.1016/j.matdes.2015.12.068
  • Johannesson, B., & Utgenannt, P. (2001). Microstructural changes caused by carbonation of cement mortar. Cement and Concrete Research, 31(6), 925–931. doi:10.1016/S0008-8846(01)00498-7
  • Karthikeyan, C., Rajeswari, S., Maruthamuthu, S., Subramanian, K., & Rajagopal, G. (2014). Biogenic ammonia for CO2 capturing and electrochemical conversion into bicarbonate and formate. Journal of CO2 Utilization, 6, 53–61. doi:10.1016/j.jcou.2014.03.004
  • Kashef-Haghighi, S., & Ghoshal, S. (2012). CO2 sequestration in concrete through accelerated carbonation curing in a flow-through reactor. Industrial & Engineering Chemistry Research, 49(3), 1143–1149.
  • Kellouche, Y., Boukhatem, B., Ghrici, M., & Tagnit-Hamou, A. (2019). Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network. Neural Computing and Applications, 31(S2), 969–988. doi:10.1007/s00521-017-3052-2
  • Khunthongkeaw, J., Tangtermsirikul, S., & Leelawat, T. (2006). A study on carbonation depth prediction for fly ash concrete. Construction and Building Materials, 20(9), 744–753. doi:10.1016/j.conbuildmat.2005.01.052
  • Kim, J. K., Kim, C. Y., Yi, S. T., & Lee, Y. (2009). Effect of carbonation on the rebound number and compressive strength of concrete. Cement and Concrete Composites, 31(2), 139–144. doi:10.1016/j.cemconcomp.2008.10.001
  • Kwon, S.-J., & Song, H.-W. (2010). Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling. Cement and Concrete Research, 40(1), 119–127. doi:10.1016/j.cemconres.2009.08.022
  • Le Quere, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., & Woodward, F. I. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2(12), 831–836. doi:10.1038/ngeo689
  • Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426–443. doi:10.1016/j.rser.2014.07.093
  • Li, W., Chen, W.-S., Zhou, P.-P., & Yu, L.-J. (2013). Influence of enzyme concentration on bio-sequestration of CO2 in carbonate form using bacterial carbonic anhydrase. Chemical Engineering Journal, 232, 149–156. doi:10.1016/j.cej.2013.07.069
  • Liu, L., Ha, J., Hashida, T., & Teramura, S. (2001). Development of a CO2 solidification method for recycling autoclaved lightweight concrete waste. Journal of Materials Science Letters, 20(19), 1791–1794.
  • Lovato, P. S., Possan, E., Molin, D. C. C. D., Masuero, A. B., & Ribeiro, J. L. D. (2012). Modeling of mechanical properties and durability of recycled aggregate concretes. Construction and Building Materials, 26(1), 437–447. doi:10.1016/j.conbuildmat.2011.06.043
  • Lu, B., Shi, C., Cao, Z., Guo, M., & Zheng, J. (2019). Effect of carbonated coarse recycled concrete aggregate on the properties and microstructure of recycled concrete. Journal of Cleaner Production, 233, 421–428. doi:10.1016/j.jclepro.2019.05.350
  • Marland, G., & Boden, T. (2002). The increasing concentration of atmospheric CO2: How much, when, and why? Paper presented at the International Seminar on Nuclear War and Planetary Emergencies 26th Session, Erice, Sicily, Italy, August 19–24 (pp. 283–295).
  • Mathias, S. A., Gluyas, J. G., Goldthorpe, W. H., & Mackay, E. J. (2015). Impact of Maximum Allowable Cost on CO2 Storage Capacity in Saline Formations. Environmental Science & Technology, 49(22), 13510–13518. doi:10.1021/acs.est.5b02836
  • Mendes, A. Z., Medeiros-Junior, R. A., & da Silva Munhoz, G. (2019). Effect of the corrosion degree and the carbonation depth on the electrical resistivity, ultrasonic pulse velocity and corrosion potential. Journal of Building Pathology and Rehabilitation, 4(1), 1–12. doi:10.1007/s41024-019-0055-7
  • Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. doi:10.1016/j.cemconcomp.2008.12.010
  • Mirjafari, P., Asghari, K., & Mahinpey, N. (2007). Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Industrial & Engineering Chemistry Research, 46(3), 921–926. doi:10.1021/ie060287u
  • Mo, S., Shi, X., Lu, D., Ye, M., & Wu, J. (2019). An adaptive Kriging surrogate method for efficient uncertainty quantification with an application to geological carbon sequestration modeling. Computers & Geosciences, 125, 69–77. doi:10.1016/j.cageo.2019.01.012
  • Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechnological Equipment, 29(2), 205–220. doi:10.1080/13102818.2015.1008192
  • Montes-Hernandez, G., Perez-Lopez, R., Renard, F., Nieto, J. M., & Charlet, L. (2009). Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. Journal of Hazardous Materials, 161(2–3), 1347–1354. doi:10.1016/j.jhazmat.2008.04.104
  • Morandeau, A., Thiery, M., & Dangla, P. (2014). Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cement and Concrete Research, 56, 153–170. doi:10.1016/j.cemconres.2013.11.015
  • Muriithi, G. N., Petrik, L. F., Fatoba, O., Gitari, W. M., Doucet, F. J., Nel, J., … Chuks, P. E. (2013). Comparison of CO2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash. Journal of Environmental Management, 127, 212–220. doi:10.1016/j.jenvman.2013.05.027
  • Naqi, A., & Jang, J. G. (2019). Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review. Sustainability, 11(2), 537. doi:10.3390/su11020537
  • Neele, F., Haugen, H. A., & Skagestad, R. (2014). Ship transport of CO2 – Breaking the CO2-EOR deadlock. Energy Procedia, 63, 2638–2644. doi:10.1016/j.egypro.2014.11.286
  • Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M., & Muhd, M. Z. (2015). A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries. Renewable and Sustainable Energy Reviews, 43, 843–862. doi:10.1016/j.rser.2014.11.066
  • Nosouhian, F., Mostofinejad, D., & Hasheminejad, H. (2015). Influence of biodeposition treatment on concrete durability in a sulphate environment. Biosystems Engineering, 133, 141–152. doi:10.1016/j.biosystemseng.2015.03.008
  • Omoregie, A. I., Khoshdelnezamiha, G., Senian, N., Ong, D. E. L., & Nissom, P. M. (2017). Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials. Ecological Engineering, 109, 65–75. doi:10.1016/j.ecoleng.2017.09.012
  • Otsuki, N., Miyazato, S., & Yodsudjai, W. (2003). Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. Journal of Materials in Civil Engineering, 15(5), 443–451. doi:10.1061/(ASCE)0899-1561(2003)15:5(443)
  • Pacheco-Torgal, F., & Labrincha, J. A. (2013). Biotechconcrete: An innovative approach for concrete with enhanced durability. In F. P. Torgal, S. Jalali, J. Labrincha, & V. M. John (Eds.), Eco-efficient concrete (Vol. 40, pp. 565–576). Cambridge: Woodhead Publishing.
  • Pacheco Torgal, F., Miraldo, S., Labrincha, J. A., & De Brito, J. (2012). An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC. Construction and Building Materials, 36, 141–150. doi:10.1016/j.conbuildmat.2012.04.066
  • Palareti, G., Legnani, C., Cosmi, B., Antonucci, E., Erba, N., Poli, D., … DULCIS (D-dimer-ULtrasonography in Combination Italian Study) Investigators. (2016). Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. International Journal of Laboratory Hematology, 38(1), 42–49. doi:10.1111/ijlh.12426
  • Pan, S.-Y., Chang, E. E., & Chiang, P.-C. (2012). CO2 capture by accelerated carbonation of alkaline wastes: A review on its principles and applications. Aerosol and Air Quality Research, 12(5), 770–791. doi:10.4209/aaqr.2012.06.0149
  • Papadakis, V. G. (2000). Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cement and Concrete Research, 30(2), 291–299. doi:10.1016/S0008-8846(99)00249-5
  • Power, I. M., Harrison, A. L., Dipple, G. M., & Southam, G. (2013). Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation. International Journal of Greenhouse Gas Control, 16, 145–155. doi:10.1016/j.ijggc.2013.03.011
  • Prentice, I. C. (2001). The carbon cycle and atmospheric carbon dioxide. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai … C. A. Johnson (eds.), Climate Change 2001: The scientific basis (pp. 183–237). Cambridge: Cambridge University Press.
  • Qin, L., & Gao, X. (2019). Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation. Waste Management, 89, 254–264. doi:10.1016/j.wasman.2019.04.018
  • Rafieizonooz, M., Mirza, J., Salim, M. R., Hussin, M. W., & Khankhaje, E. (2016). Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Construction and Building Materials, 116, 15–24. doi:10.1016/j.conbuildmat.2016.04.080
  • Ramanan, R., Kannan, K., Sivanesan, S. D., Mudliar, S., Kaur, S., Tripathi, A. K., & Chakrabarti, T. (2009). Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World Journal of Microbiology and Biotechnology, 25(6), 981–987. doi:10.1007/s11274-009-9975-8
  • Ranjbar, N., Behnia, A., Alsubari, B., Moradi Birgani, P., & Jumaat, M. Z. (2016). Durability and mechanical properties of self-compacting concrete incorporating palm oil fuel ash. Journal of Cleaner Production, 112, 723–730. doi:10.1016/j.jclepro.2015.07.033
  • Rheinheimer, V., Chae, S. R., Rodríguez, E. D., Geng, G., Kirchheim, A. P., & Monteiro, P. J. M. (2016). A scanning transmission X-ray microscopy study of cubic and orthorhombic C3A and their hydration products in the presence of gypsum. Materials, 9(9), 745. doi:10.3390/ma9090745
  • Saetta, A. V., Schrefler, B. A., & Vitaliani, R. V. (1993). The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials. Cement and Concrete Research, 23(4), 761–772. doi:10.1016/0008-8846(93)90030-D
  • Santos, S. F., Schmidt, R., Almeida, A. E. F. S., Tonoli, G. H. D., & Savastano, H. (2015). Supercritical carbonation treatment on extruded fibre-cement reinforced with vegetable fibres. Cement and Concrete Composites, 56, 84–94. doi:10.1016/j.cemconcomp.2014.11.007
  • Shekh, A. Y., Krishnamurthi, K., Mudliar, S. N., Yadav, R. R., Fulke, A. B., Devi, S. S., & Chakrabarti, T. (2012). Recent advancements in carbonic anhydrase-driven processes for CO2 sequestration: Minireview. Critical Reviews in Environmental Science and Technology, 42(14), 1419–1440. doi:10.1080/10643389.2011.556884
  • Shi, H., Xu, B., & Zhou, X. (2009). Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Construction and Building Materials, 23(5), 1980–1985. doi:10.1016/j.conbuildmat.2008.08.021
  • Shim, J.-G., Lee, D. W., Lee, J. H., & Kwak, N.-S. (2016). Experimental study on capture of carbon dioxide and production of sodium bicarbonate from sodium hydroxide. Environmental Engineering Research, 21(3), 297–303. doi:10.4491/eer.2016.042
  • Silva, R. V., Neves, R., De Brito, J., & Dhir, R. K. (2015). Carbonation behaviour of recycled aggregate concrete. Cement and Concrete Composites, 62, 22–32. doi:10.1016/j.cemconcomp.2015.04.017
  • Sisomphon, K., & Franke, L. (2007). Carbonation rates of concretes containing high volume of pozzolanic materials. Cement and Concrete Research, 37(12), 1647–1653. doi:10.1016/j.cemconres.2007.08.014
  • Song, H. W., & Kwon, S. J. (2007). Permeability characteristics of carbonated concrete considering capillary pore structure. Cement and Concrete Research, 37(6), 909–915. doi:10.1016/j.cemconres.2007.03.011
  • Sua-Iam, G., Sokrai, P., & Makul, N. (2016). Novel ternary blends of Type 1 Portland cement, residual rice husk ash, and limestone powder to improve the properties of self-compacting concrete. Construction and Building Materials, 125, 1028–1034. doi:10.1016/j.conbuildmat.2016.09.002
  • Tao, Y., Guo, B., Bandilla, K. W., & Celia, M. A. (2019). Vertically integrated dual-continuum models for CO2 injection in fractured geological formations. Computational Geosciences, 23(2), 273–284. doi:10.1007/s10596-018-9805-x
  • Torkaman, J., Ashori, A., & Sadr Momtazi, A. (2014). Using wood fiber waste, rice husk ash, and limestone powder waste as cement replacement materials for lightweight concrete blocks. Construction and Building Materials, 50, 432–436. doi:10.1016/j.conbuildmat.2013.09.044
  • Wiktor, V., & Jonkers, H. M. (2011). Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites, 33(7), 763–770. doi:10.1016/j.cemconcomp.2011.03.012
  • Wiktor, V., & Jonkers, H. M. (2015). Field performance of bacteria-based repair system: Pilot study in a parking garage. Case Studies in Construction Materials, 2, 11–17. doi:10.1016/j.cscm.2014.12.004
  • Wongkeo, W., Thongsanitgarn, P., Pimraksa, K., & Chaipanich, A. (2012). Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Materials & Design, 35, 434–439. doi:10.1016/j.matdes.2011.08.046
  • Xi, F., Davis, S. J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C., … Liu, Z. (2016). Substantial global carbon uptake by cement carbonation. Nature Geoscience, 9(12), 880–883. doi:10.1038/ngeo2840
  • Yadav, R. R., Mudliar, S. N., Shekh, A. Y., Fulke, A. B., Devi, S. S., Krishnamurthi, K., … Chakrabarti, T. (2012). Immobilization of carbonic anhydrase in alginate and its influence on transformation of CO2 to calcite. Process Biochemistry, 47(4), 585–590. doi:10.1016/j.procbio.2011.12.017
  • Yoon, I.-S., Çopuroğlu, O., & Park, K.-B. (2007). Effect of global climatic change on carbonation progress of concrete. Atmospheric Environment, 41(34), 7274–7285. doi:10.1016/j.atmosenv.2007.05.028
  • Yu, M., Bao, H., Ye, J., & Chi, Y. (2017). The effect of random porosity field on supercritical carbonation of cement-based materials. Construction and Building Materials, 146, 144–155. doi:10.1016/j.conbuildmat.2017.04.060
  • Zhang, D., Ghouleh, Z., & Shao, Y. (2017). Review on carbonation curing of cement-based materials. Journal of CO2 Utilization, 21, 119–131. doi:10.1016/j.jcou.2017.07.003
  • Zhang, J., Liu, Y., Feng, T., Zhou, M., Zhao, L., Zhou, A., & Li, Z. (2017). Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Construction and Building Materials, 148, 610–617.
  • Zhang, P., & Li, Q. F. (2013). Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Composites Part B: Engineering, 45(1), 1587–1594. doi:10.1016/j.compositesb.2012.10.006
  • Zhao, H., Sun, W., Wu, X., & Gao, B. (2012). Effect of initial water-curing period and curing condition on the properties of self-compacting concrete. Materials and Design, 35, 194–200. doi:10.1016/j.matdes.2011.09.053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.