91
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Microbial Metabolism as an Evolutionary Response: The Cybernetic Approach to Modeling

Pages 155-175 | Published online: 29 Sep 2008

REFERENCES

  • Alexander, M.L. and Ramkrishna, D. 1991. Cybernetic modeling of iron-limited growth and sideropore production. Biotechnol. Bioeng. 38:637–652.
  • Baloo, S. and Ramkrishna, D. 1991a. Metabolic regulation in bacterial continuous cultures. I. Biotechnol. Bioeng. 38:1337–1352.
  • Baloo, S. and Ramkrishna, D. 1991b. Metabolic regulation in bacterial continuous cultures. II. Biotechnol. Bioeng. 38:1353–1363.
  • Bentley, W.E. and Quiroga, O.E. 1993. Investigation of subpopulation heterogeneity and plasmid stability in recombinant Escherichia coli via a simple segregated model. Biotechnol. Bioeng. 42:222–234.
  • Cazzador, L., Mariani, L., Martegani, E., and Alberghina, L. 1990. Structured segregated models and analysis of self-oscillating yeast continuous cultures. Bioprocess Eng. 5:175–180.
  • Demain, A.L. 1971. Overproduction of microbial metabolites and enzymes due to alteration of regulation. Adv. Biochem. Eng./Biotechnol. 1:113–142.
  • Dhurjati, P., Ramkrishna, D., Flickinger, C., and Tsao, G.T. 1985. A cybernetic view of microbial growth: modeling cells as optimal strategists. Biotechnol. Bioeng. 27:1–9.
  • Doshi, P., Rengaswamy, R., and Venkatesh, K.V. 1997. Modelling of microbial growth for sequential utilization in a multi-substrate environment. Process Biochem. 32:643–650.
  • Europa, A.F., Gambhir, A., Fu, P.-C., and Hu, W.-S. 2000. Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol. Bioeng. 67:25–34.
  • Freund, R.J. and Wilson, W.J. 1992. Statistical Methods. Academic Press, New York.
  • Gambhir, A., Europa, A.F., and Hu, W.-S. 1999. Alteration of cellular metabolism by consecutive fedbatch cultures of mammalian cells. J. Biosci. Eioeng. 87:805–810.
  • Guardia, M.J., Gambhir, A., Europa, A.F., Ramkrishna, D., and Hu, W.-S. 2000. Cybernetic modeling and regulation of metabolic pathways in multiple steady states of hybridoma cells. Biotechnol. Prog. 16:847–853.
  • Hafner, R.P., Brown, G.C., and Brand, M.D. 1990. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protomotive force in isolated mitochondria using the “topdown” approach of metabolic control analysis. Europ. J. Biochem. 188:313–319.
  • Hatzimanikatis, V., Emmerling, M., Sauer, U., and Bailey, J.E. 1998. Application of mathematical tools for metabolic design of microbial ethanol production. Biotechnol. Bioeng. 57:154–161.
  • Heinrich, R. and Rapoport, T.A. 1974. A linear steady state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42:89–95.
  • Herrnstein, R.J. 1970. On the law of effect. J. Exp. Anal. Behav. 13:243–266.
  • Hjortso, M.A., and Nielsen, J. 1994. A conceptual model of autonomous oscillations in microbial cultures. Chem. Eng. Sci. 49:1083–1095.
  • Hu, W.-S., and Oberg, M.G. 1990. Monitoring and control of animal cell bioreactors: biochemical engineering considerations. Bioproc. Technol. 10:451–481.
  • Jarzbeski, A.B. 1992. Modelling of oscillatory behaviour in continuous ethanol fermentation. Biotechnol. Lett. 14:137–142.
  • Jones, K.D. and Kompala, D.S. 1999. Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. J. Biotechnol. 71:105–131.
  • Kacser, H. and Burns, J.A. 1973. The control of flux. Symp. Soc. Exp. Biol. 27:65–104.
  • Kluge, M., Siegmund, D., Diekmann, H., and Thoma, M. 1992. A model for penicillin production with and without temperature shift after the growth phase. Appl. Microbiol. Biotechnol. 36:446–451.
  • Kompala, D. S., Ramkrishna, D., Jansen, N.B., and Tsao,G.T. 1986. Investigation of bacterial growth on mixed substrates: experimental evaluation of cybernetic models. Biotechnol. Bioeng. 28:1044–1055.
  • Kuenzi, M.T. and Fiechter, A. 1969. Changes in carbohydrate composition and trehalase activity during the budding cycle of Saccharomyces cerevisiae. Arch. Microbiol. 64:396–407.
  • Mandelstam, J. and Mc Quillen, K., 1968. Biochemistry of Bacterial Growth. Blackwell, Oxford.
  • Nielsen, J. and Jorgensen, H.S. 1995. Metabolic control analysis of penicillin biosynthetic pathway in a high yielding strain of Penicillium crysogenum. Biotechnol. Prog. 11:299–305.
  • Nissen, T.L., Schulze, U., Nielsen, J., and Villadsen, J. 1997. Flux distributions in anaerobic glucoselimited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203–218.
  • Panek, A. 1963. Function of trehalose in baker’s yeast (Saccharomyces cerevisiae). Arch. Biochem. Biophys. 100:422–425.
  • Patnaik, P.R. 1994. Fractal characterization of the effect of noise on biological oscillations: the biosynthesis of ethanol. Biotechnol. Techniques 8:419–424.
  • Patnaik, P.R. 1996. Start-up sensitivity to the initial state of a batch bioreactor for a recombinant Escherichia coli in a complex medium. Bioprocess Eng. 15:215–219.
  • Patnaik, P.R. 1997a. Principal component analysis of the effect of inflow disturbances on recombinant β-galactosidase fermentation. Hung. J. Ind. Chem.
  • Patnaik, P.R. 1997b. Spectral analysis of the effect of inflow noise on a fed-batch fermentation for recombinant β-galactosidase. Bioprocess Eng. 17:93–97.
  • Patnaik, P.R. 2000. Are microbes intelligent beings? An assessment of cybernetic modeling. Biotechnol. Adv. 18:267–288.
  • Ramkrishna, D. 1982. A cybernetic perspective of microbial growth. In: Papoutsakis, E., Stephanopoulos, G.N., and Blanch, H.W. (Eds.), Foundations of Biochemical Engineering: Kinetics and Thermodynamics in Biological Systems. Am. Chem. Soc., Washington DC, pp. 161–178.
  • Ramkrishna, D., Kompala, D.S., and Tsao, G.T. 1987. Are microbes optimal strategists? Biotechnol. Prog. 3:121–126.
  • Shi, Z. and Shimizu, K. 1992. Neuro-fuzzy control of bioreactor systems with pattern recognition. J. Ferment. Bioeng. 74:39–45.
  • Straight, J.V. and Ramkrishna, D. 1991. Complex growth dynamics in batch cultures: experiments and cybernetic models. Biotechnol. Bioeng. 37:895–909.
  • Straight, J.V. and Ramkrishna, D. 1994. Cybernetic modeling and regulation of metabolic pathways. Growth on complementary nutrients. Biotechnol. Prog. 10:574–587.
  • Summers, D.K. 1991. The kinetics of plasmid loss. Trends Biotechnol. 9:273–278.
  • Turner, B.G. and Ramkrishna, D. 1988. Revised enzyme synthesis rate expression in cybernetic models of bacterial growth. Biotechnol. Bioeng. 31:41–43.
  • Vallino, J.J. and Stephanopoulos, G. 1993. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41:633–646.
  • Varner, J. and Ramkrishna, D. 1998a. Application of cybernetic models to metabolic engineering: in-vestigation of storage pathways. Biotechnol. Bioeng. 58:282–291.
  • Varner, J. and Ramkrishna, D. 1998b. Metabolic engineering from a cybernetic perspective. The aspartate family of amino acids. Metabol. Eng. 1:88–116.
  • Varner, J. and Ramkrishna, D. 1999. Metabolic engineering from a cybernetic perspective. I. Theoretical preliminaries. Biotechnol. Prog. 15:407–425.
  • Yoo, S. and Kim, W.-S. 1994. Cybernetic model for synthesis of poly-β-hydroxybutyric acid in Al-caligenes eutrophus. Biotechnol. Bioeng. 43:1043–1051.
  • Zhang, Z., Moo-Young, M., and Chisti, Y. 1996. Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol. Adv. 14:401–435.
  • Zupke, G., Sinskey, A.J. and Stephanopopulos, G. 1995. Intracellular flux analysis applied to the effect of dissolved oxygen on hybridomas. Applied Microbiol Biotechnol. 44:27–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.