456
Views
53
CrossRef citations to date
0
Altmetric
Research Article

Unraveling DNA Repair in Human: Molecular Mechanisms and Consequences of Repair Defect

&
Pages 261-290 | Published online: 29 Sep 2008

REFERENCES

  • Aboussekhra, A., Biggerstaff, M., Shivji, M. K. K., Vilpo, J. A., Moncollin, V., Podust, V. N., Protic, M., Hubscher, U., Egly, J.-M., and Wood, R. D. (1995). Mammalian DNA nucleotide excision repair reconstituted with purified components. Cell, 80, 859868.
  • Anderson, C. W. (1993). DNA damage and the DNA-activated protein kinase. Trends Biochem. Sci., 18, 433–437.
  • Anderson, C. W. (1994). Protein kinases and the response to DNA damage. Semin. Cell Biol, 5, 427–436.
  • Bardwell, A.J., Bardwell, L., Tomkinson, A. E., and Friedberg, E. C. (1994). Specific cleavage of model recombination and repair intermediates by the yeast Rad1 -Rad10 DNA endonuclease. Science, 265, 2082–2085.
  • Barnes, D.E., Tomkinson, A. E., Lehmann, A. R., Webster, A. D. B., and Lindahl, T. (1992). Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell, 69, 495–503.
  • Berenburg, M., Lowe, J. E., Nardo, T., Araujo, S., Fousteri, M. I., Green, M. H. L., Krutmann, J., Wood, R. D., Stefanini, M., and Lehmann, A. R. (2000). UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP-D and Cockayne syndrome. EMBO J., 19,1157-1166.
  • Blunt, T., Finnie, N. J., Taccioli, G. E., Smith, G. C. M., Demengeot, J., Gottlieb, T. M., Mizuta, R., Varghese, A. J., Alt, F. W., Jeggo, P. A., and Jackson, S. P. (1995). Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine SCID mutation. Cell, 80, 813823.
  • Boubnov, N.V., Hall, K. T., Wills, Z., Lee, S. E., He, D. M., Benjamin, D. M., Pulaski, C. R., Band, H., Reeves, W., Hendrickson, E. A., and Weaver, D. T. (1995). Complementation of the ionizing radiation sensitivity, DNA end binding and V(D)J recombination defects of double-strand break repair mutants by the p86 Ku autoantigen. Proc. Natl. Acad. Sci. USA, 92, 890–894.
  • Boyer, J.C., Kaufmann, W. K., Brylawski, B. P., and Cordeiro-Stone, M. (1990). Defective post-replication repair in xeroderma pigmentosum variant fibroblasts. Cancer Res, 50,2593-2598.
  • Broughton, B.C., Steingrimsdottir, H., Weber, C., and Lehmann, A. R. (1994). Mutations in the xeroderma pigmentosum group D DNA repair gene in patients with trichothiodystrophy. Nature Genet., 7, 189–194.
  • Broughton, B.C., Thompson, A. F., Harcourt, S. A., Vermeulen, W., Hoeijmakers, J. H. J., Botta, E., Stefanini, M., King, M. D., Weber, C. A., Cole, J., Arlett, C. F., and Lehmann, A. R. (1995). Molecular and cellular analysis of the DNA repair defect in a patient with xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome. Am. J. Hum. Genet., 56, 167–174.
  • Chen, E., Cleaver, J. E., Weber, C. A., Packman, S., Barkovich, A. J., Koch, T. K., Williams, M. L., Golabi, M., and Price, V. H. (1994). Trichothiodystrophy: clinical spectrum, central nervous system imaging and biochemical characterization of two siblings. J. Invest. Dermatol., 103, 15451585.
  • Chrzanowska, K.H., Kleijer, W. J., Krajewska Walasek, M., Bialecka, M., Gutkowska, A., Goryluk Kozakiewicz, B., Michalkiewicz, J., Stachowski, J., Gregorek, H., Lyson Wojciechowska, G. et al., (1995). Eleven polish patients with microcephaly, immunodefficiency, and chromosomal instability: the Nijmegen breakage syndrome. Am. J. Med. Genet., 57, 462–471.
  • Chu, G., and Mayne, L. (1996). Xeroderma pigmentosum, cockayne syndrome and trichothiodystrophy: do the genes explain the diseases? Trends Genet, 12, 187–192.
  • Cleaver, J. E. (1968). Defective repair replication in xeroderma pigmentosum. Nature, 218, 652–656.
  • Cleaver, J. E. (2000). Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum. J. Dermatol. Sci., 23, 1–11.
  • Cleaver, J.E., Jen, J., Charles, W. C., and Mitchell, D. L. (1991). Cyclobutane dimers and (6-4) photoproducts in human cells are mended with the same patch sizes. Photochem. Photobiol, 54, 393–402.
  • Cleaver, J.E., and Kraemer, K. H. (1994). Xe-roderma pigmentosum and Cockayne syndrome. In: Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., (Eds.), The Metabolic Basis of Inherited Disease, 7th ed., McGraw-Hill, New York.
  • Cleaver, J. E. and States, J. C. (1997). The DNA damage-recognition problem in human and other eukaryotic cells: the XPA damage binding protein. Biochem. J, 328, 1–12.
  • Coin, F., Marinoni, J. C., Rodolfo, C., Fribourg, S., Pedrini, A. M., and Egly, J. M. (1998). Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 sub-unit of TFIIH. Nature Genet., 20, 184188.
  • Cooper, P.K., Nouspikel, T., Clarkson, S. G., and Leadon, S. A. (1997). Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science, 275, 990–993.
  • Cordeiro-Stone, M., Zaritskaya, L. S., Price, L. K., and Kaufmann, W. K. (1997). Replication fork bypass of a pyrimidine dimer blocking leading strand DNA synthesis. J. Biol. Chem, 272, 13945–13954.
  • Cordonnier, A.M., and Fuchs, R. P. (1999). Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells. Mutat. Res., 435, 111–119.
  • Cordonnier, A., Lehmann, A. R., and Fuchs, R. P. P. (1999). Impaired translesion synthesis in xeroderma pigmentosum variant extracts. Mol. Cell. Biol., 19, 2206–2211.
  • Coverley, D., Kenny, M. K., Lane, D. P., and Wood, R. D. (1992). A role for the human single-stranded DNA binding protein HSSB/ RPA in an early stage of nucleotide excision repair. Nucleic Acids Res., 20, 3873–3880.
  • Cruz Martinez, A., and Anciones, B. (1991). Central motor pathways conduction after magnetic stimulation of the brain in Cockayne's syndrome. Acta. Neurol. Scand., 84, 291–294.
  • Cullmann, G., Fien, K., Kobayashi, R., and Stillman, B. (1995). Characterization of the five replication factor C genes of Sac-charomyces cerevisiae. Mol. Cell Biol., 15, 4661–4671.
  • Davies, A.A., Friedberg, E. C., Tomkinson, A.E., Wood, R. D., and West, S. C. (1995). Role of the Rad1 and Rad10 proteins in nucleotide excision repair and recombination. J. Biol. Chem., 270, 24638–24641.
  • de Boer, J., de Wit, J., van Steeg, H., Berg, R. J., Morreau, H., Visser, P., Lehmann, A. R., Duran, M., Hoeijmakers, J. H., and Weeda, G. (1998a). A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol. Cell, 1, 981–990.
  • de Boer, J., Donker, I., de Wit, J., Hoeijmakers, J. H. J., and Weeda, G. (1998b). Disruption of the mouse xeroderma pigmentosum group D DNA repair/basal transcription gene results in preimplantation lethality. Cancer Res., 58, 89–94.
  • de Boer, J., and Hoeijmakers, J. H. J. (1999). Cancer from the outside, aging from the inside: mouse models to study the consequences of defective nucleotide excision repair. Biochimie, 81, 127–137.
  • de Boer, J., and Hoeijmakers, J. H. J. (2000). Nucleotide excision repair and human syndromes. Carcinogenesis, 21, 453–460.
  • de Boer, J., van Steeg, H., Berg, R. J., Garssen, J., de Wit, J., van Oostrum, C. T., Beems, R. B., van der Horst, G. T., van Kreijl, C. F., de Gruijl, F. R., Bootsma, D., Hoeijmakers, J. H., and Weeda, G. (1999). Mouse model for the DNA repair/basal transcription disorder trichothiodystrophy reveals cancer predisposition. Cancer Res., 59, 3489–3494.
  • de Laat, W. L., Appeldoorn, E., Sugasawa, K., Weterings, E., Jaspers, N. G., and Hoeijmakers, J. H. (1998). DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev., 12, 2598–2609.
  • DeSanctis, C., and Cacchione, A. (1932). I'idiozia xerodermica. Riv. Sper. Freniatr., 56, 269–292.
  • De Weerd-Kastelein, E. A., Keijer, W., and Bootsma, D. (1972). Genetic heterogeneity of xeroderma pigmentosum demonstrated by somatic cell hybridisation. Nature (London) New Biol., 238, 80–83.
  • Digweed, M., Reis, A., and Sperling, K. (1999). Nijmegen breakage syndrome: consequences of defective DNA double strand break repair. Bioessays, 21, 649–656.
  • Dizdaroglu, M. (1992). Measurement of radiation-induced damage to DNA at the molecular level. Int. J. Radiat. Biol., 61, 175–183.
  • Doetsch, P. W. (1995). What's old is new: an alternative DNA excision repair pathway. Trends Biochem, Sci., 20, 384–386.
  • Donahue, B.A., Yin, S., Taylor, J. S., Reines, D., and Hanawalt, P.C. (1994). Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl. Acad. Sci. USA, 91,8502-8506.
  • Dresler, S.L., and Frattini, M. K. (1986). DNA replication and UV-induced DNA repair synthesis in human fibroblasts are much less sensitive than DNA polymerase alpha to inhibition by butylphenyl-deoxyguanosine triphosphate. Nucleic Acids Res., 14, 70937102.
  • Eker, A. P. M., Vermeulen, W., Miura, N., Tanaka, K., Jaspers, N. G. J., Hoeijmakers, J. H. J., and Bootsma, D. (1992). Xero-derma pigmentosum group A correcting protein from calf thymus. Mut. Res., 274, 211–224.
  • Evans, E., Moggs, J. G., Hwang, J. R., Egly, J.-M., and Wood, R. D. (1997). Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J., 16, 6559–6573.
  • Eveno, E., Bourre, F., Quilliet, X., Chevallier-Lagente, O., Roza, L., Eker, A., Kleijer, W., Nikaido, O., Stefanini, M., Hoeijmakers, J. H. J., Bootsma, D., Cleaver, J. E., Sarasin, A., and Mezzina, M. (1995). Different removal of ultraviolet photoproducts in genetically related xeroderma pigmentosum and trichothiodystrophy diseases. Cancer Res., 55, 4325–4332.
  • Friedberg, E.C., Walker, G. C., and Seide, W. (1995). DNA Repair and Mutagenesis. Washington: ASM Press.
  • Gibbs, P.E., McGregor, W. G., Maher, V. M., Nisson P., and Lawrence, C. W. (1998). A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc. Natl. Acad. Sci. USA, 95, 6876–6880.
  • Gillespie, J., and Marshall, R. (1983). A comparison of the proteins of normal and trichothiodystrophic human hair. J. Inves. Dermatol., 80, 195–202.
  • Gorbalenya, A.E., and Koonin, E. V. (1993). Helicases: amino-acid sequence comparisons and structure-function relationships. Curr. Biol., 3, 419–429.
  • Gu, H., Marth, J. D., Orban, P. C., Mossmann, H., and Rajewsky, K. (1994). Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science, 265, 103–106.
  • Guzder, S.N., Habraken, Y., Sung, P., Prakash, L., and Prakash, S. (1996). RAD26, the yeast homolog of human Cockayne's syndrome group B gene, encodes a DNA-dependent ATPase. J. Biol. Chem., 271, 18314–18317.
  • Habraken, Y., Sung, P., Prakash, S., and Prakash, L. (1996). Transcription factor TFIIH and DNA endonuclease Rad2 constitute yeast nucleotide excision repair factor 3: implications for nucleotide excision repair and Cockayne syndrome. Proc. Natl. Acad. Sci. USA,, 93, 10718–10722.
  • Hanawalt, P. C. (2000). DNA repair, The bases for Cockayne syndrome. Nature, 405, 415416.
  • Hansson, J., Munn, M., Rupp, W.D., Kahn, R., and Wood, R. D. (1989). Localization of DNA repair synthesis by human cell extracts to a short region at the site of a lesion. J. Biol. Chem., 264, 21788–21792.
  • Harada, Y.N., Shiomi, N., Koike, M., Ikawa, M., Okabe, M., Hirota, S., Kitamura, Y., Kitagawa, M., Matsunaga, T., Nikaido, O., and Shiomi, T. (1999). Postnatal growth failure, short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xero-derma pigmentosum group G gene. Mol. Cell. Biol., 19, 2366–2372.
  • Hartley, K.O., Gell, D., Smith, G. C. M., Zhang, H., Divecha, N., Connelly, M. A., Admon, A., Lees-Miller, S. P., Anderson, C. W., and Jackson, S. P. (1995). DNA-depen-dent protein kinase catalytic subunit: a relative of phospatidyl inositol 3-kinase and the ataxia telangiectasia gene product. Cell, 82, 849–856.
  • He, Z., Henrickson, L., A., Wold, M. S., and Ingles, C. J. (1995). RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature, 374, 566–569.
  • Henning, K.A., Li, L., Iyer, N., McDaniel, L., Reagan, M. S., Legerski, R., Schultz, R. A., Stefanini, M., Lehmann, A. R., Mayne, L. V., and Friedberg, E. C. (1995). The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell, 82, 555–564.
  • Hoeijmakers, J. H. J. (1993). Nucleotide excision repair II: from yeast to mammals. Trends Genet, 9, 211–217.
  • Huang, J.C., Svoboda, D. L., Reardon, J. T., and Sancar, A. (1992). Human nucleotide excision nuclease removes thymine dimers by hydrolyzing the 22nd phosphodiester bond 5' and the 6th phosphodister bond 3' to the photodimer. Proc. Natl. Acad. Sci. USA, 89, 3664–3668.
  • Hubscher, U. and Spadari, S. (1994). DNA replication and chemotherapy. Physiol. Rev., 74, 259–304.
  • Hubscher, U. and Thommes, P. (1992). DNA polymerase e: in search of a function. Trends Biochem. Sci., 17, 55–58.
  • Hunting, D.J., Gowans, B. J., and Dressler S. L. (1991). DNA polymerase delta mediates excision repair in growing cells damaged with ultraviolet radiation. Biochem. Cell Biol., 69, 303–308.
  • Itin, P.H., and Pittelkow, M. R. (1990). Trichothiodystrophy: review of sulfur-deficient brittle hair syndromes and association with the ectodermal dysplasias. J. Amer. Acad. Dermat., 22, 705–717.
  • Iyer, N., Reagan, M. S., Wu, K.-J., Canagarajah, B., and Freidberg, E. C. (1996). Interactions involving the human RNA poly-merase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG and Cockayne syndrome group B (CSB) protein. Biochemistry, 35, 2157–2167.
  • Johnson, R.E., Kondratick, C. M., Prakash S., and Prakash, L. (1999a). hRAD30 mutations in the variant form of xeroderma pigmentosum. Science, 285, 263–265.
  • Johnson, R.E., Prakash, S., and Prakash, L. (1999b), Requirement of DNA polymerase activity of yeast Rad30 protein for its biological function. J. Biol. Chem., 274, 15975–15977.
  • Jones, C.J., and Wood, R. D. (1993). Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry, 32, 12096–12104.
  • Keeney, S., Chang, G. J., and Linn, S. (1993). Characterization of a human DNA damage binding protein implicated in xero-derma pigmentosum E. J. Biol. Chem., 268,21293-21300.
  • Keeney, S., and Linn, S. (1990). A critical review of permeabilized cell systems for studying mammalian DNA repair. Mut. Res., 236, 239–252.
  • Kelman, Z. (1997). PCNA: structure, functions and interactions. Oncogene, 14, 629–640.
  • Kelman, Z. and O'Donnell, M. (1994). DNA replication: enzymology and mechanisms. Curr. Opin. Genet. Dev., 4, 185195.
  • Kim, Y.-J., Snyder, R. O., and Wold, M. S. (1992). Binding properties of replication protein-A from human and yeast cells. Mol. Cell. Biol., 12, 3050–3059.
  • Kraemer, K. H. (1997). Sunlight and skin cancer: another link revealed. Proc. Natl. Acad. Sci. USA, 94, 11–14.
  • Kraemer, K.H., Lee, M. M., and Scotto, J. (1987). Xeroderma pigmentosum. Cutaneous, ocular and neurologic abnormalities in 830 published cases. Arch. Dermatol., 123, 241–250.
  • Lafforet, D. and Dupuy, J. M. (1978). Photosensibilite et reparation de l'AND: possibilite d'une parente nostologique entre xeroderma pigmentosum et syndrome de Cockayne. Arch. Franc. Pediatr. (Suppl.), 35, 65–74.
  • Lawrence, C. W. and Hinkle, D. C. (1996). DNA polymerase zeta and the control of DNA damage induced mutagenesis in eu-karyotes. Cancer Surv., 28, 21–31.
  • Leadon, S. A. and Cooper, P. K. (1993). Preferential repair of ionizing-radiation induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome. Proc. Natl. Acad. Sci. USA, 90, 10499–10503.
  • Leech, R.W., Brumback, R. A., Miller, R. H., Otsuka, F., Tarrone, R. E., and Robbins, J. H. (1985). Cockayne syndrome: clinico-pathologic and tissue culture studies of affected siblings. J. Neuropathol. Exp. Neurol., 44, 507–519.
  • Lehmann, A. R. (1982). Three complementation groups in Cockayne syndrome. Mutat. Res., 106, 347–356.
  • Lehmann, A. R. (1995). Nucleotide excision repair and the link with transcription. Trends Biochem. Sci., 20, 402–405.
  • Lehmann, A. R. (1998). Dual functions of DNA repair genes: molecular, cellular and clinical implications. Bioessays, 20, 146–155.
  • Lehmann, A. R. and Carr, A. M. (1995). The ataxia-telangiectasia gene: a link between checkpoint controls, neurodegeneration and cancer. Trends Genet., 11, 375–377.
  • Lehmann, A.R., Kirk-Bell, S., and Mayne, L. (1979). Abnormal kinetics of DNA synthesis in ultraviolet light irradiated cells from patients with Cockayne syndrome. Cancer Res., 3, 4237
  • Le Page, F., Kwoh, E. E., Avrutskaya, A., Gentil, A., Leadon, S. A., Sarasin, A., and Cooper, P. K. (2000). Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell, 101, 159171.
  • Lieber, M. R. (1991). Site-specific recombination in the immune system. FASEB J, 5, 2934–2944.
  • Lindahl, T., and Barnes, D. E. (1992). Mammalian DNA ligases. Annu. Rev. Biochem., 61, 251–281.
  • Lindahl, T., Karran, P., and Wood, R. D. (1997). DNA excision repair pathways. Curr. Opin. Genet. Dev., 7, 158–169.
  • Lindahl, T., and Wood, R. D. (1999). Quality control by DNA repair. Science, 286, 1897–1905.
  • Lowndes, N. F. and Murguia, J. R. (2000). Sensing and responding to DNA damage. Curr. Opin. Genet. Dev., 10, 17–25.
  • Madzak, C., Armier, J., Stary, A., Daya-Grosjean, L., and Sarasin, A. (1993). UV-induced mutations in a shuttle vector replicated in repair deficient trichothiodystrophy cells differ with those in genetically related cancer prone Xeroderma pigmentosum. Car-cinogenesis, 14, 1255–1260.
  • Marionnet, C., Armier, J., Sarasin, A., and Stary, A. (1998). Cyclobutane pyrimidine dimers are the main mutagenic DNA photoproducts in DNA repair-deficient trichothiodystrophy cells. Cancer Res., 58, 102–108.
  • Marionnet, C., Benoit, A., Benhamou, S., Sarasin, A., and Stary, A. (1995). Characteristics of UV-induced mutation spectra in human XP-D/ ERCC2 gene-mutated xeroderma pigmentosum and trichothiodystrophy cells. J. Mol. Biol, 252, 550–562.
  • Marionnet, C., Quilliet, X., Benoit, A., Armier, J., Sarasin, A., and Stary, A. (1996). Recovery of normal DNA repair and mu-tagenesis in trichothiodystrophy cells after transduction of the XPD human gene. Cancer Res., 56, 5450–5456.
  • Masutani, C., Araki, M., Yamada, A., Kusomoto, R., Nogimori, T., Maekawa, T., Iwai, S., and Hanaoka, F. (1999a). Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J, 18, 3491–3501.
  • Masutani, C., Kusumoto, R., Yamada, A., Dohmae, N., Yokoi, M., Yuasa, M., Araki, M., Iwai, S., Takio, K., and Hanaoka, F. (1999b). The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature, 399, 700–704.
  • Mayne, L. V. and Lehmann, A. R. (1982). Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res., 42, 1473–1478.
  • McWhir, J., Selfridge, J., Harrison, D.J., Squires, S., and Melton, D.W. (1993). Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat. Genet.,5, 217-224.
  • Mitchell, D. L. and Nairn, R. S. (1989). The biology of the (6-4) photoproduct. Photochem. Photobiol., 49, 805–819.
  • Nance, M. A. and Berry, S. A. (1992). Cockayne syndrome: review of 140 cases. Am. J. Med. Genet, 42, 68–84.
  • Neer, E.J., Schmidt, C. J., Nambudripad, R., and Smith, T. F. (1994). The ancient regulatory-protein family of WD-repeat proteins. Nature, 371, 297–300.
  • Nicholas, A. F. and Sancar, A. (1992). Purification of PCNA as a nucleotide excision repair protein. Nucleic Acids Res., 20, 2441–2446.
  • Nishida, C., Reinhard, P., and Linn, S. (1988). DNA repair synthesis in human fibroblasts requires DNA polymerase delta. J. Biol. Chem., 263, 501–510.
  • Nouspikel, T., Lalle, P., Leadon, S. A., Cooper, P. K., and Clarkson, S.G. (1997). A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc. Natl. Acad. Sci., USA, 94, 3116–3121.
  • O'Donnel, M., Onrust, R., Dean, F.B., Chen, M., and Hurwitz, J. (1993). Homology in accessory proteins of replicative poly-merases—E. coli to humans. Nucleic Acids Res., 21, 1–3.
  • O'Donovan, A., Davies, A. A., Mogges, J. G., West, S. C., and Wood, R. D. (1994a). XPG endonuclease makes the 3' incision in human nucleotide excision repair. Nature, 371, 432–435.
  • O'Donovan, A., Scherly, D., Clarkson, S. G., and Wood, R. D. (1994b). Isolation of active recombinant XPG protein, a human DNA repair endonuclease. J. Biol. Chem., 269,15965-15968.
  • O' Driscoll, M., Humbert, O., and Karran, P. In: DNA Repair, F. Eckstein and D. M. J. Lilley, Eds (Springer-Verlag, Berlin, 1998) pp. 173-197.
  • Otsuka, F. and Robbins, J. H. (1985). The Cockayne syndrome-an inherited multisystem disorder with cutaneous photosen-sitivity and defective repair of DNA. Comparison with xeroderma pigmentosum. Am. J. Dermopathol., 7, 387–392.
  • Park, C.-H., Mu, D., Reardon, J. T., and Sancar, A. (1995). The general transcription factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J. Biol. Chem., 270, 4896–4902.
  • Pearl, L. H. and Savva, R. (1995). DNA repair in three dimensions. Trends Biochem. Sci., 20, 421–426.
  • Petrini, J. H. J., Xiao, Y., and Weaver, D. T. (1995). DNA ligase I mediates essential functions in mammalian cells. Mol. Cell Biol, 15, 4303–4308.
  • Pfeifer, G.P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1991). In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6-4) pyrimidone photoproducts by ligation mediated poly-merase chain reaction. Proc. Natl. Acad. Sci. USA,, 88, 1374–1378.
  • Podust, L.M., Podust, V. N., Floth, C., and Hubscher, U. (1994) Assembly of DNA polymerase delta and epsilon holoenzymes depends on the geometry of DNA template. Nucleic Acids Res., 22, 2970–2975.
  • Popanda, O. and Thielmann, H. W. (1992). The function of DNA polymerase in DNA repair synthesis of ultraviolet-irradiated human fibroblasts. Biochem. Biophys. Acta, 1129,155-160.
  • Protic-Sabljic, M., Tuteja, N., Munson, P. J., Hauser, J., Kraemer, K. H., and Dixon, K. (1986). UV light-induced cyclobutane pyrimidine dimers are mutagenic in mammalian cells. Mol. Cell. Biol., 6, 33493356.
  • Quilliet, X., Chevallier-Lagente, O., Eveno, E., Stojkovic, T., Destee, A., Sarasin, A., and Mezzina, M. (1996). Long-term complementation of DNA repair deficient human primary fibroblasts by retroviral transduc-tion of the XPD gene. Mutat. Res., 364, 161 -169.
  • Rathmell, W. K. and Chu, G. (1994). Involvement of Ku autoantigen in the cellular response to DNA double-strand breaks. Proc. Natl. Acad. Sci. USA, 91, 76237627.
  • Reardon, J.T., Bessho, T., Kung, H. C., Bolton, P. H., and Sancar, A. (1997). In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xe-roderma pigmentosum patients. Proc. Natl. Acad. Sci. USA,, 94, 9463–9468.
  • Robbins, J.H., Brumback, R. A., Mendiones, M., Barrett, S. F., Carl, J. R., Cho, S., Denckla, M. B., Ganges, M. B., Gerber, L. H., Guthrie, R. A., Meer, J., Moshell, A. N., Polinsky, R. J., Ravin, P. D., Sonies, B. C., and Tarone, R. E. (1991). Neurological disease in xeroderma pigmentosum. Documentation of a late onset type of the juvenile onset form. Brain, 114, 13351361.
  • Robbins, J.H., Kraemer, K. H., Lutzner, M. A., Festoff, B. W., and Coon, H. G. (1974). Xeroderma pigmentosum. An inherited disease with sun sensitivity, multiple cutaneous neoplasms and abnormal repair. Ann. Intern. Med., 80, 221–248.
  • Robins, P., Jones, C. J., Biggerstaff, M., Lindahl, T., and Wood, R. D. (1991). Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. EMBO J., 10, 3913–3921.
  • Roy, R., Schaeffer, L., Humbert, S., Vermeulen, W, Weeda, G., and Egly, J.-M. (1994). The DNA-dependent ATPase activity associated with the class II basic transcription factor BTF2/TFIIH. J. Biol. Chem., 269, 9826–9832.
  • Sancar, A. and Hearst, J. E. (1993). Molecular matchmakers. Science, 259, 1415–1420.
  • Sancar, G. B. (1990). DNA photolyases: physical properties, action mechanism and roles in dark repair. Mutat. Res., 236, 147–160.
  • Schaeffer, L., Moncollin, V., Roy, R., Staub, A., Mezzina, M., Sarasin, A., Weeda, G., Hoeijmakers, J. H. J., and Egly, J. M. (1994). The ERCC2/DNA repair protein associated with the class II BTF2/TFIIH transcription factor. EMBO J., 13, 23882392.
  • Schaeffer, L., Roy, R., Humbert, S., Moncollin, V., Vermeulen, W., Hoeijmakers, J. H. J., Chambon, P., and Egly, J. (1993). DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science, 260, 58–63.
  • Scherly, D., Nouspikel, T., Corlet, J., Ucla, C., Bairoch, A., and Clarkson, S. G. (1993). Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature, 363, 182–185.
  • Sebastiaan Winkler, G. and Hoeijmakers, J. H. J. (1998). From a DNA helicase to brittle hair. Nature Genet., 20, 106–107.
  • Seeberg, E., Eide, L., and Bjoras, M. (1995). The base excision repair pathway. Trends Biochem. Sci., 20, 391–397.
  • Shiloh, Y. (1997). Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu. Rev. Genet., 31, 635–662.
  • Shivji, M.K.K., Kenny, M. K., and Wood, R. D. (1992). Proliferating cell nuclear antigen is required for DNA excision repair. Cell, 69, 367–374.
  • Shivji, M.K.K., Podust, V. N., Hubscher, U., and Wood, R. D. (1995). Nucleotide excision repair DNA synthesis by DNA poly-merase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry, 34, 50115017.
  • Sijbers, A.M., de Laat, W. L., Ariza, R. R., Bifferstaff, M., Wei, Y. F., Moggs, J. G., Carter, K. C., Shell, B. K., Evans, E., de Jong, M. C., Rademakers, S., de Rooij, J., Jaspers, N. G., Hoeijmakers, J. H., and Wood, R. D. (1996). Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell, 86, 811–822.
  • Stefanini, M., Lagomarisini, P., Gilliani, S., Nardo, T., Botta, E., Peserico, A., Kleyer, W. J., Lehmann, A. R., and Sarasin, A. (1993a). Genetic heterogeneity of the excision repair defect associated with trichothiodystrophy. Carcinogenesis, 14, 1101–1105.
  • Stefanini, M., Vermeulen, W., Weeda, G., Giliani, S., Nardo, T., Mezzina, M., Sarasin, A., Harper, J. L., Arlett, C. F., Hoeijmakers, J. H. J., and Lehmann, A. R. (1993b). A new nucleotide-excision-repair gene associated with the disorder trichothiodystrophy. Am. J. Hum. Genet., 53, 817–821.
  • Sugasawa, K., Ng, J. M., Masutani, C., Iwai, S., van der Spek, P. J., Eker, A. P. M., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. J. (1998). Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell, 2, 223–232.
  • Sung, P., Bailly, V., Weber, C., Thompson, L. H., Prakash, L., and Prakash, S. (1993). Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature, 365, 852–855.
  • Svoboda, D.L., Briley, L. P., and Vos, J. M. (1998). Defective bypass replication of a leading strand cyclobutane thymine dimer in xeroderma pigmentosum variant cell extracts. Cancer Res., 58, 2445–2448.
  • Svoboda, D.L., Taylor, J. S., Hearst, J. E., and Sancar, A. (1993). DNA repair by eukaryotic excision nuclease: removal of thymine dimer and psoralen monoadduct by HeLa cell free extract and of thymine dimer by Xenopus laevis oocytes. J. Biol. Chem, 268, 1931–1936.
  • Swift, M., Morrell, D., Massey, R. B., and Chase, C. L. (1991). Incidence of cancer in families with ataxia-telangiectasia. N. Engl. J. Med., 325, 1831–1836.
  • Syvaoja, J., Suomensaari, S., Nishida, C., Goldsmith, J. S., Chui, G. S., Jain, S., and Linn, S. (1990). DNA polymerases alpha, delta, and epsilon: three distinct enzymes from HeLa cells. Proc. Natl. Acad. Sci. USA, 87, 6664–6668.
  • Szymkowski, D.E., Hajibagheri M. A., and Wood, R. D. (1993a). Electron microscopy of DNA excision repair patches produced by human cell extracts. J. Mol. Biol., 231,251-260.
  • Szymkowski, D.E., Lawrence, C. W., and Wood, R. D. (1993b). Repair by human cell extracts of single (6-4) and cyclobutane thymine-thymine photoproducts in DNA. Proc. Natl. Acad. Sci. USA, 90, 98239827.
  • Taccioli, G.E., Gottlieb, T. M., Blunt, T., Priestley, A., Demengeot, J., Mizuta, R., Lehmann, A. R., Alt, F. W., Jackson, S. P., and Jeggo, P. A. (1994). Ku80 product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science, 265, 1442–1445.
  • Takayama, K., Salazar, E. P., Broughton, B. C., Lehmann, A. R., Sarasin, A., Thompson, L. H., and Weber, C. A. (1996). Defects in the DNA repair and transcription gene ERCC2 (XPD) in trichothiodystrophy. Am. J. Hum. Genet., 58, 263–270.
  • Tanaka, K., Kawai, Y., Kumahara, Y., Ikenaga, M., and Okada, Y. (1981). Genetic complementation groups in Cockayne syndrome. Som. Cell Genet., 7, 445–455.
  • Tanaka, K., Miura, N., Satokata, I., Miyamoto, I., Yoshida, M. C., Satoh, Y., Kondo, S., Yasui, A., Okayama, H., and Okada, Y. (1990). Analysis of a human DNA excision repair gene involved in group A xero-derma pigmentosum and containing a zinc finger domain. Nature, 348, 73–76.
  • Tanaka, K., Satokata, I., Ogita, Z., Uchida, T., and Okada, Y. (1989). Molecular cloning of a mouse DNA repair gene that complements the defect of group A xeroderma pigmentosum. Proc. Natl. Acad. Sci. USA, 86,5512-5516.
  • Taylor, E.M., Broughton, B. C., Botta, E., Stefanini, M., Sarasin, A., Jaspers, N. G., Fawcett, H., Harcourt, S. A., Arlett, C. F., and Lehmann, A. R. (1997). Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc. Natl. Acad. Sci., USA, 94, 8658–8663.
  • Teo, I., Sedgwick, B., Demple, B., Li, B., and Lindahl, T. (1984). Induction of resistance to alkylating agents in E. coli: the ada+ gene product serves both as a regulatory protein and as an enzyme for repair of mutagenic damage. EMBO J, 3, 21512157.
  • Th'ng, J. P. H. and Walker, I. G. (1986). Excision repair of DNA in the presence of aphidicolin. Mutat. Res., 165, 139–150.
  • Todo, T. (1999). Functional diversity of the DNA photolyase/blue light receptor family. Mutat. Res., 434, 89–97.
  • Tolmie, J.L., de Berker, D., Dawber, R., Galloway, C., Gregory, D. W., Lehmann, A. R., McClure, J., Pollitt, J. R., and Stephenson, J. P. B. (1994). Syndromes associated with trichothiodystrophy. Clin. Dysmorphol., 3, 1–14.
  • Troelstra, C., van Gool, A., de Wit, J., Vermeulen, W., Bootsma, D., and Hoeijmakers, J. H. J. (1992). ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne syndrome and preferential repair of active genes. Cell, 71, 939–953.
  • Tuteja, R. and Tuteja, N. (2000). Ku autoantigen: a multifunctional DNA-binding protein. Crit. Rev. Biochem. Mol. Biol., 35, 1–33.
  • Tuteja, N., Tuteja, R., Ochem, A., Taneja, P., Huang, N. W., Simocsits, A., Susic, S., Rahman, K., Marusic, L., Chen, J., Zhang, J., Wang, S., Pongor S., and Falaschi, A. (1994). Human DNA helicase II — a novel DNA unwinding enzyme identified as the Ku autoantigen. EMBO J, 13, 4991–5001.
  • Van Dyck, E., Stasiak, A. Z., Stasiak, A., and West, S.C. (1999). Binding of double-strand breaks in DNA by human Rad52 protein. Nature, 398, 728–731.
  • van Gent, D. C., McBlane, J. F., Ramsden, D. A., Sadofsky, M. J., Hesse, J. E., and Gellert, M. (1995). Initiation of V(D)J recombination in a cell-free system. Cell, 81, 925–934.
  • van Hoffen, A., Natarajan, A. T., Mayne, L. V., van Zeeland, A. A., Mullenders, L. H. F., and Venema, J. (1993). Defecient repair of the transcribed strand of active genes in Cockayne syndrome. Nucleic Acids Res., 21, 5890–5895.
  • Varon, R., Vissinga, C., Platzer, M., Cersaletti, K. M., Chrzanowska, K. H., Saar, K., Beckmann, G., Seemanova, E., Cooper, P. R., Nowak, N.J., Stumm, M., Weemaes, C. M., Gatti, R. A., Wilson, R. K., Digweed, M., Rosenthal, A., Sperling, K., Concannon, P., and Reis, A. (1998). Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell, 93, 467–476.
  • Venema, J., Mullenders, L. H. F., Natarajan, A. T., van Zeeland, A. A., and Mayne, L. V. (1990). The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl. Acad. Sci. USA,, 87, 4707–4711.
  • Vermeulen, W., Stefanini, M., Giliani, S., Hoeijmakers, J. H. J., and Bootsma, D. (1991) . Xeroderma pigmentosum complementation group H falls into complementation group D. Mutat. Res, 255, 201–208.
  • Vermeulen, W., van Vuuren, A. J., Chipoulet, M., Schaeffer, L., Appeldoorn, E., Weeda, G., Jaspers, N. G., Priestley, A., Arlett, C. F., Lehmann, A. R., Stefanini, M., Mezzina, M., Sarasin, A., Bootsma, D., Egly, J.-M., and Hoeijmakers, J. H. J. (1994). Three unusual repair deficiencies associated with transcription factor BTF2(TFIIH): evidence for the existence of a transcription syndrome. Cold Spring Harb. Symp. Quant. Biol., 59, 317–329.
  • Vuillaume, M., Daya-Grosjean, L., Vincens, P., Pennetier, J., Tarroux, P., Baret, A., Calvayrac, R., Taieb, A., and Sarasin, A. (1992). Striking differences in cellular cata-lase activity between two DNA repair-deficient diseases: xeroderma pigmentosum and trichothiodystrophy. Carcinogenesis, 13, 321–328.
  • Wang, Y.-C., Maher, V. M., Mitchell, D. L., and McCormick, J. (1993). Evidence from mutation spectra that the UV hypermut-ability of xeroderma pigmentosum variant cells reflects abnormal, error-prone replication on a template containing photoprod-ucts. Mol. Cell. Biol., 13, 4276–4283.
  • Weber, C.A., Salazer, E. P., Stewart, S. A., and Thompson, L. H. (1990). ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J, 9, 1437–1447.
  • Weeda, G., Donker, I., de Wit, J., Morreau, H., Janssens, R., Vissers, C. J., Nigg, A., van Steeg, H., Bootsma, D., and Hoeijmakers, J. H. J. (1997a). Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr. Biol, 7, 427–439.
  • Weeda, G., Eveno, E., Donker, I., Vermeulen, W., Chevallier-Lagente, O., Taieb, A., Stary, A., Hoeijmakers, J. H., Mezzina, M., and Sarasin, A., (1997b). A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am. J. Hum. Genet, 60, 320–329.
  • Weeda, G., Van Ham, R. C. A., Vermeulen, W., Bootsma, D., Van der Eb, A. J., and Hoeijmakers, J. H. J. (1990). A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xero-derma pigmentosum and Cockayne's syndrome. Cell, 62, 777–791.
  • Wood, R. D. (1995). Proteins that participate in nucleotide excision repair of DNA in mammalian cells. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 347, 69–74.
  • Wood, R. D. (1996). DNA repair in eukaryotes. Annu. Rev. Biochem.,65, 135-167.
  • Woods, C.G. (1998). DNA repair disorders. Arch. Dis. Child, 78, 178–184.
  • Xu, H., Swoboda, I., Bhalla, P. L., Sijbers, A. M., Zhao, C., Ong, E.-K., Hoeijmakers, J. H. J., and Singh, M. B. (1998). Plant ho-mologue of human excision repair gene ERCC1 points to conservation of DNA repair mechanisms. Plant J, 13, 823–829.
  • Yagi, T., Wood, R. D., and Takebe, H. (1997). A low content of ERCC1 and a 120 kDa protein is a frequent feature of group F xeroderma pigmentosum fibroblast cells. Mutagenesis, 12, 41–44.
  • Yasui, A., and Eker, A. P. M. (1998). DNA photolyases. In DNA damage and Repair, Vol. II, Nickoloff, J. A. and Hoekstra, M. F., Eds)., Totowa: Humana Press, pp. 9–32.
  • Yong, S.L., Cleaver, J. E., Tullis, G. D., and Johnston, M. M. (1984). Is trichothiodystrophy part of the xeroderma pigmentosum spectrum? Am. J. Hum. Genet, 36, 82s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.