1,384
Views
203
CrossRef citations to date
0
Altmetric
Research Article

Molecular Mechanisms of DNA Damage and Repair: Progress in Plants

, , , &
Pages 337-397 | Published online: 29 Sep 2008

REFERENCES

  • Aboussekhra, A., Biggerstaff, M., Shivji, M. K. K., Vilpo, J. A., Moncollin, V., Podust, V. N., Protic, M., Hubscher, U., Egly, J.-M., and Wood, R. D. 1995. Mammalian DNA nucleotide excision repair reconstituted with purified components. Cell 80:859–868.
  • Aboussekhra, A. and Thoma, F. 1999. TATA-binding protein promotes the selective formation of UV-induced (6-4)-photoproducts and modulates DNA repair in the TATA box. EMBO J. 18:433–443.
  • Agrawal, A. and Kale, R. K. 2001. Radiation induced peroxidative damage: mechanism and significance. Indian J. Exp. Biol. 39:291–309.
  • Ahmad, M., Jarillo, J. A., Klimczak, L. J., Landry, L. G., Peng, T., Last, R. L., and Cashmore, A. R. 1997. An enzyme similar to animal type II photolyases mediates photoreactiva-tion in Arabidopsis. Plant Cell 9:199–207.
  • Anderson, C. W. 1993. DNA damage and the DNA-activated protein kinase. Trends Biochem. Sci. 18:433–437.
  • Au, K.G., Welsh, K., and Modrich, P. 1992. Initiation of methyl-directed mismatch repair. J. Biol. Chem. 267:12142–12148.
  • Bailly, C., Benamar, A., Corbineau, F., and Cume, D. 1996. Changes in malondialdehyde content and in su-peroxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiologia Plantarum 97:104–110.
  • Balajee, A. A. and Bohr, V. A. 2000. Ge-nomic heterogeneity of nucleotide excision repair. Gene 250:15–30.
  • Barb, W.G., Baxendale, J. H., George, P., and Hargrave, K. R. 1957. Hydroxyl radical generation by Fenton reaction. Trans. Faraday Soc. 47:462–470.
  • Barber, A. A. and Berheim, F. 1967. Loss of fluidity and break down of cell membrane: functions and transmembrane ionic gradient by lipid peroxidation. Adv. Gerontol. Res. 2:355–363.
  • Barnes, D.E., Stamp, G., Rosewell, I., Denzel, A., and Lindahl, T. 1998. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr. Biol. 8:1395–1398.
  • Batschauer, A. 1993. A plant gene for photolyase: An enzyme catalyzing the repair of UV-light induced DNA damage. Plant J. 4:705–709.
  • Beauchamp, C. O. and Fridovich, I. 1973. Isozymes of superoxide dismutase from wheat germ. Biochem. Biophys. Acta. 317:50–56.
  • Bennett, R. A. O., Wilson, D. M., Wong, D., and Demple, B. 1997. Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proc. Natl. Acad. Sci. USA, 94:7166–7169.
  • Beranek, D. T. 1990. Distribution of methyl and ethyl adducts following alkyla-tion with monofunctional alkylating agents. Mutat. Res. 231:11–30.
  • Bessho, T., Sancar, A., Thompson, L. H., and Thelen, M. P. 1997. Reconstitu-tion of human excision nuclease with recombinant XPF-ERCC1 complex. J. Biol. Chem. 272:3833–3837.
  • Bethke, P. C. and Jones, R. L. 2001. Cell death of barley aleurone protoplasts is mediated by reactive oxygen secies. Plant J. 25:19–29.
  • Bialkowski, K. and Olinski, R. 1999. Oxi-dative damage to plant DNA in relation to growth conditions. Acta Biochim Pol. 46:43–49.
  • Blunt, T., Finnie, N. J., Tacciolo, G. E., Smith, G. C. M., Demengeot, J., Gottlieb, T. M., Mizuta, R., Vrghese, A. J., Alt, F. W., Jeggo, P. A., and Jackson, S.P. 1995. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80:813–823.
  • Bormman, J. F. 1989. Target sites of UV-B radiation in photosynthesis of higher plants. J. Photochem Photobiol. B 4:145–158.
  • Bornman, J.F., Reuber, S., Chen, Y-P., and Weissenboeck, G. 1997. Ultraviolet radiation as stress factor and the role of protective pigments. In: Plants and UV-B. Responses to Environmental Change (Lumsden, P. J., Ed.). Cambridge: Cambridge University Press, pp. 157-168.
  • Bornman, J. F. and Teramura, A. H. 1993. Effects of UV-B radiation on terrestrial plants. In: Young, A. R., Bjorn, L. O., Moan, J., and Nultsch, W. (Eds.) Environmental UV Photobiology. pp. 427-471. Plenum Press, New York.
  • Boubriak, I., Kargiolaki, H., Lyne, L., and Osborne, D. J. 1997. The requirement for DNA repair in desiccation tolerance of germinating embryos. Seed Science Research 7:97–105.
  • Britt, A. B. 1996. DNA damage and repair in plants. Annu. Rev. Plant Physiol. PlantMol. Biol. 47:75–100.
  • Britt, A. B. 1999. Molecular genetics of DNA repair in higher plants. TIPS 4:20–25.
  • Britt, A.B., Chen, J.-J., Wykoff, D., and Mitchell, D. 1993. A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidinone (64) dimers. Science 261:1571–1574.
  • Cannon, G.C., Hedrick, L. A., and Heinhorst, S. 1995. Repair mechanisms of UV-induced DNA damage in soybean chloroplasts. Plant Mol. Biol. 29:1267–1277.
  • Carpenter, C. L. and Cantley, L. C. 1996. Phosphoinositide kinases. Curr. Opin. Cell Biol. 2:153–158.
  • Cheah, K. S. E. and Osborne, D. J. 1978. DNA lesions occur with loss of viability in embryos of ageing rye seeds. Nature 272:593–599.
  • Chen, J-J., Mitchell, D. L., and Britt, A. B. 1994. A light-dependent pathway for the elimination of UV-induced pyri-midine (6-4) pyrimidine photoprod-ucts in Arabidopsis. Plant Cell 6:13111317.
  • Chen, L., Trujillo, K., Sung, P., and Tomkinson, A. E. 2000. Interactions of the DNA ligase IV-Xrcc4 complex with DNA ends and the DNA-depen-dent protein kinase. J. Biol. Chem. 275: 26196–26205.
  • Chu, G. 1997. Double-strand break repair. J. Biol. Chem. 272:24097–24100.
  • Costanzo, V., Robertson, K., Ying, C. Y., Kim, E., Avvedimento, E., Gottesman, M., Grieco, D., and Gautier, J. 2000. Reconstitution of an ATP-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Molecular Cell 6:649–659.
  • Coverley, D., Kenny, M. K., Lane, D. P., and Wood, R. D. 1992. A role for the human single-stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair. Nucleic Acids Res. 20:3873–3880.
  • Critchlow, S. E. and Jackson, S. P. 1998. DNA end-joining; from yeast to man. Trends Biochem. Sci. 23:394–498.
  • Culligan, K. M. and Hays, J. B. 1997. DNA mismatch repair in plants. An Arabidopsis thaliana gene that predicts a protein belonging to the MSH2 subfamily of eukaryotic mutS homologs. Plant Physiol. 115:833–839.
  • Dandoy, E., Schyns, R., Deltour, R., and Verly, W. G. 1987. Appearance and repair of apurine/apyrimidinic sites in DNA during early germination of Zea mays. Mutation Res. 181:57–60.
  • De Laat, W. L., Jaspers, G. J., and Hoeijmakers, J. H. J. 1999. Molecular mechanism of nucleotide excision repair. Gene Dev. 13:768–785.
  • Del Maestro, R. F., Bjork, J., and Arfors, K. E. 1981a. Increase in microvascular permeability induced by enzymatically generated free radicals. I. In vivo study. Microvasc. Res. 22:239–254.
  • Del Maestro, R. F., Bjork, J., and Arfors, K. E. 1981b. Increase in microvascular permeability induced by enzymatically generated free radicals. II. Role of superoxide anion radical, hydrogen peroxide, and hydroxyl radical. Microvasc Res. 22:255-270
  • Demple, B. and Harrison, L., 1994. Repair of oxidative damage to DNA — enzy-mology and biology. Annu. Rev. Biochem. 63:915–948.
  • Dennis, C. and Surridge, C. 2000. A. thaliana genome. Nature 408:791.
  • De Vries, H. 1900. Sur la loi de disjunciton des hybrides. C. R. Acad. Sc. Paris. 130:845–847.
  • Dianov, G.L., Prasad, R., Wilson, S. H., and Bohr, V. A. 1999. Role of DNA polymerase beta in the excision step of long patch mammalian base excision repair. J. Biol. Chem. 274:1374113743.
  • Dizdaroglu, M. 1992. Measurement of radiation-induced damage to DNA at the molecular level. Int. J. Radiat. Biol. 61:175–183.
  • Doetsch, P. W. 1995. What's old is new: an alternative DNA excision repair pathway. Trends Biochem. Sci. 20:384–386.
  • Doetsch, P.W., McCray, W. H., Jr., and Valenzuela, M. R. 1989. Partial purification and characterisation of an endo-nuclease from spinach that cleaves ultraviolet light-damaged duplex DNA. Biochim. Biophys. Acta 1007:309–317.
  • Dormandy, T.L. 1980. Free radical reaction in biological systems. Ann. Rev. Coll. Surg. Engl. 62:188–194.
  • Doutriaux, M-P., Couteau, F., Bergounioux, C., and White, C. 1998. Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana. Mol. Gen. Genet. 257:283291.
  • Drapkin, R., Reardon, J. T., Ansari, A., Huang, J. C., Zawel, L., Ahn, K., Sancar, A., and Reinberg, D. 1994. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerases II. Nature 368:769–772.
  • Drew, M.C., He, C.-J., and Morgan,P. W. 2000. Programmed cell death and aer-enchyma formaiton in roots. Trends Plant Sci. 5:123–127.
  • Drummond, J.T., Li, G. M., Longley, M. J., and Modrich, P. 1995. Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268:1909–1912.
  • Eastwood, A. C. and McLennan, A. G. 1985. Repair replication in ultraviolet light-irradiated protoplasts of Daucus carota. Biochem. Biophys. Acta 826:13–19.
  • Ehtesham, N.Z., Tuan-Nghia, P., Gaikwad, A., Sopory, S., and Tuteja, N. 1999. Calnexin from Pisum sativum: molecular cloning of the cDNA and characterization of the encoded protein. DNA Cell Biol. 18:865–874.
  • Eisen, J. A. and Hanawalt, P. C. 1999. A phylogenomic study of DNA repair genes, proteins and processes. Mutat. Res. 435:171–213.
  • Elder, R.H., Dell'Aquila, A., Mezzina, M., Sarasin, A., and Osborne, D. J. 1987. DNA ligase in repair and replication in the embryos of rye, Secale cereale. Mutat. Res. 181:61–71.
  • Elder, R.H., and Osborne, D. J. 1993. Function of DNA synthesis and DNA repair in the survival of embryos during early germination and in dormancy. Seed Sci. Res. 3:43–53.
  • Essrs, J., van Steeg, H., de Wit, J., Swgagemaekrs, S. M. A., Vermeij, M., Hoeijmkers, J. H. J., and Kanaar, R. 2000. Homologous and non-homologous recombination differentially affect DNA damage repair in mice. EMBO J. 19:1703–1710.
  • Esterbauer, H. and Cheeseman, K. H. 1990a. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186:407–421.
  • Esterbauer, H., Dieber-Rotheneder, M., Waeg, G., Puhl, H., and Tatzber, R. 1990b. Endogenous antioxidants and lipoprotein oxidation. Biochem. Soc. Trans. 18:1059–1061.
  • Evans, E., Moggs, J. G., Hwang, J. R., Egly, J.-M., and Wood, R. D. 1997. Mechanisms of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 16:6559–6573.
  • Fee, J. A. 1982. In: Oxidases and Related Redox Systems (King, T.E., Hanson, T.S., and Morrison, M., Eds). Pergamon Press, Oxford, pp. 101-132.
  • Fink, S.P., Reddy, G. R., and Marnett, L. J. 1997. Mutagenicity in E. coli ofthe major DNA adduct derived from the endogenous mutagen malondialdehyde. Proc. Natl. Acad. Sci. USA 94:8652–8657.
  • Fortini, P., Pascucci, B., Parlanti, E., Sobol, R. W., Wilson, S. H., and Dogliotti, E. 1998. Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry 37:3575–3580.
  • Fridovich, I. 1976. Oxygen radicals, hydrogen peroxide and oxygen toxicity. In: Free Radical in Biology (Pryor, W.A., Ed), 1, Academic Press, NY, pp. 239277.
  • Friedberg, E. C. 1985. DNA Repair. New York, W.H. Freeman.
  • Friedberg, E.C., Walker, G. C., and Siede, W. 1995. In: DNA Repair and Mu-tagenesis. ASM Press, Washington DC.
  • Friedberg, E. C. and Wood, R. D. 1996. DNA excision repair pathways. In: DNA Replication in Eukaryotic Cells. Cold Spring Harbor Laboratory Press, pp. 249-266.
  • Frosina, G., Fortini, P., Rossi, O., Carrozzino, F., Raspaglio, G., Cox, L. S., Lane, D. P., Abbondandolo, A., and Dogliotti, E. 1996. Two pathways for base excision repair in mammalian cells. J. Biol. Chem. 271:9573–9578.
  • Gallego, F., Fleck, O., Li, A., Wyrzykowska, J., and Tinland, B. 2000. At RAD1, a plant homologue of human and yeast nucleotide excision repair endonu-cleases, is involved in dark repair of UV damages and recombination. Plant J. 21:507–518.
  • Gallego, M.E., Jeanneau, M., Granier, F., Bouchez, D., Bechtold, N., and White, C. I. 2001. Disruption ofthe Arabidopsis Rad50 gene leads to plant sterility and MMS sensitivity. Plant J. 25:31–41.
  • Gary, R., Ludwig, D., Cornelius, H., MacInnes, M., and Park M. 1997. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor P21. J. Biol. Chem. 272:2452224529.
  • George, J.W., Ghate, S., Matson, S. W., and Besterman, J. M. 1992. Inhibition of DNA helicase II unwinding and ATPase activities by DNA-interact-ing ligands. J. Biol. Chem. 267:1068310689.
  • Gerlach, V.L., Aravind, L., Gotway, G., Schultz, R. A., Koonin, E. V. and Friedberg, E. C. 1999. Human and mouse homologs of E. coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proc. Natl. Acad. Sci. USA 21:11922–11927.
  • Gibbs, P.E., McGregor, W. G., Maer, V. M., Nisson, P., and Lawrence, C. W. 1998. A human homolog of the Sac-charomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc. Natl. Acad. Sci. USA 94:6876–6880.
  • Gidrol, X., Serghini, H., Noubhani, A., Mocquot, B., and Pradet, P. 1989. Biochemical changes induced by accelerated aging in sunflower seeds. I. Lipid peroxidation and membrane damage. Physiologia Plantarum 76:591–597.
  • Goodman, B.A., McPhail, D. B., and Lnehan, D. J. 1986. Oxygen-induced free radical in wheat roots. Free Rad. Res. Commun. 2:173–178.
  • Goodman, M.E., Creighton, S., Bloom, L. B., and Petruska, J. 1993. Biochemical basis of DNA replication fidelity. Crit. Rev. Biochem. Mol. Biol. 28:83–126.
  • Gorbalenya, A. E. and Koonin, E. V. 1993. Helicases: amino-acid sequence comparisons and structure-function relationships. Curr. Biol. 3:419–429.
  • Gorbunova, V. and Levy, A. A. 1997. Non-homologous DNA end-joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 25:4650–4675.
  • Gorbunova, V. and Levy, A. A. 1999. How plants make ends meet: DNA double-strand break repair. Trends Plant Sci. 4:263–269.
  • Gorman, M.A., Morera, S., Rothwell, D. G., de La Fortelle, E., Mol, C. D., Tainer, J. A., Hickson, I. D., and Freemon, P. S. 1997. The crystal structure of the human DNA repair endo-nuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J. 16:65486558.
  • Grilley, M., Griffith, J., and Modrich, P. 1993. Bidirectional excision in methyl-directed mismatch repair. J. Biol. Chem. 268:11830–11837.
  • Grilley, M., Welsh, K. M., Su, S. S., and Modrich, P. 1989. Isolation and characterization of the E. coli mutL gene product. J. Biol. Chem. 264:1000–1004.
  • Gu, H., Marth, J. D., Orban, P. C., Mossmann, H., and Rajewsky, K. 1994. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265:103–106.
  • Halliwell, B. 1987. Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem. Phys. Lipids 44:327–340.
  • Halliwell, B. 1990. How to characterize a biological antioxidant. Free Radic. Res. Commun. 9:1–32.
  • Halliwell, B. and Gutteridge, J. M. C. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219:1–4.
  • Halliwell, B. and Gutteridge, J. M. C. 1986. Oxygen-free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246:501–514.
  • Hang, B., Signer, B., Mrgison, G. P., and Elder, R. H. 1997. Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine. Proc. Natl. Acad. Sci. USA 94:12869–12874.
  • Harber, F. and Weiss, J. 1934. The catalytic decomposition of hydrogen peroxide by iron salt. Proc. R. Soc. Lond. A. Math. Phys. Sci. 147:337–351.
  • Harlow, G.R., Jenkins, M. E., Pittalwala, T. S., and Mount, D. W. 1994. Isolation of uvh1, an Arabidopsis mutant hypersensitive to ultraviolet light and ionizing radiation. Plant Cell 6:227235.
  • Harrington, J. J. and Lieber, M. R. (1994) Functional domains within Fen-1 and Rad2 define a family of structure-specific endonucleases; implications for nucleotide excision repair. Genes Dev. 8:1344–1355.
  • He, Z., Henricksen, L. A., Wold, M. S., and Ingles, C. J. 1995. RPA involvement in the damage-recognition and incision step of nucleotide excision repair. Nature 374:566–569.
  • Heath, R. L. and Taylor, G. E., Jr. 1997. Physiological processes and plant responses to ozone exposure. Ecol. Stud. 127:317–368.
  • Hemler, M. E. and Lands, W. E. 1980. Evidence for a peroxide-initiated free radical mechanism of prostaglandin biosynthesis. J. Biol. Chem. 255:6253–6261.
  • Hendry, G. A. F., Price, A. H., and Brocklebank, K. J. 1989. Role of iron in chlorophyll destruction in stressed plants. Mol. Aspects Med. 11:132–133.
  • Hidema, J., Kumagai, T., and Sutherland, B. M. 2000. UV radiation-sensitive norin 1 rice contains defective cyclobutane pyrimidine dimer photolyase. Plant Cell, 12:1569–1578.
  • Hidema, J., Kumagai, T., Sutherland, J. C., and Sutherland, B. M. 1997. Ultraviolet B-sensitive rice cultivar deficient in cyclobutyl pyrimidine dimer repair. Plant Physiol. 113:39–44.
  • Hodges, D.M., Andrews, C. J., Johnson, D. A., and Hamilton, R. I. 1997. Antioxi-dant enzyme and compound responses to chilling stress and their combining abilitites in differentially sensitive maize hybrids. Crop Sci. 37:857–863.
  • Hoeijmakers, J. H. J. 1993a. Nucleotide excision repair I: from E. coli to yeast. Trends Genet. 9:173–177.
  • Hoeijmakers, J. H. J. 1993b. Nucleotide excision repair II. from yeast to mammals. Trends Genet. 9: 211–27.
  • Hoeijmakers, J. H. J. and Bootsma, D. 1990. Molecular genetics of eukaryotic DNA excision repair. Cancer Cells 2:311320.
  • Howland, G. P. 1975. Dark-repair of ultraviolet-induced pyrimidine dimers in the DNA of wild carrot protoplasts. Nature 254:160–161.
  • Huang, J.C., Svododa, D. L., Reardon, J. T., and Sancar, A. 1992. Human nucleotide excision nuclease removes thym-ine dimers from DNA by incising the 22nd phosphodiester bond 5' and the 6th phosphodiester bond 3' to the photodimer. Proc. Natl. Acad. Sci. USA 89:3664–3668.
  • Hubscher, U. and Thommes, P. 1992. DNA polymerase: in search of a function. Trends Biochem. Sci. 17:55–58.
  • Hunter, N., Chambers, S. R., Louis, E. J., and Borts, R. H. 1996. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 15:1726–1733.
  • Ikenaga, M. and Mabuchi, T. 1996. Photo-reactivation of endosperm mutations in maize. Radiat. Bot. 6:165–169.
  • Illades-Aguiar, B. and Setlow, P. 1994. Autoprocessing of the protease that degrades small, acid-soluble proteins of spores of Bacillus species is triggered by low pH, dehydration, and dipicolinic acid. J. Bacteriol. 176:70327037.
  • Inze, D. and Van Montagu, M. 1995. Oxidative stress in plants. Curr. Opin. Biotechnol. 6:153–158.
  • Jabs, T. 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharm. 57:231–245.
  • Jackson, J. F. 1987. DNA repair in pollen. A review. Mutat. Res. 181:17–29.
  • Jackson, J. F. and Linskens, H. F. 1978. Evidence for DNA repair after ultraviolet irradiation of Petunia hybrida pollen. Mol. Gen. Genet. 161:117–120.
  • Jansen, M.A., Gaba, V., and Greenberg, B. M. 1998. Higher plants and UV-B radiation: balancing damage, repair and acclimatation. Trends Plant Sci. 3:131–135.
  • Jeggo, A.P., Taccioli, G. E., and Jackson, S. P. 1995. Menage a trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays 17:949957.
  • Jiang, C.Z., Yen, C.-N., Cronin, K., Mitchell, D., and Britt, A. B. 1997. UV- and gamma-radiation sensitive mutants of Arabidopsis thaliana. Genetics 147:1401–1409.
  • Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B., and Martin, C. 2000. Transcriptional repression by AtMyB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J. 19:6150–6161.
  • Johnson, K.A., Fink, S. P., and Marnett, L. J. 1997. Repair of propanodeoxyguanosine by nucleotide excision repair in vivo and in vitro. J. Biol. Chem. 272:1143411438.
  • Johnson, R.E., Kondratick, C. M., Prakash, S., and Prakash, L. 1999a. hRAD30 mutations in the variant form of Xeroderm pigmentosum. Science 285:263–265.
  • Johnson, R.E., Kovvali, G. K., Prakash, L., and Prakash, S. 1996. Requirement of the yeast Msh3 and Msh6 genes for Msh2-dependent genomic stability. J. Biol. Chem. 271:7285–7288.
  • Johnson, R.E., Prakash, S., and Prakash, L. 1999b. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Pol h. Science 283:10011004.
  • Johnson, R.E., Washington, M. T., Haracska, L., Prakash, S., and Prakash, L. 2000a. Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature 406:1015–1019.
  • Johnson, R.E., Washington, M. T., Prakash, S., and Prakash, L. 1999c. Bridging the gap: a family of novel DNA polymerases that replicate faulty DNA. Proc. Natl. Acad. Sci. USA 96:1222412226.
  • Johnson, R.E., Washington, M. T., Prakash, S., and Prakash, L. 2000b. Fidelity of human DNA polymerase n. J. Biol. Chem. 275:7447–7450.
  • Junop, M.S., Modesti, M., Guarne, A., Ghirlando, R., Gellert, M., and Yang, W. 2000. Crystal structure of the Xrcc4 DNA repair protein and implications for end joining. EMBO J. 19:59625970.
  • Kaminaka, H., Morita, S., Tokumoto, M., Masumura, T., and Tanaka, K. 1999. Differential gene expressions of rice superoxide dismutase isoforms to oxi-dative and environmental stresses. Free Radic. Res. 31 (Suppl.):S219-S225.
  • Kanofsky, J. R. and Sima, P. 1991. Singlet oxygen production from the reactions of ozone with biological molecules. J. Biol. Chem. 266:9039–9042.
  • Kehrer, J. P. 2000. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50.
  • Kim, C., Snyder, R. O., and Wold, M. S. 1992. Binding properties of replication protein-A from human and yeast cells. Mol. Cell. Biol. 12:3050–3059.
  • Kley, D., Kleinman, M., Sandermann, H., Jr., and Krupa, S. 1999. Photochemical oxidants: State of the science. Environ. Pollut. 100:19–24.
  • Klimyuk, V. and Jones, J. 1996. At DMC1, the Arabidopsis homologue of the yeast DMC1 gene: characterization, transposon-induced allelic viriton and meiosis-specific expression of a pAtDMC1: GUS fusion. Plant J. 11:114.
  • Klungland, A. and Lindahl, T. 1997. Second pathway for completion of human DNA base excision-repair; reconstitu-tion with purified proteins and requirement for DNase IV (FEN1). EMBO J. 16:3341.
  • Kobayashi, T., Hota, Y., and Tabata, S. 1993. Isolation and characterization of a yeast gene that is homologous with a meio-sis-specific cDNA from a plant. Mol. Gen. Genet. 237:225–232.
  • Kolodner, D. and Marsischky, G. T. 1999. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9:89–96.
  • Kolodner, R. 1996. Biochemistry and genetics of eukaryotic mis-match repair. Genes Dev. 10:1433–1442.
  • Krokan, H.E., Standal, R., and Slupphaug, G. 1997. DNA glycosylases in the base excision repair of DNA. Biochem. J. 325:1–16.
  • Kubota, Y., Nash, R. A., Klungland, A., Schar, P., Brnes, D. E., and Lindahl, T. 1996. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J. 15:6662–6670.
  • Landry, L.G., Stapleton, A. E., Lim, J., Hofman, P., Hays, J., Walbot, V., and Last, R. 1997. An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation. Proc. Natl. Acad. Sci. USA 94:328332.
  • Lawrence, C. W. and Hinkle, D. C. 1996 DNA polymerase zeta and the control of DNA damage-induced mutagenesis in eukaryotes. Cancer Surv. 28:2131.
  • Lehmann, A. R. 1998. Dual functions of DNA repair genes: molecular, cellular and clinical implications. BioEssays 20:146–155.
  • Leprince, O., Deltour, R., Thorpe, P. C., Atherton, N. M., and Hendry, G. A. 1990. The role of free radicals and radical processing systems in loss of desiccation tolerance in germinating maize. New Phytol. 116:573–580.
  • Leprince, O., Hendry, G. A., Atherton, N. M., and Walters-Vertucci, C. W. 1996. Free radicals and metabolism associated with the acquisition and loss of desiccation tolerance in developing seeds. Biochem. Soc. Trans. 24:451455.
  • Levine, A., Tenhaken, R., Dixon, R., and Lamb C. 1994. H2O2 form the oxida-tive burst orchestrates the plant hypersensitive response. Cell 79:583–93.
  • Li, L., Elledge, S. J., Peterson, C. A., Bales, E. S., and Legerski, R. J. 1994. Specific association between the human DNA repair proteins XPA and ERCC1. Proc. Natl. Acad. Sci. USA 91:50125016.
  • Lieber, M. R. 1991. Site-specific recombination in the immune system. FASEB J. 5:2934–2944.
  • Lieber, M. R. 1997. The FEN-1 family of structure-specific nucleases in eukary-otic DNA replication, recombination and repair. BioEssays 19:233–240.
  • Lin, J.J., Phillips, A. M., Herst, J. E., and Sancar, A. 1992. Active site of (A)BC excinuclease. II. Binding, bending and catalysis mutants of UvrB reveal a direct role in 3' and indirect role in 5' incision. J. Biol. Chem. 267:1769317700.
  • Lin, J. J. and Sancar, A. 1992. Active site of (A)BC excinuclease. I. Evidence for 5' incision by UvrC through a catalytic site involving Asp399, Asp438, Asp466 and His538 residues. J. Biol. Chem. 267:17688–17692.
  • Lin, W., Xin, H., Zhang, Y, Wu, X., and Wang, Z. 1999. The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucl. Acids Res. 27:4468–4475.
  • Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709–710.
  • Lindahl, T. and Barnes, D. E. 1992. Mammalian DNA ligases. Annu. Rev. Biochem. 61:251–281.
  • Lindahl, T. and Wood, R. D. 1999. Quality control by DNA repair. Science 286:1897–1905.
  • Liu, L. and Wells, P. G. 1995. DNA oxidaiton as a potential molecular mechnaism mediating drug-induced birth defects: phenytoin and structurally related teratogens initiate the formation of 8-hydroxy-2'-deoxyguanosine in vitro and in vivo in murine maternal hepatic and embryonic tissues. Free Radic. Biol. Med. 19:639–648.
  • Liu, Z., Hossain, G. S., Islas-Osuna, M. A., Mitchell, D. L., and Mount, D. W. 2000. Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae RAD1. Plant J. 21:519–528.
  • Livingstone-Zatchej, M., Meier, A., Suter, B., and Thoma, F. 1997. RNA polymerase II transcription inhibits DNA repair by photolyase in the transcribed strand of active yeast genes. Nucl. Acids Res. 25:3795–3800.
  • Luxford, C., Morin, B., Dean, R. T., and Davies, M. J. 1999. Histone H1 and other protein and amino acid hydrop-eroxides can give rise to free radicals that oxidize DNA. Biochem. J. 344:125–134.
  • Marintchev, A., Mullen, M. A., Maciejewski, M. W., Pan, B., Gryk., M. R., and Mullen, G. P. 1999. Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nature Struct. Biol. 6:884–893.
  • Marnett, L. J. 1999a Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 424:83–95.
  • Marnett, L. J. 1999b. Chemistry and biology of DNA damage by malondialdehyde. IARC Sci. Publ. 150:17–27.
  • Masutani, C., Kusumoto, R., Yamada, A., Dohmae, N., Yokoi, M., Yuasa, M., Araki, M., Iwai, S., Takio, K., and Hanaoko, F. 1999. The XPV (xero-derma pigmentosum variant) gene encodes human DNA polyemrase h. Nature 399:700–704.
  • Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P. J., Bootsman, D., Hoeijmakers, J. H. J., and Hanaoka, F. 1994. Purification and cloning of a nucleotide excision repair complex involving the Xeroderma pigmentosum gorup C protein and a human homolog ofyeast Rad23. EMBO J. 13:1831–1843.
  • Matsuda, T., Saijo, M., Kuraoka, I., Kobayashi, T., Nahatssu, Y., Nagai, A., Enjoji, T., Masutani, C., Sugasawa, K., Hanaoka, F., Yasui, A., and Tanaka, K. 1995. DNA repair protein XPA binds to replication protein A (RPA). J. Biol. Chem. 270:4152–4157.
  • Matsumoto, Y. and Kim, K. 1995. Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269:699–702.
  • Matsumoto, Y., Kim, K., and Bogenhagen, D. F. 1994. Proliferating cell nuclear antigen-dependent a basic site repair in Xenopus laevis oocytes: an alternative pathway of base decision DNA repair.Mol. Cell. Biol. 14:6187–6197.
  • Matsunaga, T., Mu, D., Park, C. H., Reardon, J. T., and Sancar, A. 1995. Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies. J. Biol. Chem. 270:20862–20869.
  • Mattimore, V., and Battista, J. R. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178:633–637.
  • Mazur, S. J. and Grossman, L. 1991. Dimer-ization of E. coli UvrA and its binding to undamaged and ultraviolet light damaged DNA. Biochemistry 30:44324443.
  • McClennan, A. G. 1987. The repair of ultraviolet light-induced DNA damage in plant cells. Mutat. Res. 181:1–7.
  • McClintock, B. 1931. Cytological observations of deficiencies involving known genes, translocations and an inversion in Zea mays. Mo. Agric. Exp. Res. Stn. Res. Bull. 163:4.
  • McDonald, J.P., Rapic-Otrin, V., Epstein, J. A., Broughton, B. C., Wang, X., Lehmann, A. R., Wolgemuth, D. J., and Woodgate, R. 1999. Novel human and mouse homologs of Saccharomy-ces cerevisiae DNA polymerase eta. Genomics 60:20–30.
  • Mehlhorn, H., Tabner, B., and Welburn, A. R. 1990. Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Phys. Plant 79:377–83.
  • Mehlhorn, H. and Wellburn, A. R. 1987. Stress ethylene formation determines plant sensitivity to ozone. Nature 327:417–418.
  • Misra, H. P. and Fridovich, I. 1972. The role of superoxide anion in the autooxidation of epinephrin and a simple asay for superoxide dismutase. J. Biol. Chem. 247:3170–3175.
  • Modesti, M. Hesse, J. E., and Gellert, M. 1999. DNA binding of XRCC4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity. EMBO J. 18:2008-2018
  • Modrich, P. 1994. Mismatch repair, genetic stability, and cancer. Science 266:19591960.
  • Moggs, J.G., Yarema, K. J., Essigmann, J. M., and Wood, R. D. 1996. Analysis of incision sites produced by human cells extracts and purified proteins during nucleotide excision repair of a 1, 3-intrastrand d(gpTpG)-C is platin adduct. J. Biol. Chem. 271:7177–7186.
  • Moore, M.H., Gulbis, J. M., Dodson, E. J., Demple, B., and Moody, P. C. E. 1994. Crystal structure of a suicidal DNA repair protein: the Ada O6-methylguanine-DNA methyltransferase from E. coli. EMBO J. 13:1495–1501.
  • Mu, D., Hsu, D.S., and Sancar, A. 1996. Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem. 271:8285–8294.
  • Mu, D., Park, C. H., Matsunaga, T., Hsu, D. S., Reardon, J. T., and Sancar, A. 1995. Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol. Chem. 270:2415-2418
  • Mu, D. and Sancar, A. 1997. Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans. J. Biol. Chem. 272:7570–7573.
  • Mu, D., Turson, M., Duckett, D. R., Drummond, J. T., Modrich, P., and Sancar, A. 1997a. Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems. Mol Cell Biol. 17:760–769.
  • Mu, D., Wakasugi, M., Hsu, D. S., and Sancar, A. 1997b. Characterization of reaction intermediates of human excision repair nuclease. J. Biol. Chem. 272:28971–28979.
  • Mueller, J. P. and Smerdon, M. J. 1996. Rad23 is required for transcription-coupled repair and efficient overall repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2361–2368.
  • Mustafa, M. G. and Tiernery, D.F. 1978. Biochemical metabolic changes in the lung and oxygen, ozone and nitrogen dioxide toxicity. Ann. Rev. Resp. Dis. 118:1061–1090.
  • Myles, G. M. and Sancar, A. 1991. Isolation and characterization of functional domains of uvrA. Biochemistry 30:38343840.
  • Nakajima, S., Sugiyama, M., Iwai, S., Hitorni, K., Otoshi, E., Kim, S. T., Jiang, C. Z., Todo, T., Britt, A. B., and Yamamoto, K. 1998. Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 products in Arabidopsis thaliana. Nucl. Acids Res. 26:638–644.
  • Naqvi, A., Chance, B., and Cadenos, E. 1986. Reactive oxygen intermediates in biochemistry. Ann. Rev. Biochem. 55:137166.
  • Nelson, J.R., Lawrence, C. W., and Hinkle, D. C. 1996. Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382:729–731.
  • Nuffer, M. G. 1957. Additional evidence on the effect of X-ray and ultraviolet radiation on mutation in maize. Genetics 42:273–82.
  • O'Donovan, A., Davies, A. A., Moggs, J. G. , West, S. C., and Wood, R. D. 1994. XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature 371:432–435.
  • Ohba, T., Yoshioka, Y., Machida, C., and Machida, Y. 1995. DNA rearrangement associated with the integration of T-DNA in tobacco: an example for multiple duplications of DNA around the integration target. Plant J. 7:157164.
  • Orzaez, D. and Granell, A. 1997. DNA fragmentation is regulated by ethylene during carpel senescence in Pisum sativum. Plant J. 11:137–144.
  • Osborne, D. J. and Boubriak, I. 1994. DNA and desiccation tolerance. Seed Science Res. 4:175–185.
  • Overmyer, K., Tuominen, H., Kettunen, R., Betz, C., Langebartels., C., Sundermann, H. , and Kangasjarvi, J. 2000. Ozone-sensitive Arabodipsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862.
  • Painter, R. B. 1985. Inhibition and recovery of DNA synthesis in human cells after exposure to ultraviolet light. Mutat. Res. 145:63–69.
  • Palombo, F., Gallinari, P., Iaccarino, I., Lettieri, T., Hughes, M., DqArrigo, A., Truong, O., Hsuan, J. J., and Jiricny, J. 1995. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268:1912–1914.
  • Palombo, F., Iaccarino, I., Nakajima, E., Ikejima, M., Shimada, T., and Jiricny, J. 1996. HMutSb, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr. Biol. 6:1181–1184.
  • Pang, Q. and Hays, J. B. 1991. UV-B inducible and temperature-sensitive photorectivation of cyclobutane py-rimidine dimers in Arabidopsis thaliana. Plant Physiol. 95:536–543.
  • Parikh, S.S., Mol. C.D., Slupphaug, G., Bharati, S., Krokan, H. E., and Tainer, J. A. 1998. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 17:5214–5216.
  • Park, C-H. and Sancar, A. 1994. Formation of a ternary complex by human XPA, ERCC1 and ERCC4 (XPF) excision repair proteins. Proc. Natl. Acad. Sci. USA 91:5017–5021.
  • Park, H.W., Kim, S. T., Sancar, A., and Deisenhofer, J. 1995. Crystal structure of DNA photolyase form E. coli. Science 268:1866–1872.
  • Pellinen, R., Palva, T., and Kangasjarvi, J. 1999. Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J. 20:349–356.
  • Petrini, J. H. J., Xiao, Y., and Weaver, D. T. 1995. DNA ligase I mediates essential functions in mammalian cells. Mol. Cell Biol. 15:4303–4308.
  • Pham, X.H., Reddy, M. K., Ehtesham, N. Z., Matta, B., and Tuteja, N. 2000. A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates toposiomerase inactivity. Plant J. 24:219–229.
  • Pieper, R. O. DNA Repair in Higher eukary-otes, In: DNA Damage and Repair, vol. 2, J.A. Nickoloff and M. F. Hoekstra, Eds. (Humana Press, Totowa, NJ, 1998), pp. 33-49.
  • Pinhero, R.G., Rao, M. V., Paliyath, G., Murr, D. P., and Fletcher, R. A. 1997. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrzol-induced chilling tolerance of maize seedlings. Plant Physiol. 114:695–704.
  • Plooy, A.C., van Dijk, M., and Lohman, P. H. M. 1984. Induction and repair of DNA cross links in Chinese hamster ovary cells treated with various platinum coordination compounds in relation to platinum binding to DNA, cy-totoxicity, mutagenicity and anti-tumor activity. Cancer Res. 44:2043–2051.
  • Podust, L.M., Podust, V. A., Floth, C., and Hubscher, U. 1994. Assembly of DNA polymerase d and e holoenzymes depends on the geometry of the DNA template. Nucl. Acids Res. 22:2970–2975.
  • Price, A.H., Atherton, N. M., and Hendry, G. A. F. 1989a. Plants under drought-stress generate activated oxygen. Free Rad. Res. Commun. 8: 61–66.
  • Price, A.H., Atherton, N. M., and Hendry, G. A. F. 1989b. Superoxide formation and enhanced transition-metal uptake in drought-damaged wheat leaves. In: Free Radicals, Diseased States and Antiradical Intervention (Ed. by C. Rice-Evans) pp. 467-479, Richelieu Press, London.
  • Price, A. H. and Hendry, G. A. F. 1989. Stress and the role of activated oxygen scavengers and protective enzymes in plants subjected to drought. Biochem. Soc. Trans. 17:493–494.
  • Priestley, D.A., Werner, B. G., Leopold, A. C., and McBride, M. G. 1985. Organic free radicals in seeds and pollen: the effect of hydration and aging. Physiol. Plant. 64:88–94.
  • Protic-Sabljic, M. and Kraemer, K. H. 1985. One pyrimidine dimer inactivates expression of a transfected gene in Xero-derma pigmentosum cells. Proc. Natl. Acad. Sci. USA 82:6622–6626.
  • Protic-Sabljic, M., Tuteja, N., Munson, P. J., Hauser, J., Kraemer, K. H., and Dixon, K. 1986. UV light-induced cyclobutane pyrimidine dimers are mutageneic in mammalian cells. Mol. Cell. Biol. 6:3349–3356.
  • Pryor, W.A. 1986. Oxy radical related species: their formation, life time and reactions. Ann. Rev. Physiol. 48:657667.
  • Puchta, H. and Hohn, B. 1991. The mechanism of extrachromosomal homologous DNA recombination in plant cells. Mol. Gen. Genet. 230:1–7.
  • Quaite, F.E., Takayananagi, S., Ruffini, J., Sutherland, J. C., and Sutherland, B. M. 1994. DNA damage levels determine cyclobutyl pyrimidine dimer repair mechanisms in alfalfa seedlings. Plant Cell 6:1635–1641.
  • Rao, M. V. and Davis, K. R. 1999. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J. 17:603614.
  • Reardon J. T., Mu D., and Sancar, S. 1996. Overproduction, purification and characterisation of the XPC subunit of the human DNA repair excision nu-clease. J. Biol. Chem. 270:2415–2418.
  • Reuzeau, C. and Cavalie, G. 1995. Activities of free radical processing enzymes in dry sunflower seeds. New Phytol. 130:59–66.
  • Ribeiro, D.T., Machdo, C. R., Costa, R. M. A., Praekelt, U. M., Van-sluys, M. A. and Menck, C. F. M. 1998. Cloning of a cDNA from Arabidopsis thaliana homologous to the human XPB gene. Gene 208: 207–213.
  • Rinehart, T.A., Dean, C., and Weil, C. F. 1997. Comparative analysis of non-random DNA repair following Ac transposon excision in maize and Arabidopsis. Plant J. 12:1419–1427.
  • Rosen, D.R., Siddiqui, T., and Patterson, D. 1993. Mutation in Cu/Zn superoxide dismutse gene are associated with familial amyotrophic lateral schlerosis. Nature 362:59–62.
  • Roy, R., Schaeffer, L., Humber, S., Vermeulen, W., Weeda, G., and Egly, J.-M. 1994. The DNA-dependent ATPase activity associated with the class II basic transcription factor BTF2/ TFIH. J. Biol. Chem. 269:9862–9832.
  • Saijo, M., Kuraoka, I., Masutani, C., Hanaoka, F., and Tanaka, K. 1996. Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro. Nucl. Acids Res. 24:4719–4724.
  • Sakumi, K. and Sekiguchi, M. 1990. Structures and functions of DNA glycoslases. Mutat. Res. 236:161–62.
  • Salomon, S. and Puchta, H. 1998. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J. 17:60866095
  • Sancar, A. 1994. Structure and function of DNA photolyase. Biochemistry 33:2–9.
  • Sancar, A. 1996. No 'end of history' for photolyases. Science 272:48–49.
  • Sancar, A. and Rupp, W. D. 1983. A novel repair enzyme: UVrABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell 33:349–260.
  • Sancar, G. B. 1990. DNA photolyases: physical properties, action mechanism and roles in dark repair. Mutat. Res. 236:147–160.
  • Sandermann, H., Jr., Ernst, D., Heller, W., and Langebartels, C. 1998. Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci. 3:47–50.
  • Santerre, A. and Britt, A. B. 1994. Cloning of a 3-methyladenine-DNA glycoslase from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 91:2240–2244.
  • Saparbaev, M. and Laval, J. 1998. 3,N4-ethenocytosine, a highly mutagenic adduct, is a primary substrate for E. coli double-stranded uracil-DNA glycosylase and human mismatch-specific thymine-DNA glycosylase. Proc. Natl. Acad. Sci. USA 95:8508–8513.
  • Satoh, M. S. and Lindahl, T. 1992. Role of poly(ADP-ribose) formation in DNA repair. Nature 356:356–358.
  • Satoh, M.S., Poirier, G. G., and Lindahl, T. 1993. NAD(+)-dependent repair of damaged DNA by human cell extracts. J. Biol. Chem. 268:5480–5487.
  • Schaeffer L., Moncollin, V., Roy, R., Staub, A., Mezzina, M., Sarasin, A., Weeda, G., Hoeijmakers, J. H. J., and Egly, J-M. 1994. The ERCC2 DNA repair protein is associated with the class II BTF2/TFIIH transcription facotr. EMBO J. 13:2388–2392.
  • Schaeffer, L., Roy, R., Humbert, S., Moncollin, V., Vermeulen, W., Hoeijmakers, J. H. J., Chambon, P., and Egly, J-M. 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260:58–63.
  • Schraudner, M., Moeder, W., Wiese, C., van Camp, W., Inze, D., Langebarels, C., and Sandermann, H., Jr. 1998. Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J. 16:235–245.
  • Schultz, T. F. and Quatrano, R. S. 1997. Characterisation and expression of a rice RAD23 gene. Plant Mol. Biol. 34:557–562.
  • Scott, L., Lafoe, D., and Weil, C. F. 1996. Adjacent sequences influence DNA repair accompanying transposon excision in maize. Genetics 142:237–246.
  • Seeberg, E., Eide, L., and Bjoras, M. 1995. The base excision repair pathway. Trends Biochem. Sci. 20:391–397.
  • Selby, C. P. and Sancr, P. 1993. Moelcular mechanism of transcription-repair coupling. Science 260:53–57.
  • Senaratna, T. and McKersie, B. D. 1986. Loss of desiccation tolerance during seed germination: a free radical mechanism of injury. In: Membranes, Metabolism and Dry Organisms (Ed. by A. C. Leopold), pp. 85-102, Cornell University Press, Ithaca.
  • Seroussi, E. and Lavi, S. 1993. Replication protein A is the major single-stranded DNA binding protein detected in mammalian cell extracts by gel retardation assays and UV cross-linking of long and short single-stranded DNA molecules. J. Biol. Chem. 268:7147–7154.
  • Setlow, B. and Setlow, P. 1996. Role of DNA repair in Bacillus subtilis spore resistance. J. Bacteriol. 178:34863495.
  • Setlow, P. 1992a. I will survive: protecting and repairing spore DNA. J. Bacteriol. 174:2737–2741.
  • Setlow, P. 1992b DNA in dormant spores of Bacillus species is in an A-like con-formation.Mol. Microbiol. 6:563–567.
  • Sharma, Y. K. and Davis, K. R. 1997. The effects of ozone on anti-oxidant responses in plants. Free Radical Biol. Med. 23:480–488.
  • Shi, L., Kent, R., and Bence, A. B. 1997. Developmental expression of a DNA repair gene in Arabidopsis. Mutat. Res. 384:145–146.
  • Shiloh, Y. 1997. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu. Rev. Genet. 31:635–662.
  • Shivji, M. K. K., Kenny, M. K., and Wood, R. D. 1992. Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69:367–374.
  • Shivji, M. K. K., Podust, V. N., Hubscher, Y., and Wood, R. D. 1995. Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC and RPA. Biochemistry 34:5011–5017.
  • Sies, H. 1991. Oxidative Stress: Oxidant and Antioxidants. Academic Press, London.
  • Sobol, R.W., Horton, J. K., Kuhn, R., Gu. H., Singhal, R. K., Prasad, R., Rajewsky, K., and Wilson, S. H. 1996. Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature 379:183.
  • Stapleton, A. E. 1992. Ultraviolet radiation and plants: burning questions. Plant Cell 4:1353–1358.
  • Stapleton, A.E., Thorner, C. S., and Walbot, V. 1997. UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): developmental and cellular heterogeneity of damage and repair. Plant Cell Environ. 20:279–290.
  • Sugasawa, K., Ng, J. M. Y., Masutani, C., van der Spek, P. J., Eker, A. P. M., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. J. 1998. Xeroderma pigmentosum group C is the initiator of global genome nucleotide excision repair. Mol. Cell 2:223–232.
  • Sugawara, N. and Haber, J. E. 1992. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell Biol. 12:563–575.
  • Sung, P., Bailly, V., Weber, C., Prakash, L., and Prakash, S. 1993. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365, 852–855.
  • Suter, B., Livingstone-Zatchej, M., and Thoma, F. 1997. Chromatin structure modulates DNA repair by photolyase in vivo. EMBO J. 16:2150–2160.
  • Sutherland, B.M., Takayanagi, S., Sullivan, J. H., and Sutherland, J. C. 1996. Plant responses to changing environmental stress: cylcobutyl pyrimidine dimer repair in soybean leaves. Photochem. Photobiol. 64:464–468.
  • Svoboda, D.L., Taylor, J. S., Hearst, J. E., and Sancar, A. 1993. DNA repair by eu-karyotic excision nuclease: removal of thymine dimer and psoralen monoadduct by HeLa cell free extract and of thymine dimer by Xenopus laevis oocytes. J. Biol. Chem. 268:1931–1936.
  • Swagemakers, S.M.A., Essers, J., Wit, J. De., Hoeijmakers, J.H.J., and Kanaar, R. 1998. The human Rad 54 recombinatorial DNA repair protein is a double-stranded DNA-dependent ATPase. J. Biol. Chem. 273:28292–28297.
  • Takata, M., Sasaki, M.S., Sonoda, E., Morrison, C., Hashimoto, M., Utsumi, H., Yamaguchi-Iwai, Y., Shinohara, A., and Takeda, S. 1998. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17:5497–5508.
  • Takeuchi, Y., Murakami, M., Nakaima, N., Kondo, N., and Nikaido, O. 1996. Induction and repair of damage to DNA in cucumber cotyledons irradiated with UVB. Plant Cell Physiol. 37:181–187.
  • Talpaert-Borle, M. and Liuzzi, M. 1982. Base-excision repair in carrot cells. Eur. J. Biochem. 124:435–440.
  • Tamada, T., Kitadokoro, K., Higuchi, Y., Inaka, K., Yasui, A., de Ruiter, P. E., Eker, A. P., and Miki, K. 1997. Crystal structure of DNA photolyase from Anacystis nidulans. Nature Struct. Biol. 4:887–891.
  • Tang, M., Shen, X., Frank, E. G., O'Donnell, M., Woodgate, R., and Goodman, M. F. 1999. UmuD'(2)C is an error-prone DNA polymerase, E. coli pol V. Proc. Natl. Acad. Sci. USA 96:8919–8924.
  • Tappel, A. L. 1973. Lipid peroxidation damage to cell components. Fed Proc. 32:1870–1874.
  • Taylor, R.M. 1996. Ultraviolet B-induced DNA lesions and their removal in wheat (Triticum aestivum L.) leaves. Plant Cell Environ. 19:171–181.
  • Taylor, R.M., Nikaido, O., Jordan, B. R., Bray, C. M., and Tobin, A. K. 1996a. UV-B-induced DNA lesions and their removal in wheat (Triticum aestivum L.) leaves. Plant Cell Environ. 19:171181.
  • Taylor, R.M., Rosamond, J., Tobin, A. K., and Bray, C. M. 1996b. The cloning and sequence analysis of DNA ligase from Arabidopsis thaliana. Accesion Number:1359495.
  • Teo, I., Sedgwick, B., Demple, B., Li, B., and Lindahl, T. 1984. Induction of resistance to alkylating agents in E. coli: the ada+ ne product serves both as a regulatory protein and as an enzyme for repair of mutagenic damage. EMBO J 3:2151–2157.
  • Teramura, A. H. 1983. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol. Plant 58:415–427.
  • Teramura, A. H. and Sullivan J. H. 1994. Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth. Res. 39:463–473.
  • Terasawa, M., Shinohara, A., Hotta, Y., Ogawa, H., and Ogawa, T. 1995. Localization of RecA-like recombination proteins on chromosomes of the lily at various meiotic stages. Genes Dev. 9:925–934.
  • Tevini, M. and Teramura, A. H. 1989. UV-B effects on terrestrial plants. Photochem. Photobiol. 50:479–487.
  • The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815.
  • Thoma, F. 1999. Light and dark in chroma-tin repair: repair of UV-induced DNA lesions by photolyase and nucelotide excision repair. EMBO J. 18:65856598.
  • Todo, T. 1999. Functional diversity of the DNA photolyase blue light receptor family. Mutat. Res. 434:89–97.
  • Trosko, J.E., and Mansour, V. H. 1969. Photoreactivation of ultraviolet light-induced pyrimidine dimers in Ginkgo cells grown in vitro. Mutat. Res. 7:120121.
  • Turchi, J.J., Murante, R. S., and Bambara, R. A. 1992. DNA substrate specificity of DNA helicase E from calf thymus. Nucleic Acids Res. 20:6075–6080.
  • Tuteja, N. 1997. Unraveling DNA helicases from plant cells. Plant Mol. Biol. 33:947–952.
  • Tuteja, N. 2000. Plant Cell and viral helicases: essential enzymes for nucleic acid transactions. Crit. Rev. Plant Sci. 19:449–478.
  • Tuteja, N., Beven, A. F., Shaw, P. J., and Tuteja, R. 2001. A pea homologue of human DNA helicase I is localized within the dense fibrillar component of the nucleolus and sitmulated by phosphorylation with CK2 and cdc2 protein kinases. Plant J. 25:9–17.
  • Tuteja, N., Ochem, A., Taneja, P., Tuteja, R., Skopac, D., and Falaschi, A. 1995. Purification properties of human DNA helicase VI. Nucl. Acids Res. 23:24572463.
  • Tuteja, N. and Phan, T. N. 1998. A chloro-plast DNA helicase II from pea that prefers fork-like structures. Plant Physiol. 118:1029–1039.
  • Tuteja, N., Phan, T-N., and Tewari, K. K. 1996. Purification and characterization of a DNA helicase from pea chloro-plast that translocates in the 3' to 5' direction. Eur. J. Biochem. 238:5463.
  • Tuteja, N., Phan, T-N., Tuteja, R., Ochem, A., and Falaschi, A. 1997. Inhibition of DNA unwinding and ATPase activities of human DNA helicase II by chemotherapeutic agents. Biochem. Biophys. Res. Commun. 236:636–640.
  • Tuteja, N., Rahman, K., Tuteja, R., and Falaschi, A. 1991. DNA helicase IV from HeLa cells. Nucl. Acids Res. 19:3613–3618.
  • Tuteja, N., Rahman, K., Tuteja, R., and Falaschi, A. 1993. Human DNA helicase V, a novel DNA unwinding enzyme form HeLa cells. Nucl. Acids Res. 21:2323–23329.
  • Tuteja, N. Rahman, K., Tuteja, R., Ochem, A., Skopac, D., and Falaschi, A. 1992. DNA helicase III from HeLa cells: an enzyme that acts preferentially on partially unwound DNA duplexes. Nucl. Acids Res. 20:5329–5337.
  • Tuteja, N., and Tuteja, R. 1996. DNA helicases: the long unwinding road. Nature Genetics 13:11–12.
  • Tuteja, N. and Tuteja, R., 2001. Unraveling DNA repair in human: molecular mechanisms and consequences of repair defect. Crit. Rev. Biochem. Mol. Biol. (in press).
  • Tuteja, N., Tuteja, R., Ochem, A., Taneja, P., Huang, N. W., Simoncsits, A., Susic, S., Rahman, R., Marusic, L., Chen, J., Zhang, J., Wang, S., Pongor, S., and Falaschi, A. 1994. Human DNA helciase II: a novel DNA unwinding enzyme identified as the Ku autoantigen. EMBO J. 13:4991–5001.
  • Tuteja, N., Tuteja, R., Rahman, K., Kang, L.-Y., and Falaschi, A. 1990. A DNA helicase from human cells. Nucl. Acids Res. 18:6788–6792.
  • Tuteja, R. and Tuteja, N. 2000. Ku autoantigen: a multifunctional DNA binding protein. Crit. Rev. Biochem. Mol. Biol. 35:1–33.
  • Urdea, M.S., Warner, B. D., Running, J. A., Stempien, M., Clyne, J., and Horn, T. 1988. A comparison of nonradioisotopic hybridization assay methods using fluorescen, chemiluminescent and enzyme labeled synthetic oligonucleotide probes. Nucl. Acids Res. 16:4937–4955.
  • Van Camp, W., Van Montagu, M., and Inze, D. 1994. Superoxide dismutases. In Causesof Photooxidative stress and amerlioration of defense systems in plants. Foyer, C. H. and Mullineaux, P. M., Eds., pp. 317-341. CRC Press, Boca Raton, FL.
  • Vaughan, P., Lindahl, T., and Sedgwick, B. 1993. Induction of the adaptive response of E. coli to alkylation damage by the environmental mutagen, methyl chloride. Mutat. Res. 293:249.
  • Verhage, R.A., Zeeman, A. M., Lombaerts, M., van de Putte, P., and Brouwer, J. 1996. Analysis of gene- and strand-specific repair in the moderately UV-sensi-tive Saccharomyces cerevisiae rad23 mutant. Mutat. Res. 362:155–165.
  • Villani, G., and Tanguy Le Gac, N. 2000. Interactions of DNA helicases with damaged DNA: possible logical consequences. J. Biol. Chem. 275:3318533188.
  • Vodenicharov, M.D., Sallmann, F. R., Satoh, M. S., and Poirier, G.G. 2000. Base excision repair is efficient in cells lacking poly(ADP-ribose) polymerase 1. Nucl. Acids Res. 28:3887–3896.
  • Vonarx, E.J., Mitchell, H. L., Karthikeyan, R., Chatteijee, I., and Kunz, B. A. 1998. DNA repair in higher plants. Mutat. Res. 400:187–200.
  • Wagner, J., Gruz, P., Kim, S.R., Yamada, M., Matsui, K., Fuchs, R.P., and Nohmi, T. 1999. The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagen-esis. Mol. Cell. 4:281.
  • Washington, M.T., Johnson, R. E., Prakash, S., and Prakash, L. 1999. Fidelity and processivitiy of Saccharomyces cerevisiae DNA polymerase n. J. Biol. Chem. 274:36835–36838.
  • Washington, M.T., Johnson, R. E., Prakash, S., and Prakash, L. 2000. Accuracy of thymine-thymine dimer bypass by Sac-charomyces cerevisiae DNA polymerase h. Proc. Natl. Acad. Sci. USA 97:3094–3099.
  • Weisinger, R.A. and Fridovich, I. 1973. Mitochondrial superoxide dismutase site of synthesis and intermitochondrial localiztion. J. Biol. Chem. 248:47934796.
  • White, C. I. and Haber, J. E. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J 9:663–673.
  • Wilson, D. M. and Thompson, L. H. 1997. Life without DNA repair. Proc. Natl. Acad. Sci. USA 94:12754–12757.
  • Winkler, G., Vermeulen, W, Coin, F., Egly, J., Hoeijmakers, J., and Weeda, G. 1998. Affinity purification of human DNA repair transcription factor TFIIH using epitope-tagged Xeroderma pigmentosum B protein. J. Biol. Chem. 273:1092–1098.
  • Wise, R. R. and Naylor, A. W. 1987. Chilling-enhanced photooxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol. 83:272–277.
  • Wood, R. D. 1997. Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272:23465–23468.
  • Wood, R.D., Mitchell, M., Sgouros, J., and Lindahl, T. 2001. Human DNA repair genes. Science, 291:1284–1289.
  • Wu, X., Li, J., Li, X., Hsieh, C. L., Burgers, P. M., and Lieber, M. R. 1996. Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA. Nucl. Acids Res. 24:20362043.
  • Wymann, M.P. and Pirola, L. 1998. Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta 1436:127–150.
  • Xu, H., Swobodo, I., Bhalla, P. L., Sijbers, A. M., Zhao, C., Ong, E.-K., Hoeijmakers, J. H. J., and Singh, M. B. 1998 Plant homologue of human excision repair gene ERCC1 points to conservation of DNA repair mechanisms. Plant J. 13:823–829.
  • Yang, H., Clendenin, W. M., Wong, D., Demple, B., Slupska, M. M., Chiang, J-H., and Miller, J. H. 2001. Enhanced activity of adenine-DNA glycosylase (Myh) by AP endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch. Nucl. Acids Res. 29:743–752.
  • Yasui, A. and Eker, A. P. M. 1998. DNA photolyases. In: DNA Damage and Repair, vol. II (Nickoloff, J. A. and Hoekstra, M. F., Eds.) Totowa: Humana Press, pp. 9-32.
  • Yasui, A., Eker, A. P. M., Yasuhira, S., Yajima, H., Kobayashi, T., Takao, M., and Oikawa, A. 1994. A new class of DNA photolyases present in various organisms including aplacental mammals. EMBO J. 13:6143–6151.
  • Young, T.E., Gallie, D. R., and Demason, D. A. 1997. Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes. Plant Physiol. 115:737–751.
  • Zhou, B.-B. and Elledge, S. J. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408:433–439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.