309
Views
47
CrossRef citations to date
0
Altmetric
Research Article

Allelopathic Bacteria and Their Impact on Higher Plants

&
Pages 41-55 | Published online: 29 Sep 2008

REFERENCES

  • Alström, S. 1992. Saprophytic soil microflora in relation to yield reductions in soil repeatedly cropped with barley (Hordeum vulgare L.). Biol. Fertil. Soils 14: 145—150. Arshad, M. and Frankenberger, W. T., Jr. 1992. Microbial production of plant growth regulators. In: Soil Microbial Ecology, Applications in Agricultural and Environmental Management. pp. 27—63. Metting, F. B., Jr., Ed., Marcel Dekker, Inc.
  • Aström, B. 1991. Role of bacterial cyanide production in differential reaction of plant cultivars to deleterious rhizosphere pseudomonads. Plant Soil 133: 93—100. Aström, B. and Gerhardson, B. 1989. Wheat cultivar reactions to deleterious rhizosphere bacteria under gnotobiotic conditions. Plant Soil 117: 157—165.
  • Aström, B., Gustafsson, A., and Gerhardson, B. 1993. Characteristics of a plant deleterious rhizosphere pseudomonad and its inhibitory metabolite(s). J. Appl. Bacteriol. 74: 20—28.
  • Bakker, A. W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation. Soil Biol. Biochem. 19: 451—457.
  • Catska, V., Vancura, V., Hudska, G., and Prikryl, Z. 1982.Rhizosphere microorganisms in relation to the apple replant problem. Plant Soil 69: 187—197.
  • Chayen, S. 1991. Phytotoxic microorganisms and their im-pact on the allelopathic phenomenon near Artemisia herba-alba in the Negev desert. Thesis submitted to-ward a M.Sc degree at Tel-Aviv University, Israel. Cutler, H. G. 1988. Perspectives on discovery of microbial phytotoxins with herbicidal activity. Weed Technol. 2: 525—532. de Freitas, J. R. and Germida, J. J. 1992. Growth promotion of winter wheat by fluorescent pseudo-monads under field conditions. Soil Biol. Biochem. 24: 1137—1146. Dubeikovsky, A. N., Mordukhova, E. A., Kochetkov, V. V.,
  • Polikarpova, F. Y., and Boronin, A. M. 1993. Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthe-sizing an increased amount of indole-3-acetic acid. Soil Biol. Biochem. 25: 1277—1281.
  • Duke, S. O. and Abbas, H. K. 1995. Natural products with potential use as herbicides. In: Allelopathy, Organisms, Processes, and Applications. pp. 348—362. Inderjit, Dakshini, K. M. M. and Einhellig, F. A., Eds., American Chemical Society, Washington DC.
  • Einhellig F. A., Leather G. R., and Hobbs L. L. 1985. Use ofLemna minor L. as a bioassay in allelopathy. J. Chem. Ecol. 11: 65—72.
  • Elliott, L. F. and Lynch, J. M. 1984. Pseudomonads as a factor in growth of winter wheat (Triticum aestivum L.). Soil Biol. Biochem. 16: 69—71.
  • Fredrickson, J. K. and Elliott, L. F. 1985. Effects of winter wheat seedling growth by toxin-producing rhizobacteria. Plant Soil 83: 399—409.
  • Fredrickson, J. K., Elliott, L. F., and Engibous, J. C. 1987.Crops residues as substrates for host-specific inhibitory pseudomonads. Soil Biol. Biochem. 19: 127—134. Friedman, J., Hutchins, A., Li, C. Y. and Perry, D. A. 1989.
  • Actinomycetes inducing phytotoxic fungistatic activity in a Douglas-fir forest and in an adjacent area of repeated regeneration failure in southwestern Oregon. Biol. Plant. 31: 487—495.
  • Gealy, D. R., Gurusiddaiah, S., Ogg, A. G., Jr., and Kennedy,A. C. 1996. Metabolites from Pseudomonas fluorescens strain D7 inhibit downy brome (Bromus tectorum) seedling growth. Weed Technol. 10: 282—287.
  • Glick, B. R., Jacobson, C. B., Schwarze, M. M. K., andPasternak, J. J. 1994. 1-aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 do not stimulate canola root elongation. Can. J. Microbiol. 40: 911—915.
  • Gross, E. M. 1999. Allelopathy in benthic and littoral areas: case studies on allelochemicals from benthic cyano-bacteria and submersed macrophytes. In: Principles and Practices in Plant Ecology, Allelochemical Interactions. pp. 179—199. Inderjit, Dakshini, K. M. M. and Foy, C. L., Eds., CRC Press, Boca Raton, London, New York, Washington, D.C.
  • Hall, J. A., Peirson, D., Ghosh, S. and Glick, B. R. 1996.Root elongation in various agronomic crops by the plant growth-promoting rhizobacterium Pseudomonas putida GR12–2. Isr. J. Plant Sci. 44: 37—42.
  • Heisey, R. M., Mishra, S. K., Putnam, A. R., Miller, J. R.,Whitenack, C. J., Keller, J. E. and Huang, J. 1988. Production of herbicidal and insecticidal metabolites by soil microorganisms. In: Biologically Active Natural Products, Potential Use in Agriculture. pp. 65—78. Cutler, H. G., Ed., American Chemical Society, Washington, DC.
  • Heisey, R. M. and Putnam, A. R. 1986. Herbicidal effects of geldanamycin and nigericin, antibiotics from Streptomyces hygroscopicus. J. Nat. Prod. 49: 859—865. Hoagland, R. E. 1990. Microbes and Microbial products as herbicides: an overview. In: Microbes and Microbial Products as Herbicides. pp. 2—52. Hoagland, R. E., Ed., American Chemical Society, Washington, DC.
  • Hong, Y., Pasternak, J. J., and Glick, B. R. 1991. Biological consequences of plasmid transformation of the plant growth promoting rhizobacterium Pseudomonas putida GR2—2. Can. J. Microbiol. 37: 796—799 Inderjit, Dakshini K. M. M. 1994. Algal allelopathy. Bot. Rev. 62: 186—202.
  • Inderjit, Dakshini K. M. M. 1997. Allelopathic effect of cyanobacterial inoculum on soil characteristics and ce-real growth. Can. J. Bot. 75: 1267—1272.
  • Isaac B. G., Ayer, S. W., Letendre, L. J., and Stonard, R. J. 1991. Herbicidal nucleosides from microbial sources. J. Antibiot. 44: 729—732.
  • Jenkinson, D. S. 1988. Determination of microbial biomass carbon and nitrogen in soils. In: Advances in Nitrogen Cycling in Agricultural Ecosystems. pp. 368—386. Wilson, J. R., Ed., International, Walling-Ford. Kaminsky, R. 1981. The microbial origin of the allelopathic potential of Adenostoma fascicu-latum H&A. Ecol. Monogr. 51: 365—382.
  • Kapulnik, Y. 1991 Plant-growth-promoting rhizo-bacteria.In: Plant Roots, The Hidden Half. pp. 717—729. Waisel, Y., Eshel, A., and Kafkafi, U., Eds., Marcel Dekker, Inc.
  • Katz, D. A., Sneh, B., and Friedman, J. 1987. The allelopathic potential of Coridothymus capitatus L. (Labiatae). Preliminary studies on the roles of the shrub in the inhibition of annuals germination and/or to promote allelopathically active actinomycetes. Plant Soil 98: 53—66.
  • Kennedy, A. C., Elliott, L. F., Young, F. L., and Douglas,C. L. 1991. Rhizobacteria suppressive to the weed downy brome. Soil Sci. Soc. Am. J. 55: 722—727.
  • Kloepper, J. W. and Schroth, M. N. 1978. Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the Fourth International Conference on Plant Pathogenic Bacteria, Vol. 2., Ed., INRA, Angers. pp. 879— 882. Gilbert-Clarey, Tours.
  • Kremer, R. J., Begonia, M. F. T., Stanley, L., and Lanham,E. T. 1990. Characterization of rhizobacteria associated with weed seedlings. Appl. Environ. Microbiol. 56: 1649—1655.
  • Krishna, K. R., Balakrishna, A. N., and Bagyaraj, D. J. 1982.Interactions between a vesicular-arbuscular mycorrhizal fungus and Streptomyces cinamomeous and their effects on finger millet. New Phytol. 92: 401—405. Leather, G. R. and Einhellig, F. A. 1988. Bioassay of natu-rally occurring allelochemicals for phytotoxicity. J. Chem. Ecol. 14: 1821—1828.
  • Loper, J. E. and Schroth, M. N. 1986. Influence of bacterial source of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76: 386—389.
  • Lynch, J. M. 1978. Microbial interactions around imbibed seeds. Ann. Appl. Biol. 89: 165—167.
  • Meharg, A. A. and Killham, K. 1995. Loss of exudates from the roots of perennial ryegrass inoculated with a range of microorganisms. Plant Soil 170: 345—349. Miller-Wideman, M., Makkar, N., Tran, M., Isaac, B., Biest
  • N., and Stonard R. 1992. Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A 7847. J. Antibiot. 45: 914—921.
  • Minamisawa, K. and Fukai, K. 1991. Production of indole-3-acetic acid by Bradyrhizobium japonicum: a correlation with genotype grouping and rhizobitoxine production. Plant Cell Physiol. 32: 1—9.
  • Mishra, S. K., Taft, W. H., Putnam, A. R., and Ries, S. K. 1987. Plant growth regulatory metabolites from novel actinomycetes. J. Plant Growth Regul. 6: 75—84. Mishra, S. K., Whitenack, C. J. and Putnam, A. R. 1988.
  • Herbicidal properties of metabolites from several genera of soil microorganisms. Weed Sci. 36: 122—126. Molisch, H. 1937. Der Einfluss einer Pflanze auf die andereAllelopathie. Fischer, Jena.
  • Nakajima, M., Itoi, K., Takamatsu, Y., Kinoshita, T., Okazaki,T., Kawakubo, K., Shindo, M., Honma, T., Tohjigamori, M., and Haneishi, T. 1991. Hydantocidin: a new com-pound with herbicidal activity from Streptomyces hygroscopicus. J. Antibiot. 44: 293—300.
  • Olsson, S. and Alström, S. 1996. Plant-affecting streptomycin-sensitive microorganisms in barley monoculture soils. New Phytol. 133: 245—252.
  • Patten, C. L. and Glick, B. R. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207—220. Ramirex-Toro, G. I., Leather, G. R. and Einhellig, F. A. 1988.
  • Effects of three phenolic compounds on Lemna gibba G3. J. Chem. Ecol. 14: 845—854.
  • Rice, E. L. 1984. Allelopathy. 2nd ed. Academic Press,Inc.
  • Sarwar, M. and Kremer, R. J. 1995. Enhanced suppression of plant growth through production of L-tryptophan-de-rived compounds by deleterious rhizobacteria. Plant Soil 172: 261—269.
  • Scacchi, A., Bortolo, R., Cassani, G., Pirali, G., and Nielsen,E. 1992. Detection, characterization and phytotoxic activity of the nucleoside antibiotics, blasticidin S and 5-hydroxylmethyl-blasticidin S. J. Plant Growth Regul. 11: 39—46.
  • Schippers, B., Bakker, A. W., and Bakker, P. A. H. M. 1987.Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25: 339—358.
  • Schippers, B., Bakker, A. W., Bakker, P. A. H. M. and VanPeer, R. 1991. Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. In: The Rhizosphere and Plant Growth. pp. 211— 219. Keister, D. L. and Cregan, P. B., Eds., Kluwer Academic Publishers.
  • Shioimi, K., Arai, N., Shinose, M., Takahashi, Y., Yoshida,H., Iwabuchi, J., Tanaka, Y., and Omura, S. 1995. New antibiotics phthoxazolins B, C, and D produced by Streptomyces sp. KO-7888. J. Antibiot. 48: 714—719. Stern, D. 1992. The involvement of phytotoxic microorganisms in the rose replant disease. Thesis submitted to-ward a M.Sc. degree at Tel-Aviv University, Israel. Suslow, T. V. and Schroth, M. N. 1982. Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopatholgy 72: 111—115.
  • Tanaka, Y., Kanaya, I., Takahashi, Y., Shinose, M., Tanaka,H., and Omura, S. 1993. Phthoxazolin A, a specific inhibitor of cellulose biosynthesis from microbial origin. J. Antibiot. 46: 1209—1213.
  • Tang, C.-S. and Young, C.-C. 1982. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol. 69: 155—160.
  • Turco, R. F., Bischoff, M., Breakwell, D. P., and Griffith,D. R. 1990. Contribution of soil-borne bacteria to the rotation effect in corn. Plant Soil 122: 115—120. van der Heijden, M. G. A., Klironomos J. N., Ursic, M.,
  • Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., and Sanders, I. S. 1998a. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69—72.
  • Vokou, D., Margaris, N. S., and Lynch, J. M. 1984. Effects of volatile oils from aromatic shrubs on soil microorganisms. Soil Biol. Biochem. 5: 509—513.
  • Wardle, D. A. and Nilsson, M.-C. 1997. Microbe-plant com-petition, allelopathy and arctic plants. Oecologia 109: 291—293.
  • Waschkies, C., Schropp, A., and Marschner, H. 1994. Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent pseudomonads and endomycorrhizal fungi. Plant Soil 162: 219—227.
  • Westcott, S. W. and Beer, S. V. 1986. Infection of apple roots by actinomycetes associated with soil conducive to apple replant disease. Plant Dis. 70: 1125—1128. Xie, H., Pasternak, J. J. and Glick, R. B. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12–2 that over-produce indoleacetic acid. Curr. Microbiol. 32: 67—71. Yoshida, H., Arai, N., Sugoh, M., Iwabuchi, J., Shiomi, K.,
  • Shinose, M., Tanaka, Y., and Omura, S. 1994. 4-chlorothreonine, a herbicidal antimetabolite produced by Streptomyces sp. OH-5093. J. Antibiot. 47: 1165—1166. Yoshikawa, M., Hirai, N., Wakabayashi, K., Sugizaki, H. and Iwamura, H. 1993. Succinic and lactic acids as plant growth promoting compounds produced by rhizospheric Pseudomonas putida. Can. <i>J. Microbiol. 39: 1150—1154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.