272
Views
17
CrossRef citations to date
0
Altmetric
Original Article

In vitro antileishmanial activity of fisetin flavonoid via inhibition of glutathione biosynthesis and arginase activity in Leishmania infantum

ORCID Icon, , &

References

  • Reithinger R, Dujardin J-C. Molecular diagnosis of leishmaniasis: current status and future applications. J Clin Microbiol. 2007;45(1):21–25.10.1128/JCM.02029-06
  • Guoyao W, Morris SM. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(1):1–17.
  • Corraliza IM, Soler G, Eichmann K, et al. Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochem Biophys Res Commun. 1995;206(2):667–673.10.1006/bbrc.1995.1094
  • Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–483.10.1146/annurev.immunol.021908.132532
  • Persson L. Ornithine decarboxylase and S-adenosylmethionine decarboxylase in trypanosomatids. Biochem Soc Trans. 2007;35(2):314–317.10.1042/BST0350314
  • Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 2005;5(8):641–654.10.1038/nri1668
  • da Silva ER, da Silva MFL, Fischer H, et al. Biochemical and biophysical properties of a highly active recombinant arginase from Leishmania (Leishmania) amazonensis and subcellular localization of native enzyme. Mol Biochem Parasitol. 2008;159(2):104–111.10.1016/j.molbiopara.2008.02.011
  • Wanasen N, Soong L. L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol Res. 2008;41(1):15–25.10.1007/s12026-007-8012-y
  • Oza SL, Shaw MP, Wyllie S, et al. Trypanothione biosynthesis in Leishmania major. Mol Biochem Parasitol. 2005;139(1):107–116.10.1016/j.molbiopara.2004.10.004
  • Ilari A, Fiorillo A, Genovese I, et al. Polyamine-trypanothione pathway: an update. Future Med Chem. 2017;9(1):61–77.10.4155/fmc-2016-0180
  • Colotti G, Ilari A. Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids. 2011;40(2):269–285.10.1007/s00726-010-0630-3
  • Arai Y, Watanabe S, Kimira M, et al. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J nutr. 2000;130(9):2243–2250.
  • Riley E, Roberts SC, Ullman B. Inhibition profile of Leishmania mexicana arginase reveals differences with human arginase I. Int J Parasitol. 2011;41(5):545–552.10.1016/j.ijpara.2010.12.006
  • do Carmo Maquiaveli C, Rochetti AL, Fukumasu H, et al. Antileishmanial activity of verbascoside: selective arginase inhibition of intracellular amastigotes of Leishmania (Leishmania) amazonensis with resistance induced by LPS plus IFN-γ. Biochem Pharmacol. 2016;127:28–33.
  • da Silva ER, do Carmo Maquiaveli C, Magalhães PP. The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Exp Parasitol. 2012;130(3):183–188.10.1016/j.exppara.2012.01.015
  • Manjolin LC, dos Reis MBG, do Carmo Maquiaveli C, et al. Dietary flavonoids fisetin, luteolin and their derived compounds inhibit arginase, a central enzyme in Leishmania (Leishmania) amazonensis infection. Food chem. 2013;141(3):2253–2262.10.1016/j.foodchem.2013.05.025
  • Moreno D, Plano D, Baquedano Y, et al. Antileishmanial activity of imidothiocarbamates and imidoselenocarbamates. Parasitol Res. 2011;108(1):233–239.10.1007/s00436-010-2073-x
  • Pour R, Sharifi I, Kazemi B, et al. Identification of nonresponsive isolates to Glucantime in patients with cutaneous Leishmanaisis in Bam. J Kerman Uni Med Sci. 2011;18(2):123–133.
  • Guerin PJ, Olliaro P, Sundar S, et al. Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis. 2002;2(8):494–501.10.1016/S1473-3099(02)00347-X
  • Bryceson A. A policy for leishmaniasis with respect to the prevention and control of drug resistance. Trop Med Int Health. 2001;6(11):928–934.10.1046/j.1365-3156.2001.00795.x
  • Lyu S-Y, Park W-B. Production of cytokine and NO by RAW 264.7 macrophages and PBMC in vitro incubation with flavonoids. Arch Pharm Res. 2005;28(5):573–581.10.1007/BF02977761
  • Méndez S, Nell M, Alunda J. Leishmania infantum: infection of macrophages in vitro with promastigotes. Int J Parasitol. 1996;26(6):619–622.10.1016/0020-7519(96)00037-9
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254.10.1016/0003-2697(76)90527-3
  • Jain J, Arora S, Rajwade JM, et al. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm. 2009;6(5):1388–1401.10.1021/mp900056g
  • Korolyuk M, Ivanova L, Maiorova I, et al. A method for measuring catalase activity. Lab Delo. 1988;1:16–19.
  • Greenberg DM, Bagot AE, Roholt OA. Liver arginase. III. Properties of highly purified arginase. Arch Biochem Biophys. 1956;62(2):446–453.10.1016/0003-9861(56)90143-6
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77.10.1016/0003-9861(59)90090-6
  • Mesquita JT, Tempone AG, Reimão JQ. Combination therapy with nitazoxanide and amphotericin B, Glucantime®, miltefosine and sitamaquine against Leishmania (Leishmania) infantum intracellular amastigotes. Acta Trop. 2014;130:112–116.10.1016/j.actatropica.2013.11.003
  • Kwiecien S, Brzozowski T, Konturek S. Effects of reactive oxygen species action on gastric mucosa in various models of mucosal injury. J Physiol Pharmacol. 2002;53(1):39–50.
  • Limón-Pacheco J, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res Genet Toxicol Environ Mutagen. 2009;674(1):137–147.10.1016/j.mrgentox.2008.09.015
  • Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta. 2008;1780(11):1236–1248.10.1016/j.bbagen.2008.03.006
  • Birkholtz L-M, Williams M, Niemand J, et al. Polyamine homoeostasis as a drug target in pathogenic protozoa: peculiarities and possibilities. Biochem J. 2011;438(2):229–244.10.1042/BJ20110362
  • Haleagrahara N, Radhakrishnan A, Lee N, et al. Flavonoid quercetin protects against swimming stress-induced changes in oxidative biomarkers in the hypothalamus of rats. Eur J Pharmacol. 2009;621(1):46–52.10.1016/j.ejphar.2009.08.030
  • Basu JM, Mookerjee A, Sen P, et al. Sodium antimony gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen-activated protein kinase activation in Leishmania donovani-infected macrophages. Antimicrob Agents Chemother. 2006;50(5):1788–1797.
  • Bento D, De Souza B, Steckert A, et al. Oxidative stress in mice treated with antileishmanial meglumine antimoniate. Res Vet Sci. 2013;95(3):1134–1141.10.1016/j.rvsc.2013.08.004
  • Mehlotra RK. Antioxidant defense mechanisms in parasitic protozoa. Crit Rev Microbiol. 1996;22(4):295–314.10.3109/10408419609105484
  • Wyllie S, Cunningham ML, Fairlamb AH. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem. 2004;279(38):39925–39932.10.1074/jbc.M405635200
  • Ariyanayagam MR, Oza SL, Guther MLS, et al. Phenotypic analysis of trypanothione synthetase knockdown in the African trypanosome. Biochem J. 2005;391(2):425–432.10.1042/BJ20050911
  • Wyllie S, Fairlamb AH. Differential toxicity of antimonial compounds and their effects on glutathione homeostasis in a human leukaemia monocyte cell line. Biochem Pharmacol. 2006;71(3):257–267.10.1016/j.bcp.2005.10.043
  • Frézard F, Demicheli C, Ferreira CS, et al. Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate. Antimicrob Agents Chemother. 2001;45(3):913–916.10.1128/AAC.45.3.913-916.2001
  • Bannister JV, Bannister WH, Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem. 1987;22(2):111–180.10.3109/10409238709083738

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.