3,042
Views
0
CrossRef citations to date
0
Altmetric
Review

Medicinal plants as a source of antiparasitics: an overview of experimental studies

ORCID Icon, , , &

References

  • WHO. (2016). Essential nutrition actions: improving maternal, newborn, infant and young child health and nutrition. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/326261/9789241515856-eng.pdf?ua=1
  • Mehlhorn H. Encyclopedia of parasitology: volume 1, AM. 3Edn ed. Heidelberg, Germany: Springer Science & Business Media; 2008.
  • Roeber F, Jex AR, Gasser RB. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective. Parasites & Vectors. 2013a;6(1):153.
  • Lane J, Jubb T, Shephard R, et al. Priority list of endemic diseases for the red meat industries. ISBN: 9781741918946: North Sydney, NSW: Meat & Livestock Australia Limited, 2015.
  • Charlier J, Rinaldi L, Musella V, et al. Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Prev Vet Med. 2020;182:105103.
  • Mascarini-Serra L. Prevention of soil-transmitted helminth infection. J Glob Infect Dis. 2011;3(2):175–182.
  • WHO. (2020). Soil-transmitted helminth infections fact sheet. Retrieved from https://www.who.int/en/news-room/fact-sheets/detail/soil-transmitted-helminth-infections
  • De Silva NR, Brooker S, Hotez PJ, et al. Soil-transmitted helminth infections: updating the global picture. Trends Parasitol. 2003;19(12):547–551.
  • Ouellette M. Biochemical and molecular mechanisms of drug resistance in parasites. Trop Med Int Health. 2001;6(11):874–882.
  • Haque R. Human intestinal parasites. J Health Popul Nutr. 2007;25(4): 387–391. PMID: 18402180.
  • Savioli L, Smith H, Thompson A. Giardia and cryptosporidium join the ‘neglected diseases initiative’. Trends Parasitol. 2006;22(5):203–208.
  • WHO. (2015). Investing to overcome the global impact of neglected tropical diseases Retrieved from http://apps.who.int/iris/bitstream/handle/10665/152781/9789241564861_eng.pdf;jsessionid=84FC2D4652FC248959D9A5C3CB17086A?sequence=1
  • Thompson RCA. Giardiasis as a re-emerging infectious disease and its zoonotic potential. Int J Parasitol. 2000;30(12):1259–1267.
  • Lauritz AJ, Jerry WM, David DD, et al. Prevalence of multi-gastrointestinal infections with helminth, protozoan and campylobacter spp. in Guatemalan children. J Infect Developing Countries. 2009;3(03). DOI:10.3855/jidc.41
  • Roxström-Lindquist K, Palm D, Reiner D, et al. Giardia immunity–an update. Trends Parasitol. 2006;22(1):26–31.
  • Cui Z, Li J, Chen Y, et al. Molecular epidemiology, evolution, and phylogeny of Entamoeba spp. Infect Genet Evol. 2019;75:104018.
  • Lozano R, Naghavi M, Foreman K, et al., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study. Lancet. 2012;380(9859):2095–2128.
  • Villanueva MT. Infectious diseases: decrypting cryptosporidium. Nat Rev Drug Discov. 2017;16(8):527.
  • Wang R-J, Li J-Q, Chen Y-C, et al. Widespread occurrence of cryptosporidium infections in patients with HIV/AIDS: epidemiology, clinical feature, diagnosis, and therapy. Acta tropica. 2018;187:257–263.
  • Xiao L, Alderisio K, Limor J, et al., Identification of species and sources of Cryptosporidium oocysts in storm waters with a small-subunit rRNA-based diagnostic and genotyping tool. Appl environ microbiol. 2000;66(12):5492–5498.
  • Adam E, Yoder J, Gould L, et al., Giardiasis outbreaks in the United States, 1971–2011. Epidemiology & Infection. 2016;144(13):2790–2801.
  • Stephenson LS, Latham MC, Ottesen EA. Malnutrition and parasitic helminth infections. Parasitology. 2000;121(S1):S23–38.
  • WHO. Soil-transmitted helminthiases: eliminating as public health problem soil-transmitted helminthiases in children: progress report 2001-2010 and strategic plan 2011-2020. In: In. Geneva: World Health Organization; 2012;1.
  • Nallam NR, Paul I, Gnanamani G. Anemia and hypoalbuminia as an adjunct to soil-transmitted helminthiasis among slum school children in Visakhapatnam, South India. Asia Pac J Clin Nutr. 1998;7(2):164–169.
  • Stephenson LS, Latham MC, Adams EJ, et al. Physical fitness, growth and appetite of Kenyan school boys with hookworm, Trichuris trichiura and ascaris lumbricoides infections are improved four months after a single dose of albendazole. J Nutr. 1993;123(6):1036–1046.
  • Allen LH. Anemia and iron deficiency: effects on pregnancy outcome. Am J Clin Nutr. 2000;71(5):1280S–1284S.
  • Haas JD, Brownlie TT. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr. 2001;131(2): 676S–688S. discussion 688S-690S.
  • Cappello M. Global health Impact of soil-transmitted nematodes. Pediatr Infect Dis J. 2004;23(7):663–664.
  • Savioli L, Albonico M. Soil-transmitted helminthiasis. Nature Rev Microbiol. 2004;2(8):618–619.
  • Kapoor K, Chandra M, Nag D, et al. Evaluation of metronidazole toxicity: a prospective study. Int J Clin Pharmacol. 1999;19(3):83–88.
  • Faubert G. Immune response to Giardia duodenalis. Clinical Microbiology Reviews. 2000;13(1):35–54.
  • Huang DB, White AC. An updated review oncryptosporidium and Giardia. Gastrointest Endosc Clin N Am. 2006;35(2):291–314.
  • Tanyuksel M, Petri WA Jr. Laboratory diagnosis of amebiasis. Clinical Microbiology Reviews. 2003;16(4):713–729.
  • Clavel A, Arnal AC, Sánchez EC, et al. Respiratory cryptosporidiosis: case series and review of the literature. Infection. 1996;24(5):341–346.
  • López-Vélez R, Tarazona R, Garcia Camacho A, et al. Intestinal and extraintestinal cryptosporidiosis in AIDS patients. Eur J Clin Microbiol& Infect Di. 1995;14(8):677–681.
  • Guerrant DI, Moore SR, Lima AA, et al. Association of early childhood diarrhoea and cryptosporidiosis with impaired physical fitness and cognitive function four-seven years later in a poor urban community in northeast Brazil. Am J Trop Med Hyg. 1999;61(5):707–713.
  • Checkley W, Epstein LD, Gilman RH, et al. Effects of cryptosporidium parvum infection in Peruvian children: growth faltering and subsequent catch-up growth. Am J Epidemiol. 1998;148(5):497–506.
  • Perry BD. Investing in animal health research to alleviate poverty. ILRI. Kenya: (aka ILCA and ILRAD). 2002;17.
  • Qamar MF, Maqbool A, Khan MS, et al. Epidemiology of haemonchosis in sheep and goats under different managemental conditions. Vet World. 2009;2(11):413–417.
  • Sissay MM, Uggla A, Waller PJ. Prevalence and seasonal incidence of nematode parasites and fluke infections of sheep and goats in eastern Ethiopia. Trop Anim Health Prod. 2007;39(7):521–531.
  • Abakar A, Osman A. Haematological and biochemical changes following concurrent infections with coccidia and haemonchus contortus in desert lambs. J Anim Vet Adv. 2004;3(10): 643–647. ISSN: 1680-5593.
  • Kelkele FA, Tolossa YH, Kassa GM. Experimental infection of Ethiopian highland sheep by different infective doses of haemonchus contortus (L3): haematological and parasitological parameters, serum protein concentrations and clinical responses. Ethiop Vet J. 2012;16(1):41–57.
  • Emery DL, Hunt PW, Le Jambre LF. Haemonchus contortus: the then and now, and where to from here? Int J Parasitol. 2016;46(12):755–769.
  • Getachew T, Dorchies P, Jacquiet P. Trends and challenges in the effective and sustainable control of haemonchus contortus infection in sheep. review. Parasite. 2007;14(1):3–14.
  • McLeod R. Economic impact of worm infections in small ruminants in South East Asia, India and Australia. Worm Control for Small Ruminants in Tropical Asia.2004;23:4 .
  • Robertson LJ, Björkman C, Axén C, et al. Cryptosporidiosis in farmed animals. In: Simone M. Cacciò, Giovanni Widmer, editors. Cryptosporidium: parasite and disease. Vienna: Springer; 2014. pp. 149–235.
  • Thomson S, Hamilton CA, Hope JC, et al. Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies. Vet Res. 2017;48(1):42.
  • Klein P, Kleinová T, Volek Z, et al. Effect of Cryptosporidium parvum infection on the absorptive capacity and paracellular permeability of the small intestine in neonatal calves. Vet Parasitol. 2008;152(1–2):53–59.
  • Feng Y, Xiao L. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clinical Microbiology Reviews. 2011;24(1):110–140.
  • Santin M. Cryptosporidium and giardia in ruminants. Vet Clin North Am Large Anim Pract. 2020;36(1):223–238.
  • Cacciò SM, Lalle M, Svärd SG. Host specificity in the Giardia duodenalis species complex. Infect Genet Evol. 2018;66:335–345.
  • Daugschies A, Najdrowski M. Eimeriosis in cattle: current understanding. J Vet Med B Infect Dis Vet Public Health. 2005;52(10):417–427.
  • Williams R. A compartmentalised model for the estimation of the cost of coccidiosis to the world’s chicken production industry. Int J Parasitol. 1999;29(8):1209–1229.
  • Blake DP, Knox J, Dehaeck B, et al. Re-calculating the cost of coccidiosis in chickens. Vet Res. 2020;51(1):115.
  • Shirley MW, Ivens A, Gruber A, et al. The eimeriagenome projects: a sequence of events. Trends Parasitol. 2004;20(5):199–201.
  • WHO. Prevention and control of schistosomiasis and soil-transmitted helminthiasis. World Health Organ Tech Rep Ser. 2002a;912:i-vi, 1–57. back cover.
  • WHO. (2022). Soil-transmitted helminth infections fact sheet. Retrieved from https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections#
  • Upcroft P, Upcroft JA. Drug targets and mechanisms of resistance in the anaerobic protozoa. Clinical Microbiology Reviews. 2001a;14(1):150–164.
  • Chavez MA, White AC. Novel treatment strategies and drugs in development for cryptosporidiosis. Exp Rev Anti-Infective Ther. 2018;16(8):655–661.
  • Smith HV, Corcoran GD. New drugs and treatment for cryptosporidiosis. Curr Opin Infect Dis. 2004;17(6):557–564.
  • Amadi B, Mwiya M, Sianongo S, et al. High dose prolonged treatment with nitazoxanide is not effective for cryptosporidiosis in HIV positive Zambian children: a randomised controlled trial. BMC Infect Dis. 2009;9(1):195.
  • Sparks H, Nair G, Castellanos-Gonzalez A, et al. Treatment of cryptosporidium: what we know, gaps, and the way forward. Curr Trop Med Rep. 2015;2(3):181–187.
  • Kotze AC, Prichard RK. Anthelmintic resistance in haemonchus contortus: history, mechanisms and diagnosis. Adv Parasitol. 2016;93:397–428.
  • Meganck V, Hoflack G, Opsomer G. Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematical review with emphasis on colostrum management and fluid therapy. Acta Vet Scand. 2014;56(1):75.
  • Kuhlmann FM, Fleckenstein JM. 157 - Antiparasitic Agents. In: Cohen J, Powderly WG, and Opal SM, editors. Infectious diseases (fourth edition). Amsterdam, Netherlands: Elsevier; 2017. pp. 1345–1372.e1342.
  • Aguirre-Cruz ML, Valadez-Salazar A, Muñoz O. In vitro sensitivity of Entamoeba histolytica to metronidazole. Arch Invest Med (Mex). 1990;21 Suppl 1:23–26. PMID: 2136490.
  • Falagas ME, Walker AM, Jick H, et al. Late incidence of cancer after metronidazole use: a matched metronidazole user/nonuser study. Clinl Infect Dis. 1998;26(2):384–388.
  • Voogd CE. On the mutagenicity of nitroimidazoles. Mutat Res. 1981;86(3):243–277.
  • Rosenkranz HS, Speck WT. Mutagenicity of metronidazole: activation by mammalian liver microsomes. Biochem Biophys Res Commun. 1975;66(2):520–525.
  • Albonico M, Bickle Q, Ramsan M, et al. Efficacy of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar. Bullet World Health Organ. 2003;81(5): 343–352. PMID: 12856052.
  • Albonico M, Smith PG, Hall A, et al. A randomized controlled trial comparing mebendazole and albendazole against Ascaris, Trichuris and hookworm infections. Trans R Soc Trop Med. 1994;88(5):585–589.
  • De Clercq D, Sacko M, Behnke J, et al. Failure of mebendazole in treatment of human hookworm infections in the Southern Region of Mali. Am J Trop Med Hyg. 1997;57(1):25–30.
  • Reynoldson JA, Behnke JM, Pallant LJ, et al. Failure of pyrantel in treatment of human hookworm infections (Ancylostoma duodenale) in the Kimberley region of north west Australia. Acta tropica. 1997;68(3):301–312.
  • Belew S, Getachew M, Suleman S, et al. Assessment of efficacy and quality of two albendazole brands commonly used against soil-transmitted helminth infections in school children in Jimma Town, Ethiopia. PLoS negl trop dis. 2015;9(9):e0004057.
  • Krücken J, Fraundorfer K, Mugisha J, et al. Reduced efficacy of albendazole against ascaris lumbricoides in Rwandan schoolchildren. Int J Parasitol: Drugs Drug Resist. 2017;7(3):262–271.
  • Kadappu KK, Nagaraja MV, Rao PV, et al. Azithromycin as treatment for cryptosporidiosis in human immunodeficiency virus disease. J Postgrad Med. 2002;48(3):179–181.
  • White AC Jr., Chappell CL, Hayat CS, et al. Paromomycin for cryptosporidiosis in AIDS: a prospective, double-blind trial. J Infect Dis. 1994;170(2):419–424.
  • Haque Huston CD, Hughes M, Houpt E, et al. Amebiasis. N Engl J Med. 2003;348(16):1565–1573.
  • Thompson RC, Reynoldson JA, Mendis AH. Giardia and giardiasis. Adv Parasitol. 1993;32:71–160.
  • Bloland PB, World Health Organization. (2001). Drug resistance in malaria. (No WHO/CDS/CSR/DRS/2001.4). World Health Organization.
  • Roeber F, Jex AR, Gasser RB. Advances in the diagnosis of key gastrointestinal nematode infections of livestock, with an emphasis on small ruminants. Biotechnol Adv. 2013b;31(8):1135–1152.
  • Van den Brom R, Moll L, Borgsteede FH, et al. Multiple anthelmintic resistance ofhaemonchus contortus, including a case of moxidectin resistance, in a Dutch sheep flock. Vet Rec. 2013;173(22):552.
  • Wirtherle N, Schnieder T, von Samson-Himmelstjerna G. Prevalence of benzimidazole resistance on horse farms in Germany. Vet Rec. 2004;154(2):39–41.
  • Playford M, Smith A, Love S, et al. Prevalence and severity of anthelmintic resistance in ovine gastrointestinal nematodes in Australia (2009–2012). Aust Vet J. 2014;92(12):464–471.
  • Drudge JH, Szanto J, Wyant ZN, et al. Field studies on parasite control in sheep: comparison of thiabendazole, ruelene, and phenothiazine. Am J Vet Res. 1964;25:1512–1518.
  • Scheuerle MC, Mahling M, Pfister K. Anthelminthika Resistenz von Haemonchus contortus bei kleinen Wiederkäuern in der Schweiz und in Süddeutschland. Wien Klin Wochenschr. 2009;121(S3): 46–49. Suppl.
  • Falzon LC, Menzies PI, Shakya KP, et al. Anthelmintic resistance in sheep flocks in Ontario, Canada. Vet Parasitol. 2013;193(1–3):150–162.
  • Lyndal-Murphy M, Ehrlich WK, Mayer DG. Anthelmintic resistance in ovine gastrointestinal nematodes in inland Southern Queensland. Aust Vet J. 2014;92(11):415–420.
  • Mederos AE, Ramos Z, Banchero GE. First report of monepantel haemonchus contortus resistance on sheep farms inuruguay. Parasites Vectors. 2014;7(1). DOI:10.1186/s13071-014-0598-z
  • Dauparaitė E, Kupčinskas T, von Samson-Himmelstjerna G, et al. Anthelmintic resistance of horse strongyle nematodes to ivermectin and pyrantel in Lithuania. Acta Vet Scand. 2021;63(1):5.
  • Sargison N, Scott P, Jackson F. Multiple anthelmintic resistance in sheep [3]. Vet Rec. 2001;149(25):778–779.
  • Loveridge B, McArthur M, McKenna PB, et al. Probable multigeneric resistance to macrocyclic lactone anthelmintics in cattle in New Zealand. N Z Vet J. 2003;51(3):139–141.
  • Mejía ME, Fernández Igartúa BM, Schmidt EE, et al. Multispecies and multiple anthelmintic resistance on cattle nematodes in a farm in Argentina: the beginning of high resistance? Vet Res. 2003;34(4):461–467.
  • Lamb J, Elliott T, Chambers M, et al. Broad spectrum anthelmintic resistance ofhaemonchus contortus in Northern NSW of Australia. Vet Parasitol. 2017;241:48–51.
  • Upcroft JA, Upcroft P. Drug susceptibility testing of anaerobic protozoa. Antimicrob Agents Chemother. 2001b;45(6):1810–1814.
  • Boreham PF, Phillips RE, Shepherd RW. Altered uptake of metronidazole in vitro by stocks of giardia intestinalis with different drug sensitivities. Trans R Soc Trop Med. 1988;82(1):104–106.
  • Townson SM, Laqua H, Upcroft P, et al. Induction of metronidazole and furazolidone resistance ingiardia. Trans R Soc Trop Med. 1992;86(5):521–522.
  • Lemée V, Zaharia I, Nevez G, et al. Metronidazole and albendazole susceptibility of 11 clinical isolates of giardia duodenalis from France. J Antimicrob Chemother. 2000;46(5):819–821.
  • Hasan MM, Stebbins EE, Choy RKM, et al. 2021. Spontaneous selection of cryptosporidium drug resistance in a calf model of infection. Antimicrobial agents and chemotherapyVol. 65 6pp. e00023–00021. 10.1128/AAC.00023-21
  • WHO. (2002b). Traditional medicine in Asia (9290222247). Retrieved from https://apps.who.int/iris/bitstream/handle/10665/206025/B0104.pdf?sequence
  • Patwardhan B. Bridging ayurveda with evidence-based scientific approaches in medicine. EPMA Journal. 2014;5(1):19–19.
  • Spencer JW, Jacobs JJMD. Complementary and alternative medicine: an evidence-based approach. 2nd ed.). St ed. Louis, Mo: Mosby; 2003.
  • Sharma PV. editor Caraka samhita of agnivesha (text with english translation) sutra sthana. Ch. XX, VerVols. 1-25. I. Varanasi Chaukhambha Orientalia 1981pp. 137–143
  • Mei-Ling S. The contribution of traditional Chinese medicine to modern pharmacology. Trends Pharmacol Sci. 1983;4:496–500.
  • Ma C. Treatment methods of traditional chinese medicines against intestinal protozoan infections. In: Mehlhorn H, Wu Z Ye B, editors. Treatment of human parasitosis in traditional Chinese medicine. Berlin Heidelberg: Springer; 2014. pp. 11–21.
  • Rahman SZ. Unani medicine in India: its origin and fundamental concepts. History of Sci Phil Cult Indian Civil. 2001;4(Part 2):298–325.
  • Ganesan A. The impact of natural products upon modern drug discovery. Curr Opin Chem Biol. 2008;12(3):306–317.
  • Gupta R, Gabrielsen B, Ferguson SM. Nature’s medicines: traditional knowledge and intellectual property management case Studies from the National Institutes of Health (NIH), USACase Studies from the National Institutes of Health (NIH), USA. Current Drug Discovery Technologies. 2005;2(4):203–219.
  • Krishnamurti C, Rao SC. The isolation of morphine by serturner. Indian J Anaesth. 2016;60(11):861–862.
  • Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep. 2005;22(2):162–195.
  • Calzada F, Cervantes-Martinez JA, Yepez-Mulia L. In vitro antiprotozoal activity from the roots of geranium mexicanum and its constituents on Entamoeba histolytica and giardia lamblia. J Ethnopharmacol. 2005;98(1–2):191–193.
  • Ferreira LE, Benincasa BI, Fachin AL, et al. Thymus vulgaris L. essential oil and its main component thymol: anthelmintic effects againsthaemonchus contortus from sheep. Vet Parasitol. 2016;228:70–76.
  • Ndjonka D, Abladam ED, Djafsia B, et al. Anthelmintic activity of phenolic acids from the axlewood tree anogeissus leiocarpus on the filarial nematode Onchocerca ochengi and drug-resistant strains of the free-living nematode Caenorhabditis elegans. J Helminthol. 2014;88(4):481–488.
  • Adegbe A, Larayetan R, Omojuwa T. Proximate analysis, physicochemical properties and chemical constituents characterization of Moringa oleifera (Moringaceae) seed oil using GC-MS analysis. Am J Chem. 2016;6(2):23–28.
  • Tomou EM, Chatziathanasiadou MV, Chatzopoulou P, et al. NMR-based chemical profiling, isolation and evaluation of the cytotoxic potential of the diterpenoid siderol from cultivated Sideritis euboea heldr. Molecules. 2020;25(10):2382.
  • Coskun O. Separation techniques: chromatography. North Clin Istanb. 2016;3(2):156–160.
  • Zhang W, Tang Y, Shi A, et al. Recent developments in spectroscopic techniques for the detection of explosives. Materials. 2018;11(8). DOI:10.3390/ma11081364
  • Murthy PK, Joseph SK, Murthy PS. Plant products in the treatment and control of filariasis and other helminth infections and assay systems for antifilarial/anthelmintic activity. Planta Med. 2011;77(6):647–661.
  • Athanasiadou S, Githiori J, Kyriazakis I. Medicinal plants for helminth parasite control: facts and fiction. Animal. 2007;1(9):1392–1400.
  • Hussain A, Khan MN, Iqbal Z, et al. Anthelmintic activity of trianthema portulacastrum L. and musa paradisiaca L. against gastrointestinal nematodes of sheep. Vet Parasitol. 2011;179(1–3):92–99.
  • Nath P, Yadav AK. Anthelmintic activity of a standardised extract from the rhizomes of Acorus calamus Linn.(Acoraceae) against experimentally induced cestodiasis in rats. J Intercultural Ethnopharmacol. 2016;5(4):390.
  • Oliveira L, Bevilaqua C, Costa C, et al. Anthelmintic activity ofcocos nucifera L. against sheep gastrointestinal nematodes. Vet Parasitol. 2009;159(1):55–59.
  • Eguale T, Getachew T, Debella A, et al. In vitro and in vivo anthelmintic activity of crude extracts of Coriandrum sativum against haemonchus contortus. J Ethnopharmacol. 2007;110(3):428–433.
  • Wilke G, Funkhouser-Jones LJ, Wang Y, et al. A stem-cell-derived platform enables complete cryptosporidium development in vitro and genetic tractability. Cell Host Microbe. 2019;26(1):123–134.e128.
  • Miller CN, Jossé L, Brown I, et al. A cell culture platform for cryptosporidium that enables long-term cultivation and new tools for the systematic investigation of its biology. Int J Parasitol. 2018;48(3–4):197–201.
  • Morada M, Lee S, Gunther-Cummins L, et al. Continuous culture of cryptosporidium parvum using hollow fiber technology. Int J Parasitol. 2016;46(1):21–29.
  • Fisher BS, Estraño CE, Cole JA. Modeling long-term host cell-giardia lamblia interactions in an in vitro co-culture system. PLoS ONE. 2013;8(12):e81104.
  • Geary TG. Chapter Ten - haemonchus contortus: applications in drug discovery. In: Gasser RB Samson-Himmelstjerna GV, editors Advances in parasitology. Vol. 93. 2016; pp. 429–463. DOI:10.1016/bs.apar.2016.02.013
  • Lanusse CE, Alvarez LI, Lifschitz AL. Gaining insights into the pharmacology of anthelmintics using Haemonchus contortus as a model nematode. Adv Parasitol. 2016;93:465–518.
  • Das SS, Dey M, Ghosh AK. Determination of anthelmintic activity of the leaf and bark extract of Tamarindus indica linn. Indian J Pharm Sci. 2011;73(1):104–107.
  • Verma MK, Xavier F, Verma YK, et al. Evaluation of cytotoxic and anti-tumor activity of partially purified serine protease isolate from the Indian earthworm Pheretima posthuma. Asian Pac J Tropical Biomedicine. 2013;3(11):896–901.
  • Teschendorf D, Link CD. What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases? Mol Neurodegener. 2009;4(1):38.
  • Stiernagle T. Maintenance of C. elegans. in. Minneapolis: caenorhabditis. USA: Genetics Center, University of Minnesota; 2006. pp. 51–67.
  • Bürglin TR, Lobos E, Blaxter ML. Caenorhabditis elegans as a model for parasitic nematodes. Int J Parasitol. 1998;28(3):395–411.
  • Cook SJ, Jarrell TA, Brittin CA, et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature. 2019;571(7763):63–71.
  • Qin Z, Johnsen R, Yu S, et al. Genomic identification and functional characterization of essential genes in Caenorhabditis elegans. G3. 2018;8(3):981–997.
  • Maizels RM, Bundy DA, Selkirk ME, et al. Immunological modulation and evasion by helminth parasites in human populations. Nature. 1993;365(6449):797–805.
  • Behnke JM, Menge DM, Noyes H. Heligmosomoides bakeri: a model for exploring the biology and genetics of resistance to chronic gastrointestinal nematode infections. Parasitology. 2009;136(12):1565–1580.
  • Behnke J, Harris PD. Heligmosomoides bakeri: a new name for an old worm? Trends Parasitol. 2010;26(11):524–529.
  • Monroy FG, Enriquez FJ. Heligmosomoides polygyrus: a model for chronic gastrointestinal helminthiasis. Parasitology Today. 1992;8(2):49–54.
  • Handa S. An overview of extraction techniques for medicinal and aromatic plants. Extract Technol for Med Aro Plants. 2008;1:21–40.
  • Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15(10):7313–7352.
  • Truong D-H, Nguyen DH, Ta NTA, et al. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of severinia buxifolia. J Food Qual. 2019;2019:8178294.
  • Grzybek M, Kukula-Koch W, Strachecka A, et al. Evaluation of anthelmintic activity and composition of pumpkin (Cucurbita pepo L.) seed extracts—in vitro and in vivo studies. Int J Mol Sci. 2016;17(9):1456.
  • Khan A, Tak H, Nazir R, et al. In vitro and in vivo anthelmintic activities of Iris kashmiriana Linn. J Saudi Soc Agri Sci. 2018;17(3):235–240.
  • Adate PS, Parmesawaran S, Chauhan Y. In vitro anthelmintic activity of stem extracts of Piper betle Linn. against Pheretima posthuma. Pharmacogn J. 2012;4(29):61–65.
  • Luo X, Ma Y, Wu S, et al. Two novel azadirachtin derivatives from Azadirachta indica. J Natural Prod. 1999;62(7):1022–1024.
  • Nakahara K, Roy MK, Ono H, et al. Prenylated flavanones isolated from flowers of Azadirachta indica (the neem tree) as antimutagenic constituents against heterocyclic amines. J Agric Food Chemistry. 2003;51(22):6456–6460.
  • Harris JC, Plummer S, Turner MP, et al. The microaerophilic flagellate giardia intestinalis: allium sativum (garlic) is an effective antigiardial. Microbiology. 2000;146(12): 3119–3127. Pt.
  • Soffar SA, Mokhtar GM. Evaluation of the antiparasitic effect of aqueous garlic (Allium sativum) extract in hymenolepiasis nana and giardiasis. J Egypt Soc Parasitol. 1991;21(2):497–502.
  • Calzada F, Yepez-Mulia L, Aguilar A. In vitro susceptibility of Entamoeba histolytica and giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J Ethnopharmacol. 2006;108(3):367–370.
  • Iqbal Z, Nadeem QK, Khan M, et al. In vitro anthelmintic activity of allium sativum, Zingiber officinale, curcurbita mexicana and ficus religiosa. Int J Agric Biol. 2001;3(4):454–457.
  • Bazh EK, El-Bahy NM. In vitro and in vivo screening of anthelmintic activity of ginger and curcumin on ascaridia galli. Parasitol Res. 2013;112(11):3679–3686.
  • Singh R, Mehta A, Mehta P, et al. Anthelmintic activity of rhizome extracts of curcuma longa and Zingiber officinale (Zingiberaceae). Int J Pharm Pharm Sci. 2011;3(2):236–237.
  • Mahmoud A, Attia R, Said S, et al. Ginger and cinnamon: can this household remedy treat giardiasis? Parasitological and histopathological studies. Iran j parasitol. 2014;9(4):530–540.
  • Abdel Aziz AR, AbouLaila MR, Aziz M, et al. In vitro and in vivo anthelmintic activity of pumpkin seeds and pomegranate peels extracts against Ascaridia galli. Beni-Suef Univ J Basic Appl Sci. 2018;7(2):231–234.
  • Al-Mathal EM, Alsalem AM. Pomegranate (Punica granatum) peel is effective in a murine model of experimental cryptosporidium parvum. Exp Parasitol. 2012;131(3):350–357.
  • Chandrawathani P, Chang KW, Nurulaini R, et al. Daily feeding of fresh neem leaves (Azadirachta indica) for worm control in sheep. Trop Biomed. 2006;23(1):23.
  • Neiva VDA, Ribeiro MNS, Nascimento FRF, et al. Plant species used in giardiasis treatment: ethnopharmacology and in vitro evaluation of anti-giardia activity. Revista Brasileira de Farmacognosia. 2014;24(2):215–224.
  • Calzada F, Alanis AD, Meckes M, et al. In vitro susceptibility of Entamoeba histolytica and giardia lamblia to some medicinal plants used by the people of Southern Mexico. Phytother Res. 1998;12(1):70–72.
  • Zenebe S, Feyera T, Assefa S. In vitro anthelmintic activity of crude extracts of aerial parts of cissus quadrangularis l. and leaves of Schinus molle l. against haemonchus contortus. Bio Med Res Int. 2017:6 2017. 10.1155/2017/1905987
  • Kumarasingha R, Palombo EA, Bhave M, et al. Enhancing a search for traditional medicinal plants with anthelmintic action by using wild type and stress reporter Caenorhabditis elegans strains as screening tools. Int J Parasitol. 2014;44(5):291–298.
  • Palacio-Landin J, Mendoza-de Gives P, Salinas-Sanchez DO, et al. In vitro and in vivo nematocidal activity of allium sativum and tagetes erecta extracts against haemonchus contortus. Turk parazitolojii derg. 2015;39(4):260–264.
  • Hashmi LSA, Hossain MA, Weli AM, et al. Gas chromatography-mass spectrometry analysis of different organic crude extracts from the local medicinal plant of Thymus vulgaris L. Asian Pac J Tropical Biomedicine. 2013;3(1):69–73.
  • Staniek A, Bouwmeester H, Fraser PD, et al. Natural products - modifying metabolite pathways in plants. Biotechnol J. 2013;8(10):1159–1171.
  • Russo R, Corasaniti MT, Bagetta G, et al. Exploitation of cytotoxicity of some essential oils for translation in cancer therapy. Evid Based Complement Alternat Med. 2015;2015:397821.
  • Katiki LM, Chagas AC, Bizzo HR, et al. Anthelmintic activity of Cymbopogon martinii, Cymbopogon schoenanthus and Mentha piperita essential oils evaluated in four different in vitro tests. Vet Parasitol. 2011;183(1–2):103–108.
  • Kumaran AM, D’souza P, Agarwal A, et al. Geraniol, the putative anthelmintic principle of Cymbopogon martinii. Phytother Res. 2003;17(8):957.
  • Garg SC, Jain R. Biological activity of the essential oil of piper betle L. J Essent Oil Res. 1992;4(6):601–606.
  • Machado M, Dinis AM, Salgueiro L, et al. Anti-giardia activity of Syzygium aromaticum essential oil and eugenol: effects on growth, viability, adherence and ultrastructure. Exp Parasitol. 2011;127(4):732–739.
  • Behnia M, Haghighi A, Komeylizadeh H, et al. Inhibitory effects of Iranian thymus vulgaris extracts on in vitro growth of Entamoeba histolytica. Korean J Parasitol. 2008;46(3):153–156.
  • Katiki LM, Ferreira JFS, Gonzalez JM, et al. Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans, and their antioxidant capacity. Vet Parasitol. 2013;192(1):218–227.
  • Domingues LF, Giglioti R, Feitosa KA, et al. In vitro and in vivo evaluation of the activity of pineapple (Ananas comosus) on haemonchus contortus in Santa ines sheep. Vet Parasitol. 2013;197(1–2):263–270.
  • Jin Z, Ma J, Zhu G, et al., Discovery of novel anti-cryptosporidial activities from natural products by in vitro high-throughput phenotypic screening. Front Microbiol. 10: 1999. 2019; 10.3389/fmicb.2019.01999.
  • Chaweeborisuit P, Suriyonplengsaeng C, Suphamungmee W, et al. Nematicidal effect of plumbagin on Caenorhabditis elegans: a model for testing a nematicidal drug. Z Naturforsch C J Biosci. 2016;71(5–6):121–131.
  • Luo YP, Zhang Y, Zhang HM, et al. Anti-parasitic effects of water-soluble alkaloid fractions from ethanolic extracts of Sophora moorcroftiana seeds in Caenorhabditis elegans. Chin J Nat Med. 2018;16(9):665–673.
  • Arrieta J, Reyes B, Calzada F, et al. Amoebicidal and giardicidal compounds from the leaves of Zanthoxylum liebmannianun. Fitoterapia. 2001;72(3):295–297.
  • Lesney M. Nature’s pharmaceuticals natural products from plants remain at the core of modern medicinal chemistry. Todays Chemist at Work. 2004;13(7):26–33.
  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–71.
  • Wagner V, Dullaart A, Bock A-K, et al. The emerging nanomedicine landscape. Nature Biotechnol. 2006;24(10):1211–1217.
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–177.
  • Xie S, Tao Y, Pan Y, et al. …Biodegradable nanoparticles for intracellular delivery of antimicrobial agents. JControlled Release. 2014;187:101–117.
  • Kumar V, Yadav SK. Plant‐mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol Int J Environ Sci Technol. 2009;84(2):151–157.
  • Said D, Elsamad L, Gohar Y. Validity of silver, chitosan, and curcumin nanoparticles as anti-giardia agents. Parasitol Res. 2012;111(2):545–554.
  • Monzote L, Alarcon O, Setzer NW. Antiprotozoal activity of essential oils. Agric Conspec Sc. 2012;77(4):167–169.
  • Mehlhorn H, Becker B, Andrews P, et al. In vivo and in vitro experiments on the effects of praziquantel on Schistosoma mansoni. A light and electron microscopic study. Arzneimittelforschung. 1981;31(3a):544–554.
  • Mottier L, Alvarez L, Ceballos L, et al. Drug transport mechanisms in helminth parasites: passive diffusion of benzimidazole anthelmintics. Exp Parasitol. 2006;113(1):49–57.
  • Molan AL, Hoskin SO, Barry TN, et al. Effect of condensed tannins extracted from four forages on the viability of the larvae of deer lungworms and gastrointestinal nematodes. Vet Rec. 2000;147(2):44–48.
  • Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel). 2015;2(3):251–286.
  • Bogin E (1973). Studies on the effects of antibacterial compounds from garlic on biological membranes. Paper presented at the proceedings of the international congress of Biochem (9th), Vienna. p. 271.
  • Das I, Khan NS, Sooranna SR. Potent activation of nitric oxide synthase by garlic: a basis for its therapeutic applications. Curr Med Res Opin. 1995;13(5):257–263.
  • Eckmann L, Laurent F, Langford TD, et al. Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defence against the lumen-dwelling pathogen Giardia lamblia. J Immunol. 2000;164(3):1478–1487.
  • Carnesecchi S, Langley K, Exinger F, et al. Geraniol, a component of plant essential oils, sensitizes human colonic cancer cells to 5-fluorouracil treatment. J Pharmacol Exp Ther. 2002;301(2):625–630.
  • Lambert RJ, Skandamis PN, Coote PJ, et al. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol. 2001;91(3):453–462.
  • Lei J, Leser M, Enan E. Nematicidal activity of two monoterpenoids and SER-2 tyramine receptor of Caenorhabditis elegans. Biochem Pharmacol. 2010;79(7):1062–1071.
  • Ueda-Nakamura T, Mendonça-Filho RR, Morgado-Díaz JA, et al. Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum. Parasitol Int. 2006;55(2):99–105.
  • Wink M. Interference of alkaloids with neuroreceptors and ion channels. In: Atta-ur-Rahman, editor. Studies in natural products chemistry. Vol. 21. Amsterdam, Netherlands: Elsevier; 2000. pp. 3–122.
  • Wink M, Schimmer O. Molecular modes of action of defensive secondary metabolites. Fun Biotech Plant Sec Met. 2018;39:21–161.
  • Ali HM, Abo-Shady A, Sharaf Eldeen HA, et al. Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds. Chem Cent J. 2013;7(1): 53-53. DOI:10.1186/1752-153X-7-53
  • Kiokias S, Varzakas T, Oreopoulou V. In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems. Crit Rev Food Sci Nutr. 2008;48(1):78–93.
  • Lynagh T, Cromer BA, Dufour V, et al. Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels: implications for potential anthelmintics. Int J Parasitol: Drugs Drug Resist. 2014;4(3):244–255.
  • Kotze AC, Dobson RJ, Tyrrell KL, et al. High-level ivermectin resistance in a field isolate ofhaemonchus contortus associated with a low level of resistance in the larval stage: implications for resistance detection. Vet Parasitol. 2002;108(3):255–263.
  • Wolstenholme AJ. Ion channels and receptor as targets for the control of parasitic nematodes. Int J Parasitol Drugs Drug Resist. 2011;1(1):2–13.
  • Manach C, Scalbert A, Morand C, et al. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–747.
  • Gao S, Hu M. Bioavailability challenges associated with development of anti-cancer phenolics. Mini Rev Med Chem. 2010;10(6):550–567.
  • Rangari VD. Pharmacognosy & Phytochemistry. Vol. 1. India: Career publications; 2009.
  • Thakur L, Ghodasra U, Patel N, et al. Novel approaches for stability improvement in natural medicines. Pharmacogn Revi. 2011;5(9):48.
  • World Health Organization. (2002). Traditional medicine in asia (No. Regional Publication No. 39). WHO Regional Office for South-East Asia.