1,908
Views
8
CrossRef citations to date
0
Altmetric
Meeting Report

Early diagnosis and effective treatment regimens are the keys to tackle antimicrobial resistance in tuberculosis (TB): A report from Euroscicon's international TB Summit 2016

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 1005-1024 | Received 30 Aug 2016, Accepted 27 Oct 2016, Published online: 02 Dec 2016

References

  • World Health Organization. Global tuberculosis report 2015. World Health Organization, 2015.
  • Grange JM, Zumla A. The global emergency of tuberculosis: what is the cause? J R Soc Promot Health 2002; 122:78-81; http://dx.doi.org/10.1177/146642400212200206
  • Update WP. Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Geneva: World Health Organization, 2014.
  • World Health Organization. Interim guidance on the use of bedaquiline to treat MDR-TB. See http://www.who.int/tb/challenges/mdr/bedaquiline/en/Read on 31st December 2014.
  • World Health Organization. The use of delamanid in the treatment of multidrug-resistant tuberculosis: interim policy guidance. 2014.
  • Taylor J, Hafner M, Yerushalmi E, Smith R, Bellasio J, Vardavas R, et al. Estimating the economic costs of antimicrobial resistance. Model and Results Cambridge: RAND Corporation 2014.
  • Department for Environment, Food and Rural Affairs, UK. Bovine TB statistics. 2016.
  • Maitra A, Danquah CA, Scotti F, Howard TK, Kamil TK, Bhakta S. Tackling tuberculosis: Insights from an international TB Summit in London. Virulence 2015; 6:661-72; PMID:26151309; http://dx.doi.org/10.1080/21505594.2015.1060396
  • Maitra A, Bhakta S. TB Summit 2014: prevention, diagnosis, and treatment of tuberculosis-a meeting report of a Euroscicon conference. Virulence 2014; 5:638-44; PMID:25003368; http://dx.doi.org/10.4161/viru.29803
  • Maitra A, Bhakta S. Mycobacterium tuberculosis… Can we beat it? Report from a Euroscicon conference 2013. Virulence 2013; 4:499-503; PMID:23863609; http://dx.doi.org/10.4161/viru.25397
  • Sasindran SJ, Torrelles JB. Mycobacterium tuberculosis infection and inflammation: what is beneficial for the host and for the bacterium? Front Microbiol 2011; 2:2; http://dx.doi.org/10.3389/fmicb.2011.00002
  • Glickman MS, Jacobs WR. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 2001; 104:477-85; PMID:11239406; http://dx.doi.org/10.1016/S0092-8674(01)00236-7
  • Chao C, Wan MP, Morawska L, Johnson GR, Ristovski Z, Hargreaves M, Mengersen K, Corbett S, Li Y, Xie X, et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science 2009; 40:122-33; http://dx.doi.org/10.1016/j.jaerosci.2008.10.003
  • Kwon S-B, Park J, Jang J, Cho Y, Park D-S, Kim C, Bae GN, Jang A. Study on the initial velocity distribution of exhaled air from coughing and speaking. Chemosphere 2012; 87:1260-4; PMID:22342283; http://dx.doi.org/10.1016/j.chemosphere.2012.01.032
  • Turner RD, Bothamley GH. Cough and the transmission of tuberculosis. J Infect Dis 2015; 211:1367-72; http://dx.doi.org/10.1093/infdis/jiu625
  • Turner R, Repossi A, Matos S, Birring S, Bothamley G. S79 cough prevalence and frequency in pulmonary tuberculosis. Thorax 2014; 69:A43-A4; http://dx.doi.org/10.1136/thoraxjnl-2014-206260.85
  • Merker M, Kohl TA, Roetzer A, Truebe L, Richter E, Rusch-Gerdes S, Fattorini L, Oggioni MR, Cox H, Varaine F, et al. Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One 2013; 8:e82551; PMID:24324807; http://dx.doi.org/10.1371/journal.pone.0082551
  • Didelot X, Gardy J, Colijn C. Bayesian inference of infectious disease transmission from whole-genome sequence data. Mol Biol Evol 2014; 31:1869-79; PMID:24714079; http://dx.doi.org/10.1093/molbev/msu121
  • Lintusaari J, Gutmann MU, Kaski S, Corander J. On the identifiability of transmission dynamic models for infectious diseases. Genetics 2016; 202:911-8; PMID:24714079; http://dx.doi.org/10.1534/genetics.115.180034
  • Schablon A, Harling M, Diel R, Nienhaus A. Risk of latent TB infection in individuals employed in the healthcare sector in Germany: a multicentre prevalence study. BMC Infect Dis 2010; 10:1; PMID:20429957; http://dx.doi.org/10.1186/1471-2334-10-107
  • Costa JT, Sá R, Cardoso M, Silva R, Ferreira J, Ribeiro C, Miranda M, Plácido JL, Nienhaus A. Tuberculosis screening in Portuguese healthcare workers using the tuberculin skin test and the interferon-γ release assay. Eur Respir J 2009; 34:1423-8; PMID:19948911; http://dx.doi.org/10.1183/09031936.00053809
  • Tripodi D, Brunet-Courtois B, Nael V, Audrain M, Chailleux E, Germaud P, Naudin F, Muller JY, Bourrut-Lacouture M, Durand-Perdriel MH, et al. Evaluation of the tuberculin skin test and the interferon-γ release assay for TB screening in French healthcare workers. J Occup Med Toxicol 2009; 4:1; PMID:19948042; http://dx.doi.org/10.1186/1745-6673-4-30
  • Schepisi MS, Sotgiu G, Contini S, Puro V, Ippolito G, Girardi E. Tuberculosis transmission from healthcare workers to patients and co-workers: a systematic literature review and meta-analysis. PLoS One 2015; 10:e0121639; PMID:25835507; http://dx.doi.org/10.1371/journal.pone.0121639
  • Schablon A, Nienhaus A, Ringshausen FC, Preisser AM, Peters C. Occupational screening for tuberculosis and the use of a borderline zone for interpretation of the IGRA in German healthcare workers. PLoS One 2014; 9:e115322; PMID:25541947; http://dx.doi.org/10.1371/journal.pone.0115322
  • Organization WH. WHO policy on TB infection control in health-care facilities, congregate settings and households. Geneva: World Health Organization 2009.
  • Seddon JA, McKenna L, Shah T, Kampmann B. Recent developments and future opportunities in the treatment of tuberculosis in children. Clin Infect Dis 2015; 61:S188-S99; PMID:26409282; http://dx.doi.org/10.1093/cid/civ582
  • Pan Y, Yang Z, Liu R, Xing L, Peng Z, Zhu C. Host and microbial predictors of childhood extrathoracic tuberculosis and tuberculosis meningitis. Pediatr Infect Dis J 2015; 34:1289-95; PMID:26237743; http://dx.doi.org/10.1097/INF.0000000000000867
  • Schaaf HS, Garcia-Prats AJ, Hesseling AC, Seddon JA. Managing multidrug-resistant tuberculosis in children: review of recent developments. Curr Opin Infect Dis 2014; 27:211-9; PMID:24751893; http://dx.doi.org/10.1097/QCO.0000000000000062
  • World Health Organization. Rapid advice: treatment of tuberculosis in children. 2010.
  • Maher D. Chapter 2: Anti-tuberculosis treatment in children. Int J Tuberc Lung Dis 2006; 10:1205-11; PMID:17131777
  • McKenna L. Momentum in the pediatric tuberculosis treatment pipeline. 2015 Pipeline Rep 2015; 35:137.
  • Rangaka MX, Wilkinson KA, Seldon R, Van Cutsem G, Meintjes GA, Morroni C, Mouton P, Diwakar L, Connell TG, Maartens G, et al. Effect of HIV-1 infection on T-cell–based and skin test detection of tuberculosis infection. Am J Respir Crit Care Med 2007; 175:514-20; PMID:17158278; http://dx.doi.org/10.1164/rccm.200610-1439OC
  • Sumner T, Houben RM, Rangaka MX, Maartens G, Boulle A, Wilkinson RJ, White RG. Post-treatment effect of isoniazid preventive therapy on tuberculosis incidence in HIV-infected individuals on antiretroviral therapy. AIDS 2016; 30:1279-86; PMID:26950316; http://dx.doi.org/10.1097/QAD.0000000000001078
  • Rockwood N, Wilkinson RJ. Understanding and intervening in HIV-associated tuberculosis. Clin Med 2015; 15:s43-s9; PMID:26634681; http://dx.doi.org/10.7861/clinmedicine.15-6-s43
  • Veyrier F, Pletzer D, Turenne C, Behr MA. Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC Evol Biol 2009; 9:1; PMID:19664275; http://dx.doi.org/10.1186/1471-2148-9-196
  • Wang J, McIntosh F, Radomski N, Dewar K, Simeone R, Enninga J, Brosch R, Rocha EP, Veyrier FJ, Behr MA. Insights on the emergence of Mycobacterium tuberculosis from the analysis of Mycobacterium kansasii. Genome Biol Evol 2015; 7:856-70; PMID:25716827; http://dx.doi.org/10.1093/gbe/evv035
  • Veyrier FJ, Dufort A, Behr MA. The rise and fall of the Mycobacterium tuberculosis genome. Trends Microbiol 2011; 19:156-61; PMID:21277778; http://dx.doi.org/10.1016/j.tim.2010.12.008
  • Veyrier F, Pletzer D, Turenne C, Behr MA. Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC Evol Biol 2009; 9:196; PMID:19664275; http://dx.doi.org/10.1186/1471-2148-9-196
  • Srivastava DB, Leon K, Osmundson J, Garner AL, Weiss LA, Westblade LF, Glickman MS, Landick R, Darst SA, Stallings CL, et al. Structure and function of CarD, an essential mycobacterial transcription factor. Proc Natl Acad Sci U S A 2013; 110:12619-24; PMID:23858468; http://dx.doi.org/10.1073/pnas.1308270110
  • Stallings CL, Stephanou NC, Chu L, Hochschild A, Nickels BE, Glickman MS. CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell 2009; 138:146-59; PMID:19596241; http://dx.doi.org/10.1016/j.cell.2009.04.041
  • Hubin EA, Tabib-Salazar A, Humphrey LJ, Flack JE, Olinares PDB, Darst SA, Campbell EA, Paget MS. Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA. Proc Natl Acad Sci U S A 2015; 112:7171-6; PMID:26040003; http://dx.doi.org/10.1073/pnas.1504942112
  • Hu Y, Morichaud Z, Chen S, Leonetti J-P, Brodolin K. Mycobacterium tuberculosis RbpA protein is a new type of transcriptional activator that stabilizes the σA-containing RNA polymerase holoenzyme. Nucleic Acids Res 2012; 40:6547-57; http://dx.doi.org/10.1093/nar/gks346
  • Hu Y, Morichaud Z, Perumal AS, Roquet-Baneres F, Brodolin K. Mycobacterium RbpA cooperates with the stress-response sigmaB subunit of RNA polymerase in promoter DNA unwinding. Nucleic Acids Res 2014; 42:10399-408; PMID:25122744; http://dx.doi.org/10.1093/nar/gku742
  • Garner AL, Weiss LA, Manzano AR, Galburt EA, Stallings CL. CarD integrates three functional modules to promote efficient transcription, antibiotic tolerance, and pathogenesis in mycobacteria. Mol Microbiol 2014; 93:682-97; PMID:24962732; http://dx.doi.org/10.1111/mmi.12681
  • Rammohan J, Manzano AR, Garner AL, Prusa J, Stallings CL, Galburt EA. Cooperative stabilization of Mycobacterium tuberculosis rrnAP3 promoter open complexes by RbpA and CarD. Nucleic Acids Res 2016; 44:7304-13; PMID:27342278
  • Rammohan J, Ruiz Manzano A, Garner AL, Stallings CL, Galburt EA. CarD stabilizes mycobacterial open complexes via a two-tiered kinetic mechanism. Nucleic Acids Res 2015; 43:3272-85; PMID:25697505; http://dx.doi.org/10.1093/nar/gkv078
  • Hu Y, Liu A, Ortega-Muro F, Alameda-Martin L, Mitchison D, Coates A. High-dose rifampicin kills persisters, shortens treatment duration, and reduces relapse rate in vitro and in vivo. Front Microbiol 2015; 6:641; PMID:26157437
  • Mukamolova GV, Turapov O, Malkin J, Woltmann G, Barer MR. Resuscitation-promoting factors reveal an occult population of tubercle Bacilli in Sputum. Am J Respir Crit Care Med 2010; 181:174-80; PMID:19875686; http://dx.doi.org/10.1164/rccm.200905-0661OC
  • Cohen-Gonsaud M, Keep NH, Davies AP, Ward J, Henderson B, Labesse G. Resuscitation-promoting factors possess a lysozyme-like domain. Trends Biochem Sci 2004; 29:7-10; PMID:14729326; http://dx.doi.org/10.1016/j.tibs.2003.10.009
  • Keep NH, Ward JM, Cohen-Gonsaud M, Henderson B. Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol 2006; 14:271-6; PMID:16675219; http://dx.doi.org/10.1016/j.tim.2006.04.003
  • Das B, Kashino SS, Pulu I, Kalita D, Swami V, Yeger H, Felsher DW, Campos-Neto A. CD271+ bone marrow mesenchymal stem cells may provide a niche for dormant Mycobacterium tuberculosis. Sci Transl Med 2013; 5:170ra13-ra13; PMID:23363977
  • Garhyan J, Bhuyan S, Pulu I, Kalita D, Das B, Bhatnagar R. Preclinical and clinical evidence of mycobacterium tuberculosis persistence in the hypoxic niche of bone marrow mesenchymal stem cells after therapy. Am J Pathol 2015; 185:1924-34; PMID:26066709; http://dx.doi.org/10.1016/j.ajpath.2015.03.028
  • Turapov O, O'Connor BD, Sarybaeva AA, Williams C, Patel H, Kadyrov AS, Sarybaev AS, Woltmann G, Barer MR, Mukamolova GV. Phenotypically adapted mycobacterium tuberculosis populations from sputum are tolerant to first-line drugs. Antimicrob Agents Chemother 2016; 60:2476-83; PMID:26883695; http://dx.doi.org/10.1128/AAC.01380-15
  • Zhang Y. Persisters, persistent infections and the Yin–Yang model. Emerg Microbes Infect 2014; 3:e3; PMID:26038493; http://dx.doi.org/10.1038/emi.2014.3
  • Ramage HR, Connolly LE, Cox JS. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 2009; 5:e1000767; PMID:20011113; http://dx.doi.org/10.1371/journal.pgen.1000767
  • Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 2005; 3:371-82; PMID:15864262; http://dx.doi.org/10.1038/nrmicro1147
  • Warner DF, Mizrahi V. Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin Microbiol Rev 2006; 19:558-70; PMID:16847086; http://dx.doi.org/10.1128/CMR.00060-05
  • Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K, Ehrenberg M. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 2003; 112:131-40; PMID:12526800; http://dx.doi.org/10.1016/S0092-8674(02)01248-5
  • Korch SB, Contreras H, Clark-Curtiss JE. Three Mycobacterium tuberculosis Rel toxin-antitoxin modules inhibit mycobacterial growth and are expressed in infected human macrophages. J Bacteriol 2009; 191:1618-30; PMID:19114484; http://dx.doi.org/10.1128/JB.01318-08
  • Korch SB, Malhotra V, Contreras H, Clark-Curtiss JE. The Mycobacterium tuberculosis relBE toxin: antitoxin genes are stress-responsive modules that regulate growth through translation inhibition. J Microbiol 2015; 53:783-95; PMID:26502963; http://dx.doi.org/10.1007/s12275-015-5333-8
  • Boom WH, Canaday DH, Fulton SA, Gehring AJ, Rojas RE, Torres M. Human immunity to M. tuberculosis: T cell subsets and antigen processing. Tuberculosis 2003; 83:98-106; PMID:12758197; http://dx.doi.org/10.1016/S1472-9792(02)00054-9
  • Druszczynska M, Wlodarczyk M, Janiszewska-Drobinska B, Kielnierowski G, Zawadzka J, Kowalewicz-Kulbat M, Fol M, Szpakowski P, Rudnicka K, Chmiela M, et al. Monocyte signal transduction receptors in active and latent tuberculosis. Clin Dev Immunol 2013; 2013; 851452; PMID:23401703; http://dx.doi.org/10.1155/2013/851452
  • Cliff JM, Cho JE, Lee JS, Ronacher K, King EC, van Helden P, Walzl G, Dockrell HM. Excessive cytolytic responses predict tuberculosis relapse after apparently successful treatment. J Infect Dis 2016; 213:485-95; PMID:26351358; http://dx.doi.org/10.1093/infdis/jiv447
  • Yu C-H, Micaroni M, Puyskens A, Schultz TE, Yeo JC, Stanley AC, Lucas M, Kurihara J, Dobos KM, Stow JL, et al. RP105 engages phosphatidylinositol 3-kinase p110δ to facilitate the trafficking and secretion of cytokines in macrophages during mycobacterial infection. J Immunol 2015; 195:3890-900; PMID:26371254; http://dx.doi.org/10.4049/jimmunol.1500017
  • Schultz TE, Blumenthal A. The RP105/MD-1 complex: molecular signaling mechanisms and pathophysiological implications. J Leukoc Biol 2016: jlb. 2VMR1215-582R; [epub ahead of print]
  • Blumenthal A, Kobayashi T, Pierini LM, Banaei N, Ernst JD, Miyake K, Ehrt S. RP105 facilitates macrophage activation by Mycobacterium tuberculosis lipoproteins. Cell Host Microbe 2009; 5:35-46; PMID:19154986; http://dx.doi.org/10.1016/j.chom.2008.12.002
  • Ranjbar S, Haridas V, Jasenosky LD, Falvo JV, Goldfeld AE. A role for IFITM proteins in restriction of Mycobacterium tuberculosis infection. Cell Rep 2015; 13:874-83; PMID:26565900; http://dx.doi.org/10.1016/j.celrep.2015.09.048
  • Kronlage M, Song J, Sorokin L, Isfort K, Schwerdtle T, Leipziger J, Robaye B, Conley PB, Kim HC, Sargin S, et al. Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 2010; 3:ra55-ra; PMID:20664064; http://dx.doi.org/10.1126/scisignal.2000588
  • Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med 2012; 367:2322-33; http://dx.doi.org/10.1056/NEJMra1205750
  • Sumi Y, Woehrle T, Chen Y, Yao Y, Li A, Junger WG. Adrenergic receptor activation involves ATP release and feedback through purinergic receptors. Am J Physiol Cell Physiol 2010; 299:C1118-26; PMID:20668211; http://dx.doi.org/10.1152/ajpcell.00122.2010
  • Amaral EP, Ribeiro SC, Lanes VR, Almeida FM, de Andrade MR, Bomfim CC, Salles EM, Bortoluci KR, Coutinho-Silva R, Hirata MH, et al. Pulmonary infection with hypervirulent Mycobacteria reveals a crucial role for the P2X7 receptor in aggressive forms of tuberculosis. PLoS Pathog 2014; 10:e1004188; PMID:24991816; http://dx.doi.org/10.1371/journal.ppat.1004188
  • Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 2012; 12:352-66; PMID:22517424
  • Torraca V, Cui C, Boland R, Bebelman J-P, van der Sar AM, Smit MJ, Siderius M, Spaink HP, Meijer AH. The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection. Dis Model Mech 2015; 8:253-69; PMID:25573892; http://dx.doi.org/10.1242/dmm.017756
  • Meijer AH. Protection and pathology in TB: learning from the zebrafish model. Semin Immunopathol 2016; 38:261-73; PMID:26324465; http://dx.doi.org/10.1007/s00281-015-0522-4
  • van der Vaart M, Korbee CJ, Lamers GE, Tengeler AC, Hosseini R, Haks MC, Ottenhoff TH, Spaink HP, Meijer AH. The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense. Cell Host Microbe 2014; 15:753-67; PMID:24922577; http://dx.doi.org/10.1016/j.chom.2014.05.005
  • Obasanya J, Abdurrahman ST, Oladimeji O, Lawson L, Dacombe R, Chukwueme N, Abiola T, Mustapha G, Sola C, Dominguez J, et al. Tuberculosis case detection in Nigeria, the unfinished agenda. Trop Med Int Health 2015; 20:1396-402; PMID:26084031; http://dx.doi.org/10.1111/tmi.12558
  • Datiko DG, Yassin MA, Tulloch O, Asnake G, Tesema T, Jamal H, Markos P, Cuevas LE, Theobald S. Exploring providers' perspectives of a community based TB approach in Southern Ethiopia: implication for community based approaches. BMC Health Serv Res 2015; 15:1; PMID:26553340; http://dx.doi.org/10.1186/s12913-015-1149-9
  • Tulloch O, Theobald S, Morishita F, Datiko DG, Asnake G, Tesema T, Jamal H, Markos P, Cuevas LE, Yassin MA. Patient and community experiences of tuberculosis diagnosis and care within a community-based intervention in Ethiopia: a qualitative study. BMC Public Health 2015; 15:1; PMID:25885789; http://dx.doi.org/10.1186/s12889-015-1523-x
  • i TC. International Standards for Tuberculosis Care. The Hague: TB CARE I, 2014.
  • Desikan P. Sputum smear microscopy in tuberculosis: Is it still relevant? Indian J Med Res 2013; 137:442-4; PMID:23640550
  • Syhre M, Chambers ST. The scent of Mycobacterium tuberculosis. Tuberculosis 2008; 88:317-23; http://dx.doi.org/10.1016/j.tube.2008.01.002
  • Syhre M, Manning L, Phuanukoonnon S, Harino P, Chambers ST. The scent of Mycobacterium tuberculosis – Part II breath. Tuberculosis 2009; 89:263-6; PMID:19481976; http://dx.doi.org/10.1016/j.tube.2009.04.003
  • Bamogo W, Mugherli L, Banyasz A, Novelli-Rousseau A, Mallard F, Tran-Thi TH. Assessment of terbium (III) as a luminescent probe for the detection of tuberculosis biomarkers. Anal Chim Acta 2015; 896:143-51; PMID:26481998; http://dx.doi.org/10.1016/j.aca.2015.09.009
  • Khan IH, Ravindran R, Krishnan VV, Awan IN, Rizvi SK, Saqib MA, Shahzad MI, Tahseen S, Ireton G, Goulding CW, et al. Plasma antibody profiles as diagnostic biomarkers for tuberculosis. Clin Vaccine Immunol 2011; 18:2148-53; PMID:21976221; http://dx.doi.org/10.1128/CVI.05304-11
  • Chavez K, Ravindran R, Dehnad A, Khan IH. Gender biased immune-biomarkers in active tuberculosis and correlation of their profiles to efficacy of therapy. Tuberculosis 2016; 99:17-24; PMID:27450000; http://dx.doi.org/10.1016/j.tube.2016.03.009
  • Swanepoel CC, Loots DT. The use of functional genomics in conjunction with metabolomics for Mycobacterium tuberculosis research. Dis Markers 2014; 2014; 124218; PMID:24771957; http://dx.doi.org/10.1155/2014/124218
  • Olivier I, Loots D. An overview of tuberculosis treatments and diagnostics. What role could metabolomics play? J Cell Tissue Res 2011; 11:2655.
  • Dunn WB, Ellis DI. Metabolomics: current analytical platforms and methodologies. TrAC Trends Anal Chem 2005; 24:285-94; http://dx.doi.org/10.1016/j.trac.2004.11.021
  • Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 2005; 56:219-43; PMID:15618298; http://dx.doi.org/10.1093/jxb/eri069
  • Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29:1181-9; PMID:10598751; http://dx.doi.org/10.1080/004982599238047
  • Du Preez I, Loots D. New sputum metabolite markers implicating adaptations of the host to Mycobacterium tuberculosis, and vice versa. Tuberculosis 2013; 93:330-7; PMID:23477940; http://dx.doi.org/10.1016/j.tube.2013.02.008
  • Schoeman J, Loots D. Improved disease characterisation and diagnostics using metabolomics: A review. J Cell Tissue Res 2011; 11:2673.
  • Schoeman JC, Du Preez I. A comparison of four sputum pre-extraction preparation methods for identifying and characterising Mycobacterium tuberculosis using GCxGC-TOFMS metabolomics. J Microbiol Methods 2012; 91:301-11; PMID:22982125; http://dx.doi.org/10.1016/j.mimet.2012.09.002
  • de Villiers L, Toit Loots D. Using metabolomics for elucidating the mechanisms related to tuberculosis treatment failure. Curr Metabol 2013; 1:306-17; http://dx.doi.org/10.2174/2213235X113016660006
  • Alland D M, Rowneki L, Smith S, Chakravorty J, Ryan  , and Chancellor M. Xpert MTB/RIF ultra: a new near-patient TB test with sensitivity equal to culture. 15th Annual Conference on Retroviruses and Opportunistic Infections. Seattle, Washington 2015:23-6.
  • Pholwat S, Liu J, Stroup S, Gratz J, Banu S, Rahman SM, Ferdous SS, Foongladda S, Boonlert D, Ogarkov O, et al. Integrated microfluidic card with TaqMan probes and high-resolution melt analysis to detect tuberculosis drug resistance mutations across 10 genes. MBio 2015; 6:e02273; PMID:25714709; http://dx.doi.org/10.1128/mBio.02273-14
  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 2000; 28:e63-e; http://dx.doi.org/10.1093/nar/28.12.e63
  • Boehme CC, Nabeta P, Henostroza G, Raqib R, Rahim Z, Gerhardt M, Sanga E, Hoelscher M, Notomi T, Hase T, et al. Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol 2007; 45:1936-40; PMID: 17392443; http://dx.doi.org/10.1128/JCM.02352-06
  • Mitarai S, Okumura M, Toyota E, Yoshiyama T, Aono A, Sejimo A, Azuma Y, Sugahara K, Nagasawa T, Nagayama N, et al. Evaluation of a simple loop-mediated isothermal amplification test kit for the diagnosis of tuberculosis. Int J Tuberc Lung Dis 2011; 15:1211-7; PMID:21943848; http://dx.doi.org/10.5588/ijtld.10.0629
  • Ou X, Li Q, Xia H, Pang Y, Wang S, Zhao B, Song Y, Zhou Y, Zheng Y, Zhang Z, et al. Diagnostic accuracy of the PURE-LAMP test for pulmonary tuberculosis at the county-level laboratory in China. PLoS ONE 2014; 9:e94544; PMID:24788724; http://dx.doi.org/10.1371/journal.pone.0094544
  • Public Health England. Tuberculosis in the UK: 2014 1795 report. In: England PH, ed. London, 2014.
  • Ayed AK, Behbehani NA. Diagnosis and treatment of isolated tuberculous mediastinal lymphadenopathy in adults. Eur J Surg 2001; 167:334-8; PMID:11419546; http://dx.doi.org/10.1080/110241501750215186
  • Codecasa L, Besozzi G, De Cristofaro L, Miradoli A, Sabolla L, Tagliaferri B. Epidemiological and clinical patterns of intrathoracic lymph node tuberculosis in 60 human immunodeficiency virus-negative adult patients. Monaldi archives for chest disease= Archivio Monaldi per le malattie del torace/Fondazione clinica del lavoro, IRCCS [and] Istituto di clinica tisiologica e malattie apparato respiratorio, Università di Napoli, Secondo ateneo 1998; 53:277-80.
  • Hewitt RJ, Wright C, Adeboyeku D, Ornadel D, Berry M, Wickremasinghe M, Wright A, Sykes A, Kon OM. Primary nodal anthracosis identified by EBUS-TBNA as a cause of FDG PET/CT positive mediastinal lymphadenopathy. Respir Med Case Rep 2013; 10:48-52; PMID:26029513; http://dx.doi.org/10.1016/j.rmcr.2013.09.005
  • Geake J, Hammerschlag G, Nguyen P, Wallbridge P, Jenkin GA, Korman TM, Jennings B, Johnson DF, Irving LB, Farmer M, et al. Utility of EBUS-TBNA for diagnosis of mediastinal tuberculous lymphadenitis: a multicentre Australian experience. J Thorac Dis 2015; 7:439-48; PMID:25922723
  • Navani N, Molyneaux PL, Breen RA, Connell DW, Jepson A, Nankivell M, Brown JM, Morris-Jones S, Ng B, Wickremasinghe M, et al. Utility of endobronchial ultrasound-guided transbronchial needle aspiration in patients with tuberculous intrathoracic lymphadenopathy: a multicentre study. Thorax 2011; 66:889-93; PMID:21813622; http://dx.doi.org/10.1136/thoraxjnl-2011-200063
  • Lemaire A, Nikolic I, Petersen T, Haney JC, Toloza EM, Harpole DH, D'Amico TA, Burfeind WR. Nine-year single center experience with cervical mediastinoscopy: complications and false negative rate. Ann Thorac Surg 2006; 82:1185-90; PMID:16996905; http://dx.doi.org/10.1016/j.athoracsur.2006.05.023
  • Dhasmana DJ, Ross C, Bradley CJ, Connell DW, George PM, Singanayagam A, Jepson A, Craig C, Wright C, Molyneaux PL, et al. Performance of Xpert MTB/RIF in the diagnosis of tuberculous mediastinal lymphadenopathy by endobronchial ultrasound. Ann Am Thorac Soc 2014; 11:392-6; PMID:24592937; http://dx.doi.org/10.1513/AnnalsATS.201308-250OC
  • Stewart LD, McNair J, McCallan L, Thompson S, Kulakov LA, Grant IR. Production and evaluation of antibodies and phage display-derived peptide ligands for immunomagnetic separation of Mycobacterium bovis. J Clin Microbiol 2012; 50:1598-605; http://dx.doi.org/10.1128/JCM.05747-11
  • Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948; PMID:27198131
  • Ferrara F, Naranjo LA, Kumar S, Gaiotto T, Mukundan H, Swanson B, Bradbury AR. Using phage and yeast display to select hundreds of monoclonal antibodies: application to antigen 85, a tuberculosis biomarker. PLoS One 2012; 7:e49535; http://dx.doi.org/10.1371/journal.pone.0049535
  • Fuchs M, Kämpfer S, Helmsing S, Spallek R, Oehlmann W, Prilop W, Frank R, Dübel S, Singh M, Hust M. Novel human recombinant antibodies against Mycobacterium tuberculosis antigen 85B. BMC biotechnology 2014; 14:1; PMID:23166701; http://dx.doi.org/10.1186/1472-6750-14-68
  • Honeyborne I, McHugh TD, Kuittinen I, Cichonska A, Evangelopoulos D, Ronacher K, van Helden PD, Gillespie SH, Fernandez-Reyes D, Walzl G, et al. Profiling persistent tubercule bacilli from patient sputa during therapy predicts early drug efficacy. BMC Med 2016; 14:1; PMID:27055815; http://dx.doi.org/10.1186/s12916-016-0609-3
  • Ochoa-Montaño B, Mohan N, Blundell TL. CHOPIN: a web resource for the structural and functional proteome of Mycobacterium tuberculosis. Database 2015; 2015:bav026; http://dx.doi.org/10.1093/database/bav026
  • Nikiforov PO, Surade S, Blaszczyk M, Delorme V, Brodin P, Baulard AR, Blundell TL, Abell C. A fragment merging approach towards the development of small molecule inhibitors of Mycobacterium tuberculosis EthR for use as ethionamide boosters. Org Biomol Chem 2016; 14:2318-26; PMID:26806381; http://dx.doi.org/10.1039/C5OB02630J
  • Pires DE, Ascher DB, Blundell TL. mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 2014; 30:335-42; PMID:24281696; http://dx.doi.org/10.1093/bioinformatics/btt691
  • Kurth DG, Gago GM, de la Iglesia A, Bazet Lyonnet B, Lin T-W, Morbidoni HR, Tsai SC, Gramajo H. ACCase 6 is the essential acetyl-CoA carboxylase involved in fatty acid and mycolic acid biosynthesis in mycobacteria. Microbiology 2009; 155:2664-75; PMID:19423629; http://dx.doi.org/10.1099/mic.0.027714-0
  • Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 2003; 48:77-84; http://dx.doi.org/10.1046/j.1365-2958.2003.03425.x
  • Woong Park S, Klotzsche M, Wilson DJ, Boshoff HI, Eoh H, Manjunatha U, Blumenthal A, Rhee K, Barry CE 3rd, Aldrich CC, et al. Evaluating the sensitivity of mycobacterium tuberculosisto biotin deprivation using regulated gene expression. PLoS Pathog 2011; 7:e1002264; PMID:21980288
  • Kitahara T, Hotta K, Yoshida M, Okami Y. Biological studies on amiclenomycin. J Antibiot 1975; 28:215-21; PMID:805118; http://dx.doi.org/10.7164/antibiotics.28.215
  • Sandmark J, Mann S, Marquet A, Schneider G. Structural basis for the inhibition of the biosynthesis of biotin by the antibiotic amiclenomycin. J Biol Chem 2002; 277:43352-8; PMID:12218056; http://dx.doi.org/10.1074/jbc.M207239200
  • Shi C, Tiwari D, Wilson DJ, Seiler CL, Schnappinger D, Aldrich CC. Bisubstrate inhibitors of biotin protein ligase in Mycobacterium tuberculosis resistant to cyclonucleoside formation. ACS Med Chem Lett 2013; 4:1213-7; PMID:24363833; http://dx.doi.org/10.1021/ml400328a
  • Munshi T, Gupta A, Evangelopoulos D, Guzman JD, Gibbons S, Keep NH, Bhakta S. Characterisation of ATP-dependent Mur ligases involved in the biogenesis of cell wall peptidoglycan in Mycobacterium tuberculosis. PLoS One 2013; 8:e60143; PMID:23555903; http://dx.doi.org/10.1371/journal.pone.0060143
  • Basavannacharya C, Moody PR, Munshi T, Cronin N, Keep NH, Bhakta S. Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis. Protein Cell 2010; 1:1011-22; PMID:21153518; http://dx.doi.org/10.1007/s13238-010-0132-9
  • Basavannacharya C, Robertson G, Munshi T, Keep NH, Bhakta S. ATP-dependent MurE ligase in Mycobacterium tuberculosis: biochemical and structural characterisation. Tuberculosis (Edinb) 2010; 90:16-24; PMID:19945347; http://dx.doi.org/10.1016/j.tube.2009.10.007
  • Guzman JD, Gupta A, Evangelopoulos D, Basavannacharya C, Pabon LC, Plazas EA, Muñoz DR, Delgado WA, Cuca LE, Ribon W, et al. Anti-tubercular screening of natural products from Colombian plants: 3-methoxynordomesticine, an inhibitor of MurE ligase of Mycobacterium tuberculosis. J Antimicrob Chemother 2010; 65:2101-7; PMID:20719764; http://dx.doi.org/10.1093/jac/dkq313
  • Guzman JD, Pesnot T, Barrera DA, Davies HM, McMahon E, Evangelopoulos D, Mortazavi PN, Munshi T, Maitra A, Lamming ED, et al. Tetrahydroisoquinolines affect the whole-cell phenotype of Mycobacterium tuberculosis by inhibiting the ATP-dependent MurE ligase. J Antimicrob Chemother 2015; 70:1691-703; PMID:25656411
  • Guzman JD, Wube A, Evangelopoulos D, Gupta A, Hufner A, Basavannacharya C, Rahman MM, Thomaschitz C, Bauer R, McHugh TD, et al. Interaction of N-methyl-2-alkenyl-4-quinolones with ATP-dependent MurE ligase of Mycobacterium tuberculosis: antibacterial activity, molecular docking and inhibition kinetics. J Antimicrob Chemother 2011; 66:1766-72; PMID:21622974; http://dx.doi.org/10.1093/jac/dkr203
  • Osman K, Evangelopoulos D, Basavannacharya C, Gupta A, McHugh TD, Bhakta S, Gibbons S. An antibacterial from Hypericum acmosepalum inhibits ATP-dependent MurE ligase from Mycobacterium tuberculosis. Int J Antimicrob Agents 2012; 39:124-9; PMID:22079533; http://dx.doi.org/10.1016/j.ijantimicag.2011.09.018
  • Das N, Dai J, Hung I, Rajagopalan M, Zhou H-X, Cross TA. Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers. Proc Natl Acad Sci U S A 2015; 112:E119-26; PMID:25548160; http://dx.doi.org/10.1073/pnas.1415908112
  • Guzman JD, Evangelopoulos D, Gupta A, Birchall K, Mwaigwisya S, Saxty B, McHugh TD, Gibbons S, Malkinson J, Bhakta S. Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi whole-cell phenotypic assay. BMJ Open 2013; 3; http://dx.doi.org/10.1136/bmjopen-2013-002672
  • Danquah CA, Maitra A, Gibbons S, Faull J, Bhakta S. HT-SPOTi: A rapid drug susceptibility test (DST) to evaluate antibiotic resistance profiles and novel chemicals for anti-infective drug discovery. Curr Protoc Microbiol 2016; 40:17 8 1-8 2; PMID:26855282
  • Rizi K, Murdan S, Danquah CA, Faull J, Bhakta S. Development of a rapid, reliable and quantitative method–“SPOTi” for testing antifungal efficacy. J Microbiol Methods 2015; 117:36-40; PMID:26183763; http://dx.doi.org/10.1016/j.mimet.2015.07.005
  • Trindade RV, Pinto AF, Santos DS, Bizarro CV. Pulse proteolysis and precipitation for target identification. J Proteome Res 2016; 15:2236-45; PMID:27255303; http://dx.doi.org/10.1021/acs.jproteome.6b00214
  • Bhakta S, Scalacci N, Maitra A, Brown AK, Dasugari S, Evangelopoulos D, McHugh TD, Mortazavi PN, Twist A, Petricci E, et al. Design and synthesis of 1-((1,5-Bis(4-chlorophenyl)-2-methyl-1H-pyrrol-3-yl)methyl)-4-methylpiperazine (BM212) and N-Adamantan-2-yl-N'-((E)-3,7-dimethylocta-2,6-dienyl)ethane-1,2-diamine (SQ109) pyrrole hybrid derivatives: Discovery of potent antitubercular agents effective against multidrug-resistant mycobacteria. J Med Chem 2016; 59:2780-93; PMID:26907951; http://dx.doi.org/10.1021/acs.jmedchem.6b00031
  • Li X, Manjunatha UH, Goodwin MB, Knox JE, Lipinski CA, Keller TH, et al. Synthesis and antitubercular activity of 7-(R)- and 7-(S)-methyl-2-nitro-6-(S)-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo [2,1-b][1,3]oxazines, analogues of PA-824. Bioorg Med Chem Lett2008; 18:2256-62; http://dx.doi.org/10.1016/j.bmcl.2008.03.011
  • Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, Dowd CS, Lee IY, Kim P, Zhang L, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 2008; 322:1392-5; PMID:19039139; http://dx.doi.org/10.1126/science.1164571
  • Karabanovich G, Zemanová J, Smutny T, Székely R, Şarkan M, Centárová I, Vocat A, Pávková I, Čonka P, Němeček J, et al. Development of 3, 5-Dinitrobenzylsulfanyl-1, 3, 4-oxadiazoles and thiadiazoles as selective antitubercular agents active against replicating and nonreplicating mycobacterium tuberculosis. J Med Chem 2016; 59:2362-80; PMID:26948407; http://dx.doi.org/10.1021/acs.jmedchem.5b00608
  • Karabanovich G, Roh J, Smutný T, Němeček J, Vicherek P, Stolaříková J, Vejsova M, Dufkova I, Vavrova K, Pavek P, et al. 1-Substituted-5-[(3, 5-dinitrobenzyl) sulfanyl]-1H-tetrazoles and their isosteric analogs: A new class of selective antitubercular agents active against drug-susceptible and multidrug-resistant mycobacteria. Eur J Med Chem 2014; 82:324-40; http://dx.doi.org/10.1016/j.ejmech.2014.05.069
  • Karabanovich G, Roh J, Soukup O, Pávková I, Pasdiorová M, Tambor V, Stolarikova J, Vejsova M, Vavrova K, Klimesova V, et al. Tetrazole regioisomers in the development of nitro group-containing antitubercular agents. Med Chem Comm 2015; 6:174-81; http://dx.doi.org/10.1039/C4MD00301B
  • Sandoval-Montemayor NE, García A, Elizondo-Treviño E, Garza-González E, Alvarez L, del Rayo Camacho-Corona M. Chemical composition of hexane extract of Citrus aurantifolia and anti-Mycobacterium tuberculosis activity of some of its constituents. Molecules 2012; 17:11173-84; http://dx.doi.org/10.3390/molecules170911173
  • Khara JS, Wang Y, Ke X-Y, Liu S, Newton SM, Langford PR, Yang YY, Ee PL. Anti-mycobacterial activities of synthetic cationic α-helical peptides and their synergism with rifampicin. Biomaterials 2014; 35:2032-8; PMID:24314557; http://dx.doi.org/10.1016/j.biomaterials.2013.11.035
  • Steinmann J, Halldorsson S, Agerberth B, Gudmundsson GH. Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 2009; 53:5127-33; PMID:19770273; http://dx.doi.org/10.1128/AAC.00818-09
  • Wejse C, Gomes VF, Rabna P, Gustafson P, Aaby P, Lisse IM, Andersen PL, Glerup H, Sodemann M. Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med 2009; 179:843-50; PMID:19179490; http://dx.doi.org/10.1164/rccm.200804-567OC
  • Rekha RS, Rao Muvva SS, Wan M, Raqib R, Bergman P, Brighenti S, Gudmundsson GH, Agerberth B. Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of Mycobacterium tuberculosis in human macrophages. Autophagy 2015; 11:1688-99; PMID:26218841; http://dx.doi.org/10.1080/15548627.2015.1075110
  • Mily A, Rekha RS, Kamal SM, Arifuzzaman AS, Rahim Z, Khan L, Haq MA, Zaman K, Bergman P, Brighenti S, et al. Significant effects of oral phenylbutyrate and vitamin D3 adjunctive therapy in pulmonary tuberculosis: A randomized controlled trial. PLoS One 2015; 10:e0138340; PMID:26394045; http://dx.doi.org/10.1371/journal.pone.0138340
  • Bergman P, Norlin A-C, Hansen S, Rekha RS, Agerberth B, Björkhem-Bergman L, Ekström L, Lindh JD, Andersson J. Vitamin D3 supplementation in patients with frequent respiratory tract infections: a randomised and double-blind intervention study. BMJ Open 2012; 2:e001663; http://dx.doi.org/10.1136/bmjopen-2012-001663
  • Maitra A, Bates S, Shaik M, Evangelopoulos D, Abubakar I, McHugh TD, Lipman M, Bhakta S. Repurposing drugs for treatment of tuberculosis: a role for non-steroidal anti-inflammatory drugs. Br Med Bull 2016; 118:138-48; PMID:27151954; http://dx.doi.org/10.1093/bmb/ldw019
  • Maitra A, Bates S, Kolvekar T, Devarajan PV, Guzman JD, Bhakta S. Repurposing-a ray of hope in tackling extensively drug resistance in tuberculosis. Int J Infect Dis 2015; 32:50-5; http://dx.doi.org/10.1016/j.ijid.2014.12.031
  • Johnson BK, Colvin CJ, Needle DB, Medie FM, Champion PAD, Abramovitch RB. The carbonic anhydrase inhibitor ethoxzolamide inhibits the Mycobacterium tuberculosis PhoPR regulon and Esx-1 secretion and attenuates virulence. Antimicrob Agents Chemother 2015; 59:4436-45; PMID:25987613; http://dx.doi.org/10.1128/AAC.00719-15
  • Bonnett LJ, Davies GR. Quality of outcome reporting in phase II studies in pulmonary tuberculosis. Trials 2015; 16:1; http://dx.doi.org/10.1186/s13063-015-1050-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.