965
Views
4
CrossRef citations to date
0
Altmetric
Report

Genomic and expression analysis of transition proteins in Drosophila

, , &
Article: e1178518 | Received 14 Jan 2016, Accepted 09 Apr 2016, Published online: 27 Apr 2016

References

  • Jayaramaiah Raja S, Renkawitz-Pohl R. Replacement by Drosophila melanogaster protamines and Mst77F of histones during chromatin condensation in late spermatids and role of sesame in the removal of these proteins from the male pronucleus. Mol Cell Biol 2005; 25:6165-77; PMID:15988027; http://dx.doi.org/10.1128/MCB.25.14.6165-6177.2005
  • Tirmarche S, Kimura S, Sapey-Triomphe L, Sullivan W, Landmann F, Loppin B. Drosophila protamine-like Mst35Ba and Mst35Bb are required for proper sperm nuclear morphology but are dispensable for male fertility. G3 (Bethesda) 2014; 4:2241-5; PMID:25236732; http://dx.doi.org/full_text
  • Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol 2007; 8:227; PMID:17903313; http://dx.doi.org/10.1186/gb-2007-8-9-227
  • Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R. Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci 2007; 120:1689-700; PMID:17452629; http://dx.doi.org/10.1242/jcs.004663
  • Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta 2014; 1839:155-68; PMID:24091090; http://dx.doi.org/10.1016/j.bbagrm.2013.08.004
  • Rathke C, Barckmann B, Burkhard S, Jayaramaiah-Raja S, Roote J, Renkawitz-Pohl R. Distinct functions of Mst77F and protamines in nuclear shaping and chromatin condensation during Drosophila spermiogenesis. Eur J Cell Biol 2010; 89:326-38; PMID:20138392; http://dx.doi.org/10.1016/j.ejcb.2009.09.001
  • Ausio J. Histone H1 and evolution of sperm nuclear basic proteins. J Biol Chem 1999; 274:31115-8; PMID:10531297; http://dx.doi.org/10.1074/jbc.274.44.31115
  • Kasinsky HE, Eirin-Lopez JM, Ausio J. Protamines: structural complexity, evolution and chromatin patterning. Protein Pept Lett 2011; 18:755-71; PMID:21443489; http://dx.doi.org/10.2174/092986611795713989
  • Yan W, Ma L, Burns KH, Matzuk MM. HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis. Proc Natl Acad Sci U S A 2003; 100:10546-51; PMID:12920187; http://dx.doi.org/10.1073/pnas.1837812100
  • Bianchi F, Rousseaux-Prevost R, Bailly C, Rousseaux J. Interaction of human P1 and P2 protamines with DNA. Biochem Biophys Res Commun 1994; 201:1197-204; PMID:8024562; http://dx.doi.org/10.1006/bbrc.1994.1832
  • Kanippayoor RLA JH, Moehring AJ. Protamines and spermatogenesis in Drosophila and Homo sapiens: a comparative analysis. Spermatogenesis 2013; 1-7.
  • Saperas N, Chiva M, Casas MT, Campos JL, Eirin-Lopez JM, Frehlick LJ, Prieto C, Subirana JA, Ausio J. A unique vertebrate histone H1-related protamine-like protein results in an unusual sperm chromatin organization. FEBS J 2006; 273:4548-61; PMID:16965539; http://dx.doi.org/10.1111/j.1742-4658.2006.05461.x
  • Alvi ZA, Chu TC, Schawaroch V, Klaus AV. Protamine-like proteins in 12 sequenced species of Drosophila. Protein Pept Lett 2013; 20:17-35; PMID:22789106; http://dx.doi.org/10.2174/092986613804096847
  • Lewis JD, Ausio J. Protamine-like proteins: evidence for a novel chromatin structure. Biochem Cell Biol 2002; 80:353-61; PMID:12123288; http://dx.doi.org/10.1139/o02-083
  • Zhang F, Lewis JD, Ausio J. Cysteine-containing histone H1-like (PL-I) proteins of sperm. Mol Reprod Dev 1999; 54:402-9; PMID:10542381; http://dx.doi.org/10.1002/(SICI)1098-2795(199912)54:4%3c402::AID-MRD11%3e3.0.CO;2-X
  • Lewis JD, Saperas N, Song Y, Zamora MJ, Chiva M, Ausio J. Histone H1 and the origin of protamines. Proc Natl Acad Sci U S A 2004; 101:4148-52; PMID:15024099; http://dx.doi.org/10.1073/pnas.0308721101
  • Zini AA. A. Sperm Chromatin Biological and Clinical Applications in Male Infertility and Assisted Reproduction. New York: Springer, 2011.
  • White-Cooper H. Studying how flies make sperm–investigating gene function in Drosophila testes. Molecular and Cellular Endocrinology 2009; 306:66-74; PMID:19101606; http://dx.doi.org/10.1016/j.mce.2008.11.026
  • Ricketts PG, Minimair M, Yates RW, Klaus AV. The effects of glutathione, insulin and oxidative stress on cultured spermatogenic cysts. Spermatogenesis 2011; 1:159-71; PMID:22319665; http://dx.doi.org/10.4161/spmg.1.2.17031
  • Decotto E, Spradling AC. The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev Cell 2005; 9:501-10; PMID:16198292; http://dx.doi.org/10.1016/j.devcel.2005.08.012
  • Eirin-Lopez JM, Frehlick LJ, Ausio J. Protamines, in the footsteps of linker histone evolution. J Biol Chem 2006; 281:1-4; PMID:16243843; http://dx.doi.org/10.1074/jbc.R500018200
  • Eirin-Lopez JM, Lewis JD, Howe le A, Ausio J. Common phylogenetic origin of protamine-like (PL) proteins and histone H1: Evidence from bivalve PL genes. Mol Biol Evol 2006; 23:1304-17; PMID:16613862; http://dx.doi.org/10.1093/molbev/msk021
  • Barckmann B, Chen X, Kaiser S, Jayaramaiah-Raja S, Rathke C, Dottermusch-Heidel C, Fuller MT, Renkawitz-Pohl R. Three levels of regulation lead to protamine and Mst77F expression in Drosophila. Dev Biol 2013; 377:33-45; PMID:23466740; http://dx.doi.org/10.1016/j.ydbio.2013.02.018
  • Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet 2001; 28:82-6; PMID:11326282
  • Dorus S, Freeman ZN, Parker ER, Heath BD, Karr TL. Recent origins of sperm genes in Drosophila. Mol Biol Evol 2008; 25:2157-66; PMID:18653731; http://dx.doi.org/10.1093/molbev/msn162
  • Yu KKaJ. Modified Nel and Van der Merwe test for the multivariate Behrens–Fisher problem. Statistics & Probability Letters 2004; 66:161-9; http://dx.doi.org/10.1016/j.spl.2003.10.012
  • Jeanteur P. Epigenetics and Chromatin. Berlin: Springer, 2005.
  • Niu L, Huang W, Umbach DM, Li L. IUTA: a tool for effectively detecting differential isoform usage from RNA-Seq data. BMC Genomics 2014; 15:862; PMID:25283306; http://dx.doi.org/10.1186/1471-2164-15-862
  • Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, et al. Ensembl 2014. Nucleic Acids Res 2014; 42:D749-55; PMID:24316576; http://dx.doi.org/10.1093/nar/gkt1196
  • mod EC, Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, Landolin JM, Bristow CA, Ma L, et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 2010; 330:1787-97; PMID:21177974; http://dx.doi.org/10.1126/science.1198374
  • St Pierre SE, Ponting L, Stefancsik R, McQuilton P, FlyBase C. FlyBase 102–advanced approaches to interrogating FlyBase. Nucleic Acids Res 2014; 42:D780-8; PMID:24234449; http://dx.doi.org/10.1093/nar/gkt1-092
  • Begun DJ, Lindfors HA, Kern AD, Jones CD. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics 2007; 176:1131-7; PMID:17435230; http://dx.doi.org/10.1534/genetics.106.069245
  • Begun DJ, Lindfors HA, Thompson ME, Holloway AK. Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics 2006; 172:1675-81; PMID:16361246; http://dx.doi.org/10.1534/genetics.105.050336
  • VanKuren NW, Vibranovski MD. A novel dataset for identifying sex-biased genes in Drosophila. J Genomics 2014; 2:64-7; PMID:25031657; http://dx.doi.org/10.7150/jgen.7955
  • Wheeler WC. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology 1995; 44:321-31; http://dx.doi.org/10.1093/sysbio/44.3.321
  • de Pinna MCC. Concepts and tests of homology in the cladistic paradigm. Cladistics 1991; 7:367-94; http://dx.doi.org/10.1111/j.1096-0031.1991.tb00045.x
  • Brower AVZ, Schawaroch V. Three steps of homology assesment. Cladistics 1996; 12:265-72.
  • Gatsey J, DeSalle R, Wheeler WC. Alignment ambiguous nucleotide sites and the exclusion of systematic data. Molecular Phylogenetics and Evolution 1994; 2:152-7; http://dx.doi.org/10.1006/mpev.1993.1015
  • Akama K, Oka S, Tobita T, Hayashi H. The amino acid sequence of a boar transition protein 3. J Biochem 1994; 115:58-65; PMID:8188637
  • Grimes SR, Jr., Platz RD, Meistrich ML, Hnilica LS. Partial characterization of a new basic nuclear protein from rat testis elongated spermatids. Biochem Biophys Res Commun 1975; 67:182-9; PMID:1201018; http://dx.doi.org/10.1016/0006-291X(75)90300-9
  • Singh J, Rao MR. Interaction of rat testis protein, TP, with nucleic acids in vitro. Fluorescence quenching, UV absorption, and thermal denaturation studies. J Biol Chem 1987; 262:734-40; PMID:3805005
  • Eirin-Lopez JM, Ausio J. Origin and evolution of chromosomal sperm proteins. Bioessays 2009; 31:1062-70; PMID:19708021; http://dx.doi.org/10.1002/bies.200900050
  • Birkhead TRH DJ, Pitnick S. Sperm Biology: An Evolutionary Perspective. Amsterdam: Elsevier/Academic, 2009.
  • Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma 2003; 111:483-8; PMID:12743712; http://dx.doi.org/10.1007/s00412-002-0227-z
  • Cheng WM, An L, Wu ZH, Zhu YB, Liu JH, Gao HM, Li XH, Zheng SJ, Chen DB, Tian JH. Effects of disulfide bond reducing agents on sperm chromatin structural integrity and developmental competence of in vitro matured oocytes after intracytoplasmic sperm injection in pigs. Reproduction 2009; 137:633-43; PMID:19155332; http://dx.doi.org/10.1530/REP-08-0143
  • McBride AA, Klausner RD, Howley PM. Conserved cysteine residue in the DNA-binding domain of the bovine papillomavirus type 1 E2 protein confers redox regulation of the DNA-binding activity in vitro. Proc Natl Acad Sci U S A 1992; 89:7531-5; PMID:1323841; http://dx.doi.org/10.1073/pnas.89.16.7531
  • Wagner CR, Hamana K, Elgin SC. A high-mobility-group protein and its cDNAs from Drosophila melanogaster. Mol Cell Biol 1992; 12:1915-23; PMID:1373803; http://dx.doi.org/10.1128/MCB.12.5.1915
  • Qin J, Kang W, Leung B, McLeod M. Ste11p, a high-mobility-group box DNA-binding protein, undergoes pheromone- and nutrient-regulated nuclear-cytoplasmic shuttling. Mol Cell Biol 2003; 23:3253-64; PMID:12697825; http://dx.doi.org/10.1128/MCB.23.9.3253-3264.2003
  • Travers AA. Priming the nucleosome: a role for HMGB proteins? EMBO Rep 2003; 4:131-6; PMID:12612600; http://dx.doi.org/10.1038/sj.embor.embor741
  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, et al. The Pfam protein families database. Nucleic Acids Res 2004; 32:D138-41; PMID:14681378; http://dx.doi.org/10.1093/nar/gkh121
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26:139-40; PMID:19910308; http://dx.doi.org/10.1093/bioinformatics/btp616
  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010; 11:R106; PMID:20979621; http://dx.doi.org/10.1186/gb-2010-11-10-r106
  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7:562-78; PMID:22383036; http://dx.doi.org/10.1038/nprot.2012.016
  • Goff LTR, Kelley D. cummeRbund: Analysis, exploration, manipulation, and visualization of cufflinks high-throughput sequencing data. 2013.
  • Ashburner M, Golic KG, Hawley RS. Drosophila: a laboratory handbook, 2nd Edition. Cold Spring Harbor Laboratory. 2005. pp. 1123-1283.
  • Drosophila 12 Genomes C, Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007; 450:203-18; PMID:17994087; http://dx.doi.org/10.1038/nature06341
  • Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 2011; 39:W13-7; PMID:21558174; http://dx.doi.org/10.1093/nar/gkr245
  • Kumar M, Gromiha MM, Raghava GP. Identification of DNA-binding proteins using support vector machines and evolutionary profiles. BMC Bioinformatics 2007; 8:463; PMID:18042272; http://dx.doi.org/10.1186/1471-2105-8-463
  • Wang L, Huang C, Yang MQ, Yang JY. BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Syst Biol 2010; 4Suppl 1:S3; PMID:20522253; http://dx.doi.org/10.1186/1752-0509-4-S1-S3
  • Zhu X, Ericksen SS, Mitchell JC. DBSI: DNA-binding site identifier. Nucleic Acids Res 2013; 41:e160; PMID:23873960; http://dx.doi.org/10.1093/nar/gkt617
  • Hwang S, Gou Z, Kuznetsov IB. DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics 2007; 23:634-6; PMID:17237068; http://dx.doi.org/10.1093/bioinformatics/btl672
  • Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, Yip KY, Robilotto R, Rechtsteiner A, Ikegami K, et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 2010; 330:1775-87; PMID:21177976; http://dx.doi.org/10.1126/science.1196914
  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. InterProScan: protein domains identifier. Nucleic Acids Res 2005; 33:W116-20; PMID:15980438; http://dx.doi.org/10.1093/nar/gki442
  • Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011; 39:W29-37; PMID:21593126; http://dx.doi.org/10.1093/nar/gkr367
  • Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009; 4:363-71; PMID:19247286; http://dx.doi.org/10.1038/nprot.2009.2
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114-20; PMID:24695404; http://dx.doi.org/10.1093/bioinformatics/btu170
  • Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, Matasci N, Wang L, Hanlon M, Lenards A, et al. The iPlant Collaborative: Cyberinfrastructure for Plant Biology. Front Plant Sci 2011; 2:34; PMID:22645531; http://dx.doi.org/10.3389/fpls.2011.00034
  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013; 14:R36; PMID:23618408; http://dx.doi.org/10.1186/gb-2013-14-4-r36
  • Roberts A, Pimentel H, Trapnell C, Pachter L. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 2011; 27:2325-9; PMID:21697122; http://dx.doi.org/10.1093/bioinformatics/btr355
  • Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31:166-9; PMID:25260700; http://dx.doi.org/10.1093/bio-informatics/btu638
  • Muni S, Srivastava SK, Yutaka Kano. A two sample test in high dimensional data. Journal of Multivariate Analysis 2013; 114:349-58; http://dx.doi.org/10.1016/j.jmva.2012.08.014
  • Qin SXCaY-L. A two-sample test for high-dimensional data with applications to gene-set testing. The Annals of Statistics 2010; 38:808-35; http://dx.doi.org/10.1214/09-AOS716
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725-9; PMID:24132122; http://dx.doi.org/10.1093/molbev/mst197
  • Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002; Chapter 2:Unit 2 3; PMID:18792934
  • Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0a147. 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.