212
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Biosorption of heavy metals from water: mechanism, critical evaluation and translatability of methodology

, & ORCID Icon
Pages 91-117 | Received 26 Jul 2021, Accepted 20 Mar 2022, Published online: 01 Jun 2022

References

  • Duruibe J, Ogwuegbu M, Egwurugwu J. Heavy metal pollution and human biotoxic effects. Int J Phys Sci. 2007;2(5):112–118.
  • Tchounwou PB, Yedjou CG, Patlolla AK, et al. Heavy metal toxicity and the environment. Mol Clin Environ Toxicol. 2012;3:133–164.
  • Salem H, Ewedia EA, Farag A. Heavy metals in drinking water & their environment impact on human health. In: ICEHM2000. 2000. Cairo University, Egypt.
  • Bradl H. Heavy metals in the environment: origin, interaction and remediation. 1st ed. London: Elsevier: Academic Press; 2005.
  • Garbarino J, Hayes H, Roth D, et al. Contaminants in the Mississippi river. US Geological Survey Circular, 1995. p. 1133.
  • Hoodaji M, Ataabadi M, Najafi P. Biomonitoring of airborne heavy metal contamination. In: Air pollution – monitoring, modelling, health and control. 2012, INTECH Open Access Publisher. p. 97–122.
  • Moore JW, Ramamoorthy S. Heavy metals in natural waters: applied monitoring and impact assessment. New York: Springer Science & Business Media; 2012.
  • Chowdhury S, Mazumder MJ, Al-Attas O, et al. Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci Total Environ. 2016;569:476–488.
  • Mohod CV, Dhote J. Review of heavy metals in drinking water and their effect on human health. Int J Innovative Res Sci Eng Technol. 2013;2(7):2992–2996.
  • Rai L, Gaur J, Kumar H. Phycology and heavy-metal pollution. Biol Rev. 1981;56(2):99–151.
  • Barbier O, Jacquillet G, Tauc M, et al. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol. 2005;99(4):105–110.
  • Wang G, Hu X, Zhu Y, et al. Historical accumulation and ecological risk assessment of heavy metals in sediments of a drinking water lake. Environ Sci Pollut Res. 2018;25(25):1–13.
  • Zhang T, Ruan J, Zhang B, et al. Heavy metals in human urine, foods and drinking water from an e-waste dismantling area: identification of exposure sources and metal-induced health risk. Ecotoxicol Environ Saf. 2019;169:707–713.
  • Violante A, Cozzolino V, Perelomov L, et al. Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr. 2010;10(3):268–292.
  • Mateo-Sagasta J, Zadeh SM, Turral H, et al. Water pollution from agriculture: a global review. Executive summary 2017. [cited 05.12.2021]. https://www.fao.org/3/i7754e/i7754e.pdf
  • Akpor OB, Muchie M. Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. Int J Phys Sci. 2010;5(12):1807–1817.
  • Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003;37(18):4311–4330.
  • He J, Chen JP. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol. 2014;160:67–78.
  • Bilal M, Rasheed T, Sosa-Hernández JE, et al. Biosorption: an interplay between marine algae and potentially toxic elements—a review. Mar Drugs. 2018;16(2):65.
  • Sağ Y. Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review. Sep Purif Methods. 2001;30(1):1–48.
  • Sag Y, Kutsal T. Recent trends in the biosorption of heavy metals: a review. Biotechnol Bioprocess Eng. 2001;6(6):376.
  • Michalak I, Chojnacka K, Witek-Krowiak A. State of the art for the biosorption process—a review. Appl Biochem Biotechnol. 2013;70(6):1389–1416.
  • Sud D, Mahajan G, Kaur MP. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–a review. Bioresour Technol. 2008;99(14):6017–6027.
  • Demirbas A. Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater. 2008;157(2-3):220–229.
  • Mohammed MA, Shitu A, Tadda MA, et al. Utilization of various agricultural waste materials in the treatment of industrial wastewater containing heavy metals: a review. Int Res J Environ Sci. 2014;3(3):62–71.
  • Gadd GM. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol Int Res Process Environ Clean Technol. 2009;84(1):13–28.
  • World Health Organization (WHO), Guidelines for drinking-water quality. In: WHO Chronicle. 2011. p. 104–108. [cited 06.05.2017]. Available from: https://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/
  • Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68(1):167–182.
  • Cempel M, Nikel G. Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud. 2006;15(3):375–382.
  • Beaumont JJ, Sedman RM, Reynolds SD, et al. Cancer mortality in a Chinese population exposed to hexavalent chromium in drinking water. Epidemiology. 2008;19(1):12–23.
  • Martin S, Griswold W. Human health effects of heavy metals. Environ Sci Technol Briefs Citizens. 2009;15:1–6.
  • Hu H. Human health and heavy metals exposure. In: M McCally, editor. Life support: the environment and human health. Cambridge, MA: MIT Press; 2002. p. 65–81.
  • Hengstler JG, Bolm-Audorff U, Faldum A, et al. Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis. 2003;24(1):63–73.
  • Argos M, Kalra T, Rathouz PJ, et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet. 2010;376(9737):252–258.
  • Frisbie SH, Ortega R, Maynard DM, et al. The concentrations of arsenic and other toxic elements in Bangladesh's drinking water. Environ Health Perspect. 2002;110(11):1147.
  • Nickson R, McArthur J, Burgess W, et al. Arsenic poisoning of Bangladesh groundwater. Nature. 1998;395(6700):338–338.
  • Chowdhury TR, Basu GK, Mandal BK, et al. Arsenic poisoning in the Ganges delta. Nature. 1999;401(6753):545–546.
  • Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett. 2002;133(1):1–16.
  • Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J. 2003;79(933):391–396.
  • Mazumder DG. Chronic arsenic toxicity & human health. Indian J Med Res. 2008;128(4):436–447.
  • Carson BL. Toxicology biological monitoring of metals in humans. 1st ed. Boca Raton: CRC Press; 1986; p. 342.
  • Tseng C-H, Huang Y-K, Huang Y-L, et al. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Toxicol Appl Pharmacol. 2005;206(3):299–308.
  • Mazumder DNG, Haque R, Ghosh N, et al. Arsenic in drinking water and the prevalence of respiratory effects in West Bengal, India. Int J Epidemiol. 2000;29(6):1047–1052.
  • Mazumder DNG, Haque R, Ghosh N, et al. Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int J Epidemiol. 1998;27(5):871–877.
  • Shi H, Shi X, Liu KJ. Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem. 2004;255(1):67–78.
  • Jomova K, Jenisova Z, Feszterova M, et al. Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol. 2011;31(2):95–107.
  • Genchi G, Sinicropi MS, Lauria G, et al. The effects of cadmium toxicity. Int J Environ Res Public Health. 2020;17(11):3782.
  • Bernhoft RA. Cadmium toxicity and treatment. Scientific World J. 2013;2013:394652.
  • Rahimzadeh MR, Rahimzadeh MR, Kazemi S, et al. Cadmium toxicity and treatment: an update. Caspian J Intern Med. 2017;8(3):135.
  • Moulis JM, Thévenod F. New perspectives in cadmium toxicity: an introduction. BioMetals. 2010;23:763–768.
  • Costa M. Toxicity and carcinogenicity of Cr (VI) in animal models and humans. Crit Rev Toxicol. 1997;27(5):431–442.
  • Pavesi T, Moreira JC. Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol. 2020;40(9):1183–1197.
  • Shekhawat K, Chatterjee S, Joshi B. Chromium toxicity and its health hazards. Int J Adv Res (Indore). 2015;3(7):167–172.
  • Harris ZL, Gitlin JD. Genetic and molecular basis for copper toxicity. Am J Clin Nutr. 1996;63(5):836S–841S.
  • Barceloux DG, Barceloux D. Copper. J Toxicol Clin Toxicol. 1999;37(2):217–230.
  • Aston NS, Watt N, Morton IE, et al. Copper toxicity affects proliferation and viability of human hepatoma cells (HepG2 line). Hum Exp Toxicol. 2000;19(6):367–376.
  • Schilsky ML, Blank RR, Czaja MJ, et al. Hepatocellular copper toxicity and its attenuation by zinc. J Clin Invest. 1989;84(5):1562–1568.
  • Brewer GJ. Copper toxicity in Alzheimer's disease: cognitive loss from ingestion of inorganic copper. J Trace Elem Med Biol. 2012;26(2-3):89–92.
  • Pohanka M. Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratisl Lek Listy. 2019;120(6):397–409.
  • Kalita J, Kumar V, Misra UK, et al. Memory and learning dysfunction following copper toxicity: biochemical and immunohistochemical basis. Mol Neurobiol. 2018;55(5):3800–3811.
  • Brewer GJ. Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol. 2010;23(2):319–326.
  • Rice KM, Walker Jr EM, Wu M, et al. Environmental mercury and its toxic effects. J Prev Med Pub Health. 2014;47(2):74.
  • Aschner M, Walker SJ. The neuropathogenesis of mercury toxicity. Mol Psychiatry. 2002;7(2):S40–S41.
  • Trasande L, Landrigan PJ, Schechter C. Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ Health Perspect. 2005;113(5):590–596.
  • Kumar A, Kumar A, Cabral-Pinto MMS, et al. Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. Int J Environ Res Public Health. 2020;17(7):2179.
  • Ab Latif Wani AA, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol. 2015;8(2):55.
  • Gidlow DA. Lead toxicity. Occup Med (Chic Ill). 2004;54(2):76–81.
  • Papanikolaou NC, Hatzidaki EG, Belivanis S, et al. Lead toxicity update. A brief review. Med Sci Monit. 2005;11(10):RA329–RA336.
  • Barceloux DG, Barceloux D. Nickel. J Toxicol Clin Toxicol. 1999;37(2):239–258.
  • Denkhaus E, Salnikow K. Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol. 2002;42(1):35–56.
  • Das K, Das S, Dhundasi S. Nickel, its adverse health effects & oxidative stress. Indian J Med Res. 2008;128(4):412.
  • UNESCO World Water Assessment Programme, The United NationsWorld Water Development Report 2019, in Leaving no one behind: Facts and Figures. 2019, UNESCO World Water Assessment Programme: Colombella, Perugia, Italy. p. 11. [cited 13.08.2019]. www.unesco.org/water/wwap
  • Ali MM, Ali ML, Islam MS, et al. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ Nanotechnol Monit Manag. 2016;5:27–35.
  • Bamuwamye M, Ogwok P, Tumuhairwe V, et al. Human health risk assessment of heavy metals in Kampala (Uganda) drinking water. J Food Res. 2017;6(4):6–16.
  • Schwarzenbach RP, Egli T, Hofstetter TB, et al. Global water pollution and human health. Annu Rev Environ Resour. 2010;35:109–136.
  • United States Environmental Protection Agency (US EPA), National Primary Drinking Water Regulations, in Ground Water and Drinking Water. 2009, National Service Center for Environmental Publications: Washington, DC. [cited 14.08.2019]. www.epa.gov/safewater
  • Ministry of Health, N.Z., Guidelines for Drinking-Water Quality Management for New Zealand. 2017, Ministry of Health, New Zealand: Wellington, New Zealand. p. 364. [cited 14.08.2019]. www.health.govt.nz
  • Ministry of Consumer Affairs, F.P.D., Government of India, Indian Standard Drinking Water- Specification, in Second Revision. 2012, Bureau of Indian Standards (BIS): New Delhi, India. p. 16. [cited 14.08.2019]. www.bis.gov.in/
  • Jellinek H, Sangal S. Complexation of metal ions with natural polyelectrolytes (removal and recovery of metal ions from polluted waters). Water Res. 1972;6(3):305–314.
  • Swanson CL, Wing RE, Doane WM. Removal of heavy metal ions from wastewater. 1976, Google Patents.
  • Heck WW, Bailey LF. Chelation of trace metals in nutrient solutions. Plant Physiol. 1950;25(4):573.
  • Oda N, Horie Y, Idohara M, et al. Adsorbent process for heavy metals. 1976, Google Patents.
  • Davey EW, Gentile JH, Erickson SJ, et al. Removal of trace metals from marine culture media. Limnol Oceanogr. 1970;15(3):486–488.
  • Sugano I, Tsuji T, Kanamori M. Method of extracting heavy metals from industrial waste waters. 1976, Google Patents.
  • Lalancette J. Removal and recovery of metals from polluted waters. 1974, Google Patents.
  • Jean C. Process for purifying aqueous solutions by removing heavy metals, more particularly from brines intended for electrolysis. 1961, Google Patents.
  • Blanchard G, Maunaye M, Martin G. Removal of heavy metals from waters by means of natural zeolites. Water Res. 1984;18(12):1501–1507.
  • Florence T, Batley G. Removal of trace metals from seawater by a chelating resin. Talanta. 1975;22(2):201–204.
  • McKaveney JP, Fassinger WP, Stivers DA. Removal of heavy metals from water and brine using silicon alloys. Environ Sci Technol. 1972;6(13):1109–1113.
  • Floyd JM. Water conditioning filter unit. 1966, Google Patents.
  • Erhardt B, Kurt X. Process for purifying water using reforming of metal hydroxide flocculation agent. 1967, Google Patents.
  • Kinoshita M, Sekiguchi Y, Ando S. Method of treating waste water containing surfactant and heavy metals. 1977, Google Patents.
  • Yoshiaki K. Process for removing heavy metal ions in water. 1975, Google Patents.
  • Okuda T, Sugano I, Tsuji T. Removal of heavy metals from waste water by ferrite co-precipitation. Filtration and Separation. 1975;12(5):472–475.
  • Maruyama T, Hannah SA, Cohen JM. Metal removal by physical and chemical treatment processes. J Water Pollut Control Fed. 1975;47(5):962–975.
  • Dean JG, Bosqui FL, Lanouette KH. Removing heavy metals from waste water. Environ Sci Technol. 1972;6(6):518–522.
  • Beyene HD, Berhe GB. The level of heavy metals in potable water in Dowhan, Erop Wereda, Tigray, Ethiopia. J Nat Sci Res. 2015;5(3):190–194.
  • Chatterjee A, Das D, Mandal BK, et al. Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part I. Arsenic species in drinking water and urine of the affected people. Analyst. 1995;120:643–650.
  • Vetrimurugan E, Brindha K, Elango L, et al. Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Appl Water Sci. 2017;7(6):3267–3280.
  • Mirzabeygi M, Abbasnia A, Yunesian M, et al. Heavy metal contamination and health risk assessment in drinking water of Sistan and Baluchistan, Southeastern Iran. Hum Ecol Risk Assess Int J. 2017;23(8):1893–1905.
  • Barnett-Itzhaki Z, Eaton J, Hen I, et al. Heavy metal concentrations in drinking water in a country heavily reliant on desalination. Environ Sci Pollut Res. 2019;26(19):19991–19996.
  • Cangemi M, Madonia P, Albano L, et al. Heavy metal concentrations in the groundwater of the Barcellona-Milazzo Plain (Italy): contributions from geogenic and anthropogenic sources. Int J Environ Res Public Health. 2019;16(2):285.
  • Nkpaa K, Amadi B, Wegwu M. Hazardous metals levels in groundwater from Gokana, Rivers State, Nigeria: non-cancer and cancer health risk assessment. Hum Ecol Risk Assess Int J. 2018;24(1):214–224.
  • Hussain S, Habib-Ur-Rehman M, Khanam T, et al. Health risk assessment of different heavy metals dissolved in drinking water. Int J Environ Res Public Health. 2019;16(10):1737.
  • Mudhoo A, Garg VK, Wang S. Heavy metals: toxicity and removal by biosorption. In: E Lichtfouse, J Schwarzbauer, D Robert, editors. Environmental chemistry for a sustainable world: volume 2: remediation of air and water pollution. Dordrecht: Springer Netherlands; 2012. p. 379–442.
  • Tsezos M, Volesky B. The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol Bioeng. 1982;24(2):385–401.
  • Volesky B. Biosorption by fungal biomass. In: Volesky B., editor. Biosorption of heavy metals. Florida: CRC Press; 1990, p. 139–172.
  • Volesky B, May H, Holan Z. Cadmium biosorption by Saccharomyces cerevisiae. Biotechnol Bioeng. 1993;41(8):826–829.
  • Holan Z, Volesky B. Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng. 1994;43(11):1001–1009.
  • Fourest E, Volesky B. Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol. 1996;30(1):277–282.
  • Schiewer S, Volesky B. Modeling of the proton-metal ion exchange in biosorption. Environ Sci Technol. 1995;29(12):3049–3058.
  • Fourest E, Volesky B. Alginate properties and heavy metal biosorption by marine algae. Appl Biochem Biotechnol. 1997;67(3):215–226.
  • Figueira M, Volesky B, Ciminelli V, et al. Biosorption of metals in brown seaweed biomass. Water Res. 2000;34(1):196–204.
  • Volesky B. Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy. 2001;59(2-3):203–216.
  • Naja G, Volesky B. The mechanism of metal cation and anion biosorption. In: Kotrba P, Mackova M, Macek T, editors. Microbial biosorption of metals. Heidelberg: Springer; 2011. p. 19–58.
  • Gotoh T, Matsushima K, Kikuchi K-I. Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere. 2004;55(1):135–140.
  • da Silva Correia IK, Santos PF, Santana CS, et al. Application of coconut shell, banana peel, spent coffee grounds, eucalyptus bark, piassava (Attalea funifera) and water hyacinth (Eichornia crassipes) in the adsorption of Pb2+ and Ni2+ ions in water. J Environ Chem Eng. 2018;6(2):2319–2334.
  • Jarullah AA, Hassan KH, Alias MF. Removal of nickel (II) from aqueous solution using activated charcoal derived from the leaves of Bitter orange tree (Citrus aurantium). J Chem Chem Eng. 2012;6(11):1003.
  • Singh S, Tripathi A, Srivastava S. Comparative biosorption competencies of Ficus, Syzygium and Mangifera seeds for hexavalent chromium mitigation from polluted water. J Environ Biol. 2018;39(2):159–165.
  • Islam N, Habib A, Islam A, et al. Removal of copper from aqueous solution using orange peel, sawdust and bagasse. Pak J Anal Environ Chem. 2007;8(1):6.
  • McKay G, Porter JF. Equilibrium parameters for the sorption of copper, cadmium and zinc ions onto peat. J Chem Technol Biotechnol. 1997;69(3):309–320.
  • Suemitsu R, Uenishi R, Akashi I, et al. The use of dyestuff-treated rice hulls for removal of heavy metals from waste water. J Appl Polym Sci. 1986;31(1):75–83.
  • Hegazi HA. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J. 2013;9(3):276–282.
  • Larsen VJ, Schierup H-H. The use of straw for removal of heavy metals from waste water. J Environ Qual. 1981;10(2):188–193.
  • Reddad Z, Gerente C, Andres Y, et al. Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol. 2002;36(9):2067–2073.
  • Malik UR, Hasany SM, Subhani MS. Sunflower stem: a novel and economical scavenger for Hg (II) ions from aqueous solutions and its kinetic and thermodynamic investigation. Radiochim Acta. 2006;94(3):153–159.
  • Prasad A, Abdullah MA. Biosorption of Fe (II) from aqueous solution using tamarind bark and potato peel waste: equilibrium and kinetic studies. J Appl Sci Environ Sanit. 2009;4(3):273–282.
  • Orhan Y, Büyükgüngör H. The removal of heavy metals by using agricultural wastes. Water Sci Technol. 1993;28(2):247–255.
  • Scott CD. Removal of dissolved metals by plant tissue. Biotechnol Bioeng. 1992;39(10):1064–1068.
  • Krishnani K, Ayyappan S. Heavy metals remediation of water using plants and lignocellulosic agrowastes. In: de Voogt Pim, editor. Reviews of environmental contamination and toxicology. New York: Springer; 2006. p. 59–84.
  • Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci. 2005;30(1):38–70.
  • Schiewer S, Patil SB. Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics. Bioresour Technol. 2008;99(6):1896–1903.
  • Lesmana SO, Febriana N, Soetaredjo FE, et al. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J. 2009;44(1):19–41.
  • Schiewer S, Iqbal M. The role of pectin in Cd binding by orange peel biosorbents: a comparison of peels, depectinated peels and pectic acid. J Hazard Mater. 2010;177(1):899–907.
  • Aschemann-Witzel J, Gantriis RF, Fraga P, et al. Plant-based food and protein trend from a business perspective: markets, consumers, and the challenges and opportunities in the future. Crit Rev Food Sci Nutr. 2021;61(18):3119–3128.
  • Saari UA, Herstatt C, Tiwari R, et al. The vegan trend and the microfoundations of institutional change: a commentary on food producers’ sustainable innovation journeys in Europe. Trends Food Sci Technol. 2021;107:161–167.
  • Food and Agriculture Organization of the United Nations. [cited 05.12.2021]. Available from: https://www.fao.org/fruits-vegetables-2021/en/
  • Food and Agriculture Organization of the United Nations, Food and Agriculture Organization Statistics, 2019. [cited 10.08.2019]. Available from: https://www.fao.org/statistics/en/
  • Chand P, Pakade YB. Removal of Pb from water by adsorption on apple pomace: equilibrium, kinetics, and thermodynamics studies. J Chem. 2013;2013:1–9.
  • Kandari V, Gupta S. Bioconversion of vegetable and fruit peel wastes in viable product. J Microbiol Biotechnol Res. 2012;2(2):308–312.
  • Cecilia JA, García-Sancho C, Maireles-Torres PJ, et al.Biorefinery. Vol. 2019. Cham: Springer; .2019. p. 253–277.
  • Rashid N, Ashraf I, Ramzan S. Impacts of food industrial wastes on soil and its utilization as novel approach for value addition. In: Khosrow-Pour Mehdi, editor. Research anthology on food waste reduction and alternative diets for food and nutrition security. Hershey, PA: IGI Global; 2021. p. 652–669.
  • Gunjal BB. Value-added products from food waste. InGlobal Initiatives for Waste Reduction and Cutting Food Loss 2019: p. 20–30. IGI Global.
  • Massimi L, Giuliano A, Astolfi ML, et al. Efficiency evaluation of food waste materials for the removal of metals and metalloids from complex multi-element solutions. Materials (Basel). 2018;11(3):334.
  • Jain N. Removal of heavy metal by using different fruit peels, vegetable peels and organic waste- a review. Int J Adv Res (Indore). 2015;3(11):916–920.
  • Malik D, Jain C, Yadav AK. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Appl Water Sci. 2016;7(5):2113–2136.
  • Food and Agriculture Organization of the United Nations, Food and Agriculture Organization Statistics. 2019, Food and Agriculture Organization of the United Nations: Rome, Italy. [cited 10.08.2019]. Available from: http://www.fao.org/faostat/en/#data/QC/visualize
  • Lee S-H, Yang J-W. Removal of copper in aqueous solution by apple wastes. Sep Sci Technol. 1997;32(8):1371–1387.
  • Maranon E, Sastre H. Heavy metal removal in packed beds using apple wastes. Bioresour Technol. 1991;38(1):39–43.
  • Lee SH, Jung CH, Chung H, et al. Removal of heavy metals from aqueous solution by apple residues. Process Biochem. 1998;33(2):205–211.
  • Chand P, Bafana A, Pakade YB. Xanthate modified apple pomace as an adsorbent for removal of Cd (II), Ni (II) and Pb (II), and its application to real industrial wastewater. Int Biodeterior Biodegrad. 2015;97:60–66.
  • Mallampati R, Valiyaveettil S. Apple peels a versatile biomass for water purification? ACS Appl Mater Interfaces. 2013;5(10):4443–4449.
  • Annadurai G, Juang R, Lee D. Adsorption of heavy metals from water using banana and orange peels. Water Sci Technol. 2003;47(1):185–190.
  • Anwar J, Shafique U, Salman M, et al. Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana. Bioresour Technol. 2010;101(6):1752–1755.
  • Ince M, Ince OK, Yonten V, et al. Nickel, lead, and cadmium removal using a low-cost adsorbent-banana peel. At Spectrosc. 2016;37(3):125–130.
  • Yasim NSEM, Ismail ZS, Zaki SM, et al. Adsorption of Cu, As, Pb and Zn by banana trunk. Malaysian J Anal Sci. 2016;20(1):187–196.
  • Babarinde NA, Babalola JO, Adegoke J, et al. Kinetic, equilibrium and thermodynamic studies of the biosorption of Ni (II), Cr (III) and Co (II) from aqueous solutions using banana (Musa acuminata) leaf. Int J Phys Sci. 2012;7(9):1376–1385.
  • Amin M, Alazba A, Shafiq M. Removal of copper and lead using banana biochar in batch adsorption systems: isotherms and kinetic studies. Arab J Sci Eng. 2018;43(11):5711–5722.
  • Ali A, Saeed K, Mabood F. Removal of chromium (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent. Alexandria Eng J. 2016;55(3):2933–2942.
  • Ali A. Removal of Mn (II) from water using chemically modified banana peels as efficient adsorbent. Environ Nanotechnol Monit Manag. 2017;7:57–63.
  • Akkaya G, Güzel F. Optimization of copper and lead removal by a novel biosorbent: cucumber (Cucumis Sativus) peels—kinetic, equilibrium, and desorption studies. J Dispersion Sci Technol. 2013;34(10):1295–1307.
  • Pandey R, Ansari NG, Murthy R, et al. Cd (II) adsorption from aqueous solution onto Cucumis sativus peel: equilibrium, thermodynamic and kinetic study. J Ecophysiol Occup Health. 2013;13(3/4):75–84.
  • Pandey R, Ansari NG, Prasad RL, et al. Pb (II) removal from aqueous solution by cucumissativus (cucumber) peel: kinetic, equilibrium & thermodynamic study. Am J Environ Prot. 2014;2(3):51–58.
  • Basu M, Guha AK, Ray L. Adsorption of lead on cucumber peel. J Cleaner Prod. 2017;151:603–615.
  • Basu M, Guha AK, Ray L. Adsorption of cadmium on cucumber peel: kinetics, isotherm and co-ion effect. Indian Chem Eng. 2018;60(2):179–195.
  • Basu M, Guha A, Ray L. Adsorption of cadmium ions by cucumber peel in continuous mode. Int J Environ Sci Technol. 2019;16(1):237–248.
  • Pandey R, Ansari NG, Prasad RL, et al. Removal of Cd (II) ions from simulated wastewater by HCl modified Cucumis sativus peel: equilibrium and kinetic study. Air Soil Water Res. 2014;7:93–101.
  • Al-Qahtani KM. Water purification using different waste fruit cortexes for the removal of heavy metals. J Taibah Univ Sci. 2016;10(5):700–708.
  • Gönen F, Serin DS. Adsorption study on orange peel: removal of Ni (II) ions from aqueous solution. Afr J Biotechnol. 2012;11(5):1250–1258.
  • Amin MT, Alazba AA, Amin MN. Absorption behaviours of copper, lead, and arsenic in aqueous solution using date palm fibres and orange peel: kinetics and thermodynamics. Pol J Environ Stud. 2017;26(2):543–557.
  • Mireles S, Parsons J, Trad T, et al. Lead removal from aqueous solutions using biochars derived from corn stover, orange peel, and pistachio shell. Int J Environ Sci Technol. 2019;16:1–10.
  • Feng N, Guo X, Liang S, et al. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J Hazard Mater. 2011;185(1):49–54.
  • Marín AP, Ortuno J, Aguilar M, et al. Use of chemical modification to determine the binding of Cd (II), Zn (II) and Cr (III) ions by orange waste. Biochem Eng J. 2010;53(1):2–6.
  • Mutongo F, Kuipa O, Kuipa PK. Removal of Cr (VI) from aqueous solutions using powder of potato peelings as a low cost sorbent. Bioinorg Chem Appl. 2014;2014:973153.
  • Sun Y, Yang G, Zhang L. Biosorption of heavy metals: a case study using potato peel waste. Desalin Water Treat. 2017;83:159–167.
  • El-Azazy M, El-Shafie AS, Issa AA, et al. Potato peels as an adsorbent for heavy metals from aqueous solutions: eco-structuring of a green adsorbent operating Plackett–Burman design. J Chem. 2019;2019:4926240.
  • Aman T, Kazi AA, Sabri MU, et al. Potato peels as solid waste for the removal of heavy metal copper (II) from waste water/industrial effluent. Colloids Surf B. 2008;63(1):116–121.
  • Pillai SS, Mullassery MD, Fernandez NB, et al. Biosorption of Cr (VI) from aqueous solution by chemically modified potato starch: equilibrium and kinetic studies. Ecotoxicol Environ Saf. 2013;92:199–205.
  • Feizi M, Jalali M. Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues. J Taiwan Inst Chem Eng. 2015;54:125–136.
  • King AH. Brown seaweed extracts (alginates). Food Hydrocoll. 1983;2:115–188.
  • Wang S, Vincent T, Faur C, et al. Alginate and algal-based beads for the sorption of metal cations: Cu (II) and Pb (II). Int J Mol Sci. 2016;17(9):1453.
  • Banerjee S, Banerjee A, Sarkar P. Statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads. J Environ Sci Health A. 2018;53(5):436–442.
  • Edyvean R, Williams C, Wilson M, et al. Biosorption using unusual biomasses. London: CRC Press; 1997.
  • Volesky B, Holan Z. Biosorption of heavy metals. Biotechnol Prog. 1995;11(3):235–250.
  • Aderhold D, Williams C, Edyvean R. The removal of heavy-metal ions by seaweeds and their derivatives. Bioresour Technol. 1996;58(1):1–6.
  • Chen JP, Wang L. Characterization of a Ca-alginate based ion-exchange resin and its applications in lead, copper, and zinc removal. Sep Sci Technol. 2001;36(16):3617–3637.
  • Fiset J-F, Blais J-F, Riveros PA. Review on the removal of metal ions from effluents using seaweeds, alginate derivatives and other sorbents. Revue des sciences de l'eau/J Water Sci. 2008;21(3):283–308.
  • Bhattacharyya A, Dutta S, De P, et al. Removal of mercury (II) from aqueous solution using papain immobilized on alginate bead: optimization of immobilization condition and modeling of removal study. Bioresour Technol. 2010;101(24):9421–9428.
  • Pathak PD, Mandavgane SA, Kulkarni BD. Fruit peel waste as a novel low-cost bio adsorbent. Rev Chem Eng. 2015;31(4):361–381.
  • Sun J, Yin L, Huang K, et al. Removal of cadmium from a citrate-bearing solution by floatable microsized garlic peel. RSC Adv. 2018;8(50):28284–28292.
  • Singh RJ, Martin CE, Barr D, et al. Immobilised apple peel bead biosorbent for the simultaneous removal of heavy metals from cocktail solution. Cogent Environ Sci. 2019;5(1):1673116.
  • Singh RJ, Martin CE, Barr D, et al. Cucumber peel bead biosorbent for multi-ion decontamination of drinking water collected from a mine region. N Z Environ Technol. 2019;42:1–34.
  • Nathan RJ, Barr D, Rosengren RJ. Six fruit and vegetable peel beads for the simultaneous removal of heavy metals by biosorption. Environ Technol. 2022;43(13):1935–1952.
  • Ullah I, Nadeem R, Iqbal M, et al. Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecol Eng. 2013;60:99–107.
  • Jain M, Garg V, Kadirvelu K, et al. Combined effect of sunflower stem carbon–calcium alginate beads for the removal and recovery of chromium from contaminated water in column mode. Ind Eng Chem Res. 2015;54(5):1419–1425.
  • Nadeem R, Manzoor Q, Iqbal M, et al. Biosorption of Pb (II) onto immobilized and native Mangifera indica waste biomass. J Ind Eng Chem. 2016;35:185–194.
  • Park D, Yun Y-S, Park JM. The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng. 2010;15(1):86–102.
  • Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv. 2009;27(2):195–226.
  • De Gisi S, Lofrano G, Grassi M, et al. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustainable Mater Technol. 2016;9:10–40.
  • Yang X, Wan Y, Zheng Y, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J. 2019;366:608–621.
  • Plazinski W. Binding of heavy metals by algal biosorbents. Theoretical models of kinetics, equilibria and thermodynamics. Adv Colloid Interface Sci. 2013;197:58–67.
  • Ho Y-S, McKay G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot. 1998;76(4):332–340.
  • Dinh VP, Le HM, Nguyen VD, et al. Insight into the adsorption mechanisms of methylene blue and chromium (III) from aqueous solution onto pomelo fruit peel. RSC Adv. 2019;9(44):25847–25860.
  • Schiewer S, Balaria A. Biosorption of Pb2 + by original and protonated citrus peels: equilibrium, kinetics, and mechanism. Chem Eng J. 2009;146(2):211–219.
  • Netzahuatl-Munoz AR, Guillén-Jiménez FDM, Chávez-Gómez B, et al. Kinetic study of the effect of pH on hexavalent and trivalent chromium removal from aqueous solution by cupressus lusitanica bark. Water Air Soil Pollut. 2012;223:625–641.
  • Farooq U, Khan MA, Athar M. Triticum aestivum: a novel biosorbent for lead (II) ions. Agrochimica. 2007;51(6):309–318.
  • Bashir A, Malik LA, Ahad S, et al. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett. 2019;17(2):729–754.
  • Ngah WW, Fatinathan S. Pb (II) biosorption using chitosan and chitosan derivatives beads: equilibrium, ion exchange and mechanism studies. J Environ Sci. 2010;22(3):338–346.
  • Salman M, Athar M, Farooq U. Biosorption of heavy metals from aqueous solutions using indigenous and modified lignocellulosic materials. Rev Environ Sci Bio/Technol. 2015;14(2):211–228.
  • Ngwenya BT, Tourney J, Magennis M, et al. A surface complexation framework for predicting water purification through metal biosorption. Desalination. 2009;248(1-3):344–351.
  • Fomina M, Gadd GM. Biosorption: current perspectives on concept, definition and application. Bioresour Technol. 2014;160:3–14.
  • Qi BC, Aldrich C. Biosorption of heavy metals from aqueous solutions with tobacco dust. Bioresour Technol. 2008;99(13):5595–5601.
  • Schneider IA, Rubio J, Smith RW. Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation? Int J Miner Process. 2001;62(1-4):111–120.
  • Golab Z, Smith RW. Accumulation of lead in two fresh water algae. Miner Eng. 1992;5(9):1003–1010.
  • Aeisyah A, Ismail M, Lias K, et al. Adsorption process of heavy metals by low-cost adsorbent: a review. World Appl Sci J. 2013;28(11):1518–1530.
  • Oliveira R, Palmieri M, Garcia Jr O. Biosorption of metals: state of the art, general features, and potential applications for environmental and technological processes. In: Progress in biomass and bioenergy production. 2011, Intech.
  • Liu Z-R, Chen X-S, Zhou L-M, et al. Development of a first-order kinetics-based model for the adsorption of nickel onto peat. Mining Sci Technol (China). 2009;19(2):230–234.
  • Zubair A, Bhatti HN, Hanif MA, et al. Kinetic and equilibrium modeling for Cr (III) and Cr (VI) removal from aqueous solutions by Citrus reticulata waste biomass. Water, Air, Soil Pollut. 2008;191(1-4):305–318.
  • Xuan Z, Tang Y, Li X, et al. Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto pretreated chemically modified orange peel. Biochem Eng J. 2006;31(2):160–164.
  • Djeribi R, Hamdaoui O. Sorption of copper (II) from aqueous solutions by cedar sawdust and crushed brick. Desalination. 2008;225(1-3):95–112.
  • Trgo M, Perić J, Medvidović NV. Investigations of different kinetic models for zinc ions uptake by a natural zeolitic tuff. J Environ Manag. 2006;79(3):298–304.
  • Tan K, Hameed B. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng. 2017;74:25–48.
  • Ofomaja A, Naidoo E, Modise S. Dynamic studies and pseudo-second order modeling of copper (II) biosorption onto pine cone powder. Desalination. 2010;251(1-3):112–122.
  • Gupta SS, Bhattacharyya KG. Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Colloid Interface Sci. 2011;162(1-2):39–58.
  • Chen J, Tendeyong F, Yiacoumi S. Equilibrium and kinetic studies of copper ion uptake by calcium alginate. Environ Sci Technol. 1997;31(5):1433–1439.
  • Al-Degs YS, El-Barghouthi MI, Issa AA, et al. Sorption of Zn (II), Pb (II), and Co (II) using natural sorbents: equilibrium and kinetic studies. Water Res. 2006;40(14):2645–2658.
  • Kumar AA, Hashimi SA, Hilal N. Investigation of kinetics and mechanism involved in the biosorption of heavy metals on activated sludge. Int J Green Energy. 2008;5(4):313–321.
  • Plazinski W. Applicability of the film-diffusion model for description of the adsorption kinetics at the solid/solution interfaces. Appl Surf Sci. 2010;256(17):5157–5163.
  • Sudha R, Srinivasan K. Equilibrium and kinetic studies on Ni (II) removal from aqueous solution by Citrus Limettioides peel and its carbon adsorbent. Indian J Chem Technol. 2015;22:126–134.
  • Lagergren SK. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl. 1898;24:1–39.
  • Romero-Cano LA, García-Rosero H, Gonzalez-Gutierrez LV, et al. Functionalized adsorbents prepared from fruit peels: equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution. J Cleaner Prod. 2017;162:195–204.
  • Plazinski W, Dziuba J, Rudzinski W. Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption. 2013;19(5):1055–1064.
  • Febrianto J, Kosasih AN, Sunarso J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater. 2009;162(2):616–645.
  • Abramian L, El-Rassy H. Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem Eng J. 2009;150(2-3):403–410.
  • Lasheen MR, Ammar NS, Ibrahim HS. Adsorption/desorption of Cd (II), Cu (II) and Pb (II) using chemically modified orange peel: equilibrium and kinetic studies. Solid State Sci. 2012;14(2):202–210.
  • Afroze S, Sen TK. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 2018;229(225):1–50.
  • Krishnani KK, Meng X, Christodoulatos C, et al. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater. 2008;153(3):1222–1234.
  • Farooq U, Kozinski JA, Khan MA, et al. Biosorption of heavy metal ions using wheat based biosorbents–a review of the recent literature. Bioresour Technol. 2010;101(14):5043–5053.
  • Naseem K, Huma R, Shahbaz A, et al. Extraction of heavy metals from aqueous medium by husk biomass: adsorption isotherm, kinetic and thermodynamic study. Zeitschrift für Physikalische Chemie. 2019;233(2):201–223.
  • Kratochvil D, Volesky B. Advances in the biosorption of heavy metals. Trends Biotechnol. 1998;16(7):291–300.
  • Gautam RK, Mudhoo A, Lofrano G, et al. Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng. 2014;2(1):239–259.
  • Ogunleye OO, Ajala MA, Agarry SE. Evaluation of biosorptive capacity of banana (Musa paradisiaca) stalk for lead (II) removal from aqueous solution. J Environ Prot (Irvine, Calif). 2014;5(15):1451.
  • Nethaji S, Sivasamy A, Thennarasu G, et al. Adsorption of Malachite green dye onto activated carbon derived from Borassus aethiopum flower biomass. J Hazard Mater. 2010;181(1-3):271–280.
  • Vieira J, Soares L, Froes-Silva R. Comparing chemometric and Langmuir isotherm for determination of maximum capacity adsorption of arsenic by a biosorbent. Microchem J. 2018;137:324–328.
  • Sharma M, Singh J, Hazra S, et al. Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ ZnO monoliths: adsorption and kinetic studies. Microchem J. 2019;145:105–112.
  • Volesky B. Biosorption and me. Water Res. 2007;41(18):4017–4029.
  • Stavrinou A, Aggelopoulos C, Tsakiroglou C. Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: adsorption kinetics and equilibrium isotherms as a tool. J Environ Chem Eng. 2018;6(6):6958–6970.
  • Rehman S, Tariq M, Shah JA, et al. Simultaneous physisorption and chemisorption of reactive Orange 16 onto hemp stalks activated carbon: proof from isotherm modeling. Biointerface Res Appl Chem. 2017;7(2):2021–2029.
  • Araújo CS, Almeida IL, Rezende HC, et al. Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem J. 2018;137:348–354.
  • Mondal NK, Samanta A, Chakraborty S, et al. Enhanced chromium (VI) removal using banana peel dust: isotherms, kinetics and thermodynamics study. Sustain Water Resour Manag. 2018;4(3):489–497.
  • Iftikhar AR, Bhatti HN, Hanif MA, et al. Kinetic and thermodynamic aspects of Cu (II) and Cr (III) removal from aqueous solutions using rose waste biomass. J Hazard Mater. 2009;161(2-3):941–947.
  • Vijayaraghavan K, Yun Y-S. Bacterial biosorbents and biosorption. Biotechnol Adv. 2008;26(3):266–291.
  • Liu Y. Is the free energy change of adsorption correctly calculated? J Chem Eng Data. 2009;54(7):1981–1985.
  • Basha S, Murthy Z, Jha B. Kinetics, isotherms, and thermodynamics of Hg (II) biosorption onto Carica papaya. Biorem J. 2011;15(1):26–34.
  • Burakov AE, Galunin EV, Burakova IV, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf. 2018;148:702–712.
  • Nathan RJ, Martin CE, Barr D, et al. Simultaneous removal of heavy metals from drinking water by banana, orange and potato peel beads: a study of biosorption kinetics. Appl Water Sci. 2021;11(7):1–5.
  • Kurniawan TA, Chan GY, Lo W-h, et al. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ. 2006;366(2):409–426.
  • Neris JB, Luzardo FHM, da Silva EGP, et al. Evaluation of adsorption processes of metal ions in multi-element aqueous systems by lignocellulosic adsorbents applying different isotherms: a critical review. Chem Eng J. 2018;357:404–420.
  • Hadi P, Barford J, McKay G. Synergistic effect in the simultaneous removal of binary cobalt–nickel heavy metals from effluents by a novel e-waste-derived material. Chem Eng J. 2013;228:140–146.
  • Martino FAR, Sánchez MLF, Medel AS. Total determination of essential and toxic elements in milk whey by double focusing ICP-MS. J Anal At Spectrom. 2000;15(2):163–168.
  • van de Wiel HJ. Determination of elements by ICP-AES and ICP-MS. Bilthoven (Netherlands): National Institute of Public Health and the Environment (RIVM). 2003; p. 1–19.
  • May TW, Wiedmeyer RH. The CETAC ADX-500 autodiluter system: a study of dilution performance with the ELAN 6000 ICP-MS and ELAN software. At Spectrosc. 1998;19(5):143–149.
  • Ammann AA. Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool. J Mass Spectrom. 2007;42(4):419–427.
  • Fong BMW, Siu TS, Lee JSK, et al. Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry. J Anal Toxicol. 2007;31(5):281–287.
  • Tyler G, Jobin Yvon S. ICP-OES, ICP-MS and AAS techniques compared. ICP Optical Emission Spectroscopy Technical Note, 1995. p. 5.
  • Gray PJ, Mindak W, Cheng J. Inductively coupled plasma-mass spectrometric determination of arsenic, cadmium, chromium, lead, mercury, and other elements in food using microwave assisted digestion version 1.1. Elemental Analysis Manual, US Food and Drug Administration, 2015.
  • Konarska A. The structure of the fruit peel in two varieties of Malus domestica Borkh.(Rosaceae) before and after storage. Protoplasma. 2013;250(3):701–714.
  • Vu HC, Dwivedi AD, Le TT, et al. Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr (VI) and As (V) from aqueous solutions: role of crosslinking metal cations in pH control. Chem Eng J. 2017;307:220–229.
  • Oyewo O, Onyango M, Wolkersdorfer C. Lanthanides removal from mine water using banana peels nanosorbent. Int J Environ Sci Technol. 2018;15(6):1265–1274.
  • Al Akeel K. Empirical investigation of water pollution control through use of Phragmites australis. 2013, Brunel University School of Engineering and Design PhD Theses.
  • Iqbal M, Saeed A, Zafar SI. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd 2+ and Pb2+ removal by mango peel waste. J Hazard Mater. 2009;164(1):161–171.
  • Kaewsarn P, Saikaew W, Wongcharee S. Dried biosorbent derived from banana peel: a potential biosorbent for removal of cadmium ions from aqueous solution. In: The 18th Thailand Chemical Engineering and Applied Chemistry Conference. 2008, Pattaya Thailand.
  • Maranon E, Sastre H. Behaviour of lignocellulosic apple residues in the sorption of trace metals in packed beds. React Polym. 1992;18(2):173–176.
  • Maranon E, Sastre H. Preconcentration and removal of trace metals from water by apple waste. Bioresour Technol. 1992;40(1):73–76.
  • Senthilkumaar S, Bharathi S, Nithyanandhi D, et al. Biosorption of toxic heavy metals from aqueous solutions. Bioresour Technol. 2000;75(2):163–165.
  • Chand P, Shil AK, Sharma M, et al. Improved adsorption of cadmium ions from aqueous solution using chemically modified apple pomace: mechanism, kinetics, and thermodynamics. Int Biodeterior Biodegrad. 2014;90:8–16.
  • Thirumavalavan M, Lai Y-L, Lee J-F. Fourier transform infrared spectroscopic analysis of fruit peels before and after the adsorption of heavy metal ions from aqueous solution. J Chem Eng Data. 2011;56(5):2249–2255.
  • Feng N-c, Guo X-y. Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Trans Nonferrous Met Soc China. 2012;22(5):1224–1231.
  • Miretzky P, Cirelli AF. Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mater. 2010;180(1):1–19.
  • Abdolali A, Guo W, Ngo H, et al. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol. 2014;160:57–66.
  • Pielesz A, Bąk MKK. Raman spectroscopy and WAXS method as a tool for analysing ion-exchange properties of alginate hydrogels. Int J Biol Macromol. 2008;43(5):438–443.
  • Kamsonlian S, Suresh S, Majumder C, et al. Characterization of banana and orange peels: biosorption mechanism. Int J Sci Technol Manag. 2011;2(4):1–7.
  • Ajmani A, Shahnaz T, Narayanan S, et al. Equilibrium, kinetics and thermodynamics of hexavalent chromium biosorption on pristine and zinc chloride activated Senna siamea seed pods. Chem Ecol. 2019;35(4):1–18.
  • Sahmoune MN. Thermodynamic properties of heavy metals ions adsorption by green adsorbents. In: Crini Grégorio, editor. Green adsorbents for pollutant removal. Cham: Springer; 2018. p. 193–213.
  • Zhu H, Jia Y, Wu X, et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater. 2009;172(2-3):1591–1596.
  • Aliabadi M, Irani M, Ismaeili J, et al. Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chem Eng J. 2013;220:237–243.
  • Memon JR, Memon SQ, Bhanger M, et al. Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal. Colloids Surf B. 2008;66(2):260–265.
  • Mohamed HS, Soliman N, Abdelrheem DA, et al. Adsorption of Cd2 + and Cr3 + ions from aqueous solutions by using residue of Padina gymnospora waste as promising low-cost adsorbent. Heliyon. 2019;5(3):e01287.
  • Azouaou N, Sadaoui Z, Djaafri A, et al. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. J Hazard Mater. 2010;184(1-3):126–134.
  • Chen Y, Wang H, Zhao W, et al. Four different kinds of peels as adsorbents for the removal of Cd (II) from aqueous solution: kinetics, isotherm and mechanism. J Taiwan Inst Chem Eng. 2018;88:146–151.
  • Pérez-Marín A, Zapata VM, Ortuno J, et al. Removal of cadmium from aqueous solutions by adsorption onto orange waste. J Hazard Mater. 2007;139(1):122–131.
  • Ozdes D, Gundogdu A, Kemer B, et al. Assessment of kinetics, thermodynamics and equilibrium parameters of Cr (VI) biosorption onto Pinus brutia Ten. Can J Chem Eng. 2014;92(1):139–147.
  • Saha R, Mukherjee K, Saha I, et al. Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Res Chem Intermed. 2013;39(5):2245–2257.
  • Sampaio CDG, Silva JGAE, De Brito ES, et al. Chromium (VI) remediation in aqueous solution by waste products (peel and seed) of mango (Mangifera indica L.) cultivars. Environ Sci Pollut Res. 2019;26:5588–5600.
  • Rane NM, Sapkal R. Chromium (VI) removal by using orange peel powder in batch adsorption. Carbon N Y. 2014;5(8):22–29.
  • Khiari B, Wakkel M, Abdelmoumen S, et al. Dynamics and kinetics of cupric ion removal from wastewaters by Tunisian solid crude olive-oil waste. Materials (Basel). 2019;12(365):1–23.
  • Amin M, Alazba A, Shafiq M. Application of the biochar derived from orange peel for effective biosorption of copper and cadmium in batch studies: isotherm models and kinetic studies. Arabian J Geosci. 2019;12(2):46.
  • Pouya MR, Behnam S. Adsorption behavior of copper ions on alga Jania adhaerens through SEM and FTIR analyses. Sep Sci Technol. 2017;52(13):2062–2068.
  • Sirilamduan C, Umpuch C, Kaewsarn P. Removal of copper from aqueous solutions by adsorption using modify Zalacca edulis peel modify. Songklanakarin J Sci Technol. 2011;33(6):725–732.
  • Chen H, Dai G, Zhao J, et al. Removal of copper (II) ions by a biosorbent—Cinnamomum camphora leaves powder. J Hazard Mater. 2010;177(1-3):228–236.
  • Ofomaja AE. Intraparticle diffusion process for lead (II) biosorption onto mansonia wood sawdust. Bioresour Technol. 2010;101(15):5868–5876.
  • Yahaya YA, Don MM, Bhatia S. Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: equilibrium and kinetic studies. J Hazard Mater. 2009;161(1):189–195.
  • Sheng PX, Wee KH, Ting YP, et al. Biosorption of copper by immobilized marine algal biomass. Chem Eng J. 2008;136(2-3):156–163.
  • Bhatti HN, Khalid R, Hanif MA. Dynamic biosorption of Zn (II) and Cu (II) using pretreated Rosa gruss an teplitz (red rose) distillation sludge. Chem Eng J. 2009;148(2-3):434–443.
  • Khambhaty Y, Mody K, Basha S, et al. Hg (II) removal from aqueous solution by dead fungal biomass of marine Aspergillus niger: kinetic studies. Sep Sci Technol. 2008;43(5):1221–1238.
  • Esmaeili A, Saremnia B, Kalantari M. Removal of mercury (II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata. Arabian J Chem. 2015;8(4):506–511.
  • Santana AJ, dos Santos WN, Silva LO, et al. Removal of mercury (II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies. Environ Monit Assess. 2016;188(5):293.
  • Husein DZ. Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel. Desalin Water Treat. 2013;51(34-36):6761–6769.
  • Tejada-Tovar C, Villabona-Ortiz Á, Garcés-Jaraba LE. Kinetics of adsorption in mercury removal using cassava (Manhiot esculenta) and lemon (Citrus limonum) wastes modified with citric acid. Ingeniería y Universidad. 2015;19(2):283–298.
  • Li S, Zeng Z, Xue W. Adsorption of lead ion from aqueous solution by modified walnut shell: kinetics and thermodynamics. Environ Technol. 2018;40(14):1–11.
  • Pavan FA, Mazzocato AC, Jacques RA, et al. Ponkan peel: a potential biosorbent for removal of Pb (II) ions from aqueous solution. Biochem Eng J. 2008;40(2):357–362.
  • Beidokhti MZ, Naeeni STO, Abdi Ghahroudi MS. Biosorption of nickel (II) from aqueous solutions onto pistachio hull waste as a low-cost biosorbent. Civil Eng J. 2019;5(2):447–457.
  • Futalan CM, Kim J, Yee J-J. Adsorptive treatment via simultaneous removal of copper, lead and zinc from soil washing wastewater using spent coffee grounds. Water Sci Technol. 2019;79(6):1029–1041.
  • Yu X-L, He Y. Optimal ranges of variables for an effective adsorption of lead (II) by the agricultural waste pomelo (Citrus grandis) peels using Doehlert designs. Sci Rep. 2018;8(1):729.
  • Obike A, Igwe J, Emeruwa C, et al. Equilibrium and kinetic studies of Cu (II), Cd (II), Pb (II) and Fe (II) adsorption from aqueous solution using Cocoa (Theobroma cacao) pod husk. J Appl Sci Environ Manag. 2018;22(2):182–190.
  • Sulaymon AH, Mohammed AA, Al-Musawi TJ. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environ Sci Pollut Res. 2013;20(5):3011–3023.
  • Gill R, Mahmood A, Nazir R. Biosorption potential and kinetic studies of vegetable waste mixture for the removal of Nickel (II). J Mater Cycles Waste Manag. 2013;15(2):115–121.
  • Shinde NR, Bankar AV, Kumar AR, et al. Removal of Ni (II) ions from aqueous solutions by biosorption onto two strains of Yarrowia lipolytica. J Environ Manag. 2012;102:115–124.
  • Işik M. Biosorption of Ni (II) from aqueous solutions by living and non-living ureolytic mixed culture. Colloids Surf B. 2008;62(1):97–104.
  • Priyantha N, Kotabewatta P. Biosorption of heavy metal ions on peel of Artocarpus nobilis fruit: 1—Ni (II) sorption under static and dynamic conditions. Appl Water Sci. 2019;9(2):37.
  • Yavuz Ö, Altunkaynak Y, Güzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res. 2003;37(4):948–952.
  • Li X, Tang Y, Cao X, et al. Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel. Colloids Surf, A. 2008;317(1):512–521.
  • Kalyani S, Rao PS, Krishnaiah A. Removal of nickel (II) from aqueous solutions using marine macroalgae as the sorbing biomass. Chemosphere. 2004;57(9):1225–1229.
  • Gupta S, Kumar A. Removal of nickel (II) from aqueous solution by biosorption on A. barbadensis Miller waste leaves powder. Appl Water Sci. 2019;9(4):96.
  • Lam YF, Lee LY, Chua SJ, et al. Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly Lansium domesticum peel biosorbent. Ecotoxicol Environ Saf. 2016;127:61–70.
  • Torab-Mostaedi M, Asadollahzadeh M, Hemmati A, et al. Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J Taiwan Inst Chem Eng. 2013;44(2):295–302.
  • Cataldo S, Cavallaro G, Gianguzza A, et al. Kinetic and equilibrium study for cadmium and copper removal from aqueous solutions by sorption onto mixed alginate/pectin gel beads. J Environ Chem Eng. 2013;1(4):1252–1260.
  • Waweru BW, Mwangi IW, Murungi J, et al. Remediation of lead, cadmium and copper polluted waters by onion skins (Allium Cepa). Int J Agric Innovations Res. 2016;4(5):932–943.
  • Moussavi G, Barikbin B. Biosorption of chromium (VI) from industrial wastewater onto pistachio hull waste biomass. Chem Eng J. 2010;162(3):893–900.
  • Ramavandi B, Asgari G, Faradmal J, et al. Abatement of Cr (VI) from wastewater using a new adsorbent, cantaloupe peel: taguchi L 16 orthogonal array optimization. Korean J Chem Eng. 2014;31(12):2207–2214.
  • Memon JR, Memon SQ, Bhanger MI, et al. Banana peel: a green and economical sorbent for the selective removal of Cr (VI) from industrial wastewater. Colloids Surf B. 2009;70(2):232–237.
  • Brdar M, Šćiban M, Takači A, et al. Comparison of two and three parameters adsorption isotherm for Cr (VI) onto Kraft lignin. Chem Eng J. 2012;183:108–111.
  • Ben-Ali S, Jaouali I, Souissi-Najar S, et al. Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. J Cleaner Prod. 2017;142:3809–3821.
  • Rinaldi R, Yasdi Y, Hutagalung WLC. Removal of Ni (II) and Cu (II) ions from aqueous solution using rambutan fruit peels (Nephelium lappaceum L.) as adsorbent. In: AIP Conference Proceedings, 2018. 2026(1): 020098. AIP Publishing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.