4,459
Views
50
CrossRef citations to date
0
Altmetric
Review

Molting in C. elegans

&
Article: e1330246 | Received 31 Mar 2017, Accepted 09 May 2017, Published online: 08 Jun 2017

References

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 1997; 387:489-93; PMID:9168109; https://doi.org/10.1038/387489a0
  • Telford MJ, Bourlat SJ, Economou A, Papillon D, Rota-Stabelli O. The evolution of the Ecdysozoa. Philos Trans R Soc Lond B Biol Sci 2008; 363:1529-37; PMID:18192181; https://doi.org/10.1098/rstb.2007.2243
  • Bakhetia M, Charlton W, Atkinson HJ, McPherson MJ. RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Mol Plant Microbe Interact 2005; 18:1099-106; PMID:16255249; https://doi.org/10.1094/MPMI-18-1099
  • Charlton WL, Harel HY, Bakhetia M, Hibbard JK, Atkinson HJ, McPherson MJ. Additive effects of plant expressed double-stranded RNAs on root-knot nematode development. Int J Parasitol 2010; 40:855-64; PMID:20100489; https://doi.org/10.1016/j.ijpara.2010.01.003
  • Page AP, Stepek G, Winter AD, Pertab D. Enzymology of the nematode cuticle: A potential drug target? Int J Parasitol Drugs Drug Resist 2014; 4:133-41; PMID:25057463; https://doi.org/10.1016/j.ijpddr.2014.05.003
  • Kumar S, Chaudhary K, Foster JM, Novelli JF, Zhang Y, Wang S, Spiro D, Ghedin E, Carlow CK. Mining predicted essential genes of Brugia malayi for nematode drug targets. PLoS One 2007; 2:e1189; PMID:18000556; https://doi.org/10.1371/journal.pone.0001189
  • Riddle DL, Blumenthal T, Meyer BM, Priess JR. C. ELEGANS II. Cold Spring Harbor Press, 1997.
  • Lambert K, Bekal S. Introduction to Plant-Parasitic Nematodes. The Plant Health Instructor 2002; https://doi.org/10.1094/PHI-I-2002-1218-01
  • Bird AF. The Attractiveness of Roots To the Plant Parasitic Nematodes Meloidogyne Javanica and M. Hapla. Nematologica 1959; 4:322-35; https://doi.org/10.1163/187529259X00534 10.1163/187529259X00345
  • Bird AF, Bird J. The Structure of Nematodes, Second edition. Academic Press, INC., 1991
  • Roberts FHS. The large roundworm of pigs, Ascaris lumbricoides L., 1758 : its life history in Queensland, economic importance and control. Brisbane: Dept. of Agriculture and Stock 1934
  • Watson BD. The fine structure of the body-wall and the growth of the cuticle in the adult nematode Ascaris lumbricoides. J Cell Sci 1965; s3–106:83-91
  • Knight CG, Patel MN, Azevedo RB, Leroi AM. A novel mode of ecdysozoan growth in Caenorhabditis elegans. Evol Dev 2002; 4:16-27; PMID:11871396; https://doi.org/10.1046/j.1525-142x.2002.01058.x
  • Costa M, Draper BW, Priess JR. The role of actin filaments in patterning the Caenorhabditis elegans cuticle. Dev Biol 1997; 184:373-84; PMID:9133443; https://doi.org/10.1006/dbio.1997.8530
  • Hall DH, Altun ZF. C. elegans Atlas. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2008
  • Rougvie AE, Ambros V. The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans. Development 1995; 121:2491-500; PMID:7671813
  • Cox GN, Kusch M, Edgar RS. Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol 1981; 90:7-17; PMID:7251677; https://doi.org/10.1083/jcb.90.1.7
  • Feng L, Shou Q, Butcher RA. Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans. Biochem J 2016; 473:1507-21; PMID:27009306; https://doi.org/10.1042/BCJ20160142
  • Villavedra M, To J, Lemke S, Birch D, Crosbie P, Adams M, Broady K, Nowak B, Raison RL, Wallach M. Characterisation of an immunodominant, high molecular weight glycoprotein on the surface of infectious Neoparamoeba spp., causative agent of amoebic gill disease (AGD) in Atlantic salmon. Fish Shellfish Immunol 2010; 29:946-55; PMID:20708082; https://doi.org/10.1016/j.fsi.2010.07.036
  • Politz SM, Philipp M, Estevez M, O'Brien PJ, Chin KJ. Genes that can be mutated to unmask hidden antigenic determinants in the cuticle of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 1990; 87:2901-5; PMID:1691498; https://doi.org/10.1073/pnas.87.8.2901
  • Link CD, Silverman MA, Breen M, Watt KE, Dames SA. Characterization of Caenorhabditis elegans lectin-binding mutants. Genetics 1992; 131:867-81; PMID:1516818
  • Darby C, Chakraborti A, Politz SM, Daniels CC, Tan L, Drace K. Caenorhabditis elegans mutants resistant to attachment of Yersinia biofilms. Genetics 2007; 176:221-30; PMID:17339204; https://doi.org/10.1534/genetics.106.067496
  • Gravato-Nobre MJ, Nicholas HR, Nijland R, O'Rourke D, Whittington DE, Yook KJ, Hodgkin J. Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 2005; 171:1033-45; PMID:16079230; https://doi.org/10.1534/genetics.105.045716
  • Drace K, McLaughlin S, Darby C. Caenorhabditis elegans BAH-1 is a DUF23 protein expressed in seam cells and required for microbial biofilm binding to the cuticle. PLoS One 2009; 4:e6741; PMID:19707590; https://doi.org/10.1371/journal.pone.0006741
  • Partridge FA, Tearle AW, Gravato-Nobre MJ, Schafer WR, Hodgkin J. The C. elegans glycosyltransferase BUS-8 has two distinct and essential roles in epidermal morphogenesis. Dev Biol 2008; 317:549-59; PMID:18395708; https://doi.org/10.1016/j.ydbio.2008.02.060
  • Fujimoto D, Kanaya S. Cuticlin: a noncollagen structural protein from Ascaris cuticle. Arch Biochem Biophys 1973; 157:1-6; PMID:4352055; https://doi.org/10.1016/0003-9861(73)90382-2
  • Betschart B, Marti S, Glaser M. Antibodies against the cuticlin of Ascaris suum cross-react with epicuticular structures of filarial parasites. Acta Trop 1990; 47:331-8; PMID:1978533; https://doi.org/10.1016/0001-706X(90)90034-W
  • Sapio MR, Hilliard MA, Cermola M, Favre R, Bazzicalupo P. The Zona Pellucida domain containing proteins, CUT-1, CUT-3 and CUT-5, play essential roles in the development of the larval alae in Caenorhabditis elegans. Dev Biol 2005; 282:231-45; PMID:15936343; https://doi.org/10.1016/j.ydbio.2005.03.011
  • Lassandro F, Sebastiano M, Zei F, Bazzicalupo P. The role of dityrosine formation in the crosslinking of CUT-2, the product of a second cuticlin gene of Caenorhabditis elegans. Mol Biochem Parasitol 1994; 65:147-59; PMID:7935621; https://doi.org/10.1016/0166-6851(94)90123-6
  • Sebastiano M, Lassandro F, Bazzicalupo P. cut-1 a Caenorhabditis elegans gene coding for a dauer-specific noncollagenous component of the cuticle. Dev Biol 1991; 146:519-30; PMID:1864469; https://doi.org/10.1016/0012-1606(91)90253-Y
  • Muriel JM, Brannan M, Taylor K, Johnstone IL, Lithgow GJ, Tuckwell D. M142.2 (cut-6), a novel Caenorhabditis elegans matrix gene important for dauer body shape. Dev Biol 2003; 260:339-51; PMID:12921736; https://doi.org/10.1016/S0012-1606(03)00237-9
  • Frand AR, Russel S, Ruvkun G. Functional genomic analysis of C. elegans molting. PLoS Biol 2005; 3:e312; PMID:16122351; https://doi.org/10.1371/journal.pbio.0030312
  • Kelley M, Yochem J, Krieg M, Calixto A, Heiman MG, Kuzmanov A, Meli V, Chalfie M, Goodman MB, Shaham S, et al. FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis. Elife 2015; 4; https://doi.org/10.7554/eLife.06565
  • Winter AD, McCormack G, Page AP. Protein disulfide isomerase activity is essential for viability and extracellular matrix formation in the nematode Caenorhabditis elegans. Dev Biol 2007; 308:449-61; PMID:17586485; https://doi.org/10.1016/j.ydbio.2007.05.041
  • Winter AD, Page AP. Prolyl 4-hydroxylase is an essential procollagen-modifying enzyme required for exoskeleton formation and the maintenance of body shape in the nematode Caenorhabditis elegans. Mol Cell Biol 2000; 20:4084-93; PMID:10805750; https://doi.org/10.1128/MCB.20.11.4084-4093.2000
  • Edens WA, Sharling L, Cheng G, Shapira R, Kinkade JM, Lee T, Edens HA, Tang X, Sullards C, Flaherty DB, et al. Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 2001; 154:879-91; PMID:11514595; https://doi.org/10.1083/jcb.200103132
  • Thein MC, Winter AD, Stepek G, McCormack G, Stapleton G, Johnstone IL, Page AP. Combined extracellular matrix cross-linking activity of the peroxidase MLT-7 and the dual oxidase BLI-3 is critical for post-embryonic viability in Caenorhabditis elegans. J Biol Chem 2009; 284:17549-63; PMID:19406744; https://doi.org/10.1074/jbc.M900831200
  • Kim TH, Kim YJ, Cho JW, Shim J. A novel zinc-carboxypeptidase SURO-1 regulates cuticle formation and body morphogenesis in Caenorhabditis elegans. FEBS Lett 2011; 585:121-7; PMID:21094156; https://doi.org/10.1016/j.febslet.2010.11.020
  • Meli VS, Osuna B, Ruvkun G, Frand AR. MLT-10 defines a family of DUF644 and proline-rich repeat proteins involved in the molting cycle of Caenorhabditis elegans. Mol Biol Cell 2010; 21:1648-61; PMID:20335506; https://doi.org/10.1091/mbc.E08-07-0708
  • Lecroisey C, Segalat L, Gieseler K. The C. elegans dense body: anchoring and signaling structure of the muscle. J Muscle Res Cell Motil 2007; 28:79-87; PMID:17492481; https://doi.org/10.1007/s10974-007-9104-y
  • Cox EA, Hardin J. Sticky worms: adhesion complexes in C. elegans. J Cell Sci 2004; 117:1885-97; PMID:15090594; https://doi.org/10.1242/jcs.01176
  • Zaidel-Bar R, Miller S, Kaminsky R, Broday L. Molting-specific downregulation of C. elegans body-wall muscle attachment sites: the role of RNF-5 E3 ligase. Biochem Biophys Res Commun 2010; 395:509-14; PMID:20385102; https://doi.org/10.1016/j.bbrc.2010.04.049
  • Bercher M, Wahl J, Vogel BE, Lu C, Hedgecock EM, Hall DH, Plenefisch JD. mua-3, a gene required for mechanical tissue integrity in Caenorhabditis elegans, encodes a novel transmembrane protein of epithelial attachment complexes. J Cell Biol 2001; 154:415-26; PMID:11470828; https://doi.org/10.1083/jcb.200103035
  • Fotopoulos P, Kim J, Hyun M, Qamari W, Lee I, You YJ. DPY-17 and MUA-3 Interact for Connective Tissue-Like Tissue Integrity in Caenorhabditis elegans: A Model for Marfan Syndrome. G3 (Bethesda) 2015; 5:1371-8; PMID:25917920; https://doi.org/10.1534/g3.115.018465
  • Hong L, Elbl T, Ward J, Franzini-Armstrong C, Rybicka KK, Gatewood BK, Baillie DL, Bucher EA. MUP-4 is a novel transmembrane protein with functions in epithelial cell adhesion in Caenorhabditis elegans. J Cell Biol 2001; 154:403-14; PMID:11470827; https://doi.org/10.1083/jcb.200007075
  • Hresko MC, Schriefer LA, Shrimankar P, Waterston RH. Myotactin, a novel hypodermal protein involved in muscle-cell adhesion in Caenorhabditis elegans. J Cell Biol 1999; 146:659-72; PMID:10444073; https://doi.org/10.1083/jcb.146.3.659
  • Gill HK, Cohen JD, Ayala-Figueroa J, Forman-Rubinsky R, Poggioli C, Bickard K, Parry JM, Pu P, Hall DH, Sundaram MV. Integrity of Narrow Epithelial Tubes in the C. elegans excretory system requires a Transient luminal matrix. PLoS Genet 2016; 12:e1006205; PMID:27482894; https://doi.org/10.1371/journal.pgen.1006205
  • George-Raizen JB, Shockley KR, Trojanowski NF, Lamb AL, Raizen DM. Dynamically-expressed prion-like proteins form a cuticle in the pharynx of Caenorhabditis elegans. Biol Open 2014; 3:1139-49; PMID:25361578; https://doi.org/10.1242/bio.20147500
  • Veronico P, Gray LJ, Jones JT, Bazzicalupo P, Arbucci S, Cortese MR, Di Vito M, De Giorgi C. Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Mol Genet Genomics 2001; 266:28-34; PMID:11589574; https://doi.org/10.1007/s004380100513
  • Monsalve GC, Frand AR. Toward a unified model of developmental timing: A “molting” approach. Worm 2012; 1:221-30; PMID:24058853; https://doi.org/10.4161/worm.20874
  • Singh RN, Sulston JE. Some observations on the moulting of Caenorhabditis elegans. Nematologica 1978; 24:63-71; https://doi.org/10.1163/187529278X00074
  • Pilon M. Developmental genetics of the Caenorhabditis elegans pharynx. Wiley Interdiscip Rev Dev Biol 2014; 3:263-80; PMID:25262818; https://doi.org/10.1002/wdev.139
  • Hall DH, Hedgecock EM. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 1991; 65:837-47; PMID:1710172; https://doi.org/10.1016/0092-8674(91)90391-B
  • Turek M, Bringmann H. Gene expression changes of Caenorhabditis elegans larvae during molting and sleep-like lethargus. PLoS One 2014; 9:e113269; PMID:25409030; https://doi.org/10.1371/journal.pone.0113269
  • Miki TS, Ruegger S, Gaidatzis D, Stadler MB, Grosshans H. Engineering of a conditional allele reveals multiple roles of XRN2 in Caenorhabditis elegans development and substrate specificity in microRNA turnover. Nucleic Acids Res 2014; 42:4056-67; PMID:24445807; https://doi.org/10.1093/nar/gkt1418
  • Nika L, Gibson T, Konkus R, Karp X. Fluorescent beads are a versatile tool for staging Caenorhabditis elegans in different life histories. G3 (Bethesda) 2016; 6:1923-33; PMID:27172224; https://doi.org/10.1534/g3.116.030163
  • Iwanir S, Tramm N, Nagy S, Wright C, Ish D, Biron D. The microarchitecture of C. elegans behavior during lethargus: homeostatic bout dynamics, a typical body posture, and regulation by a central neuron. Sleep 2013; 36:385-95; PMID:23449971; https://doi.org/10.5665/sleep.2456
  • Nagy S, Raizen DM, Biron D. Measurements of behavioral quiescence in Caenorhabditis elegans. Methods 2014; 68:500-7; PMID:24642199; https://doi.org/10.1016/j.ymeth.2014.03.009
  • Singh K, Ju JY, Walsh MB, DiIorio MA, Hart AC. Deep conservation of genes required for both Drosphila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. Sleep 2014; 37:1439-51; PMID:25142568; https://doi.org/10.5665/sleep.3990
  • Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. Dopaminergic role in stimulant-induced wakefulness. J Neurosci 2001; 21:1787-94; PMID:11222668
  • Yochem J, Lazetic V, Bell L, Chen L, Fay D. C. elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting. Dev Biol 2015; 398:255-66; PMID:25523392; https://doi.org/10.1016/j.ydbio.2014.12.008
  • Lazetic V, Fay DS. Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans. Genetics 2017; 205:273-93; PMID:27799278; https://doi.org/10.1534/genetics.116.194464
  • Stepek G, McCormack G, Birnie AJ, Page AP. The astacin metalloprotease moulting enzyme NAS-36 is required for normal cuticle ecdysis in free-living and parasitic nematodes. Parasitology 2011; 138:237-48; PMID:20800010; https://doi.org/10.1017/S0031182010001113
  • Suzuki M, Sagoh N, Iwasaki H, Inoue H, Takahashi K. Metalloproteases with EGF, CUB, and thrombospondin-1 domains function in molting of Caenorhabditis elegans. Biol Chem 2004; 385:565-8; PMID:15255192; https://doi.org/10.1515/BC.2004.069
  • Davis MW, Birnie AJ, Chan AC, Page AP, Jorgensen EM. A conserved metalloprotease mediates ecdysis in Caenorhabditis elegans. Development 2004; 131:6001-8; PMID:15539494; https://doi.org/10.1242/dev.01454
  • Hashmi S, Zhang J, Oksov Y, Lustigman S. The Caenorhabditis elegans cathepsin Z-like cysteine protease, Ce-CPZ-1, has a multifunctional role during the worms' development. J Biol Chem 2004; 279:6035-45; PMID:14630920; https://doi.org/10.1074/jbc.M312346200
  • Page AP, McCormack G, Birnie AJ. Biosynthesis and enzymology of the Caenorhabditis elegans cuticle: identification and characterization of a novel serine protease inhibitor. Int J Parasitol 2006; 36:681-9; PMID:16500660; https://doi.org/10.1016/j.ijpara.2006.01.004
  • Stenvall J, Fierro-Gonzalez JC, Swoboda P, Saamarthy K, Cheng Q, Cacho-Valadez B, Arnér ES, Persson OP, Miranda-Vizuete A, Tuck S. Selenoprotein TRXR-1 and GSR-1 are essential for removal of old cuticle during molting in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2011; 108:1064-9; PMID:21199936; https://doi.org/10.1073/pnas.1006328108
  • Priess JR, Hirsh DI. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol 1986; 117:156-73; PMID:3743895; https://doi.org/10.1016/0012-1606(86)90358-1
  • Singh RN, Sulston JE. Some observations on moulting in Caenorhabditis elegans. Nematologica 1978; 24:63-71; https://doi.org/10.1163/187529278X00074
  • Hendriks GJ, Gaidatzis D, Aeschimann F, Grosshans H. Extensive oscillatory gene expression during C. elegans larval development. Mol Cell 2014; 53:380-92; PMID:24440504; https://doi.org/10.1016/j.molcel.2013.12.013
  • Johnstone IL, Barry JD. Temporal reiteration of a precise gene expression pattern during nematode development. EMBO J 1996; 15:3633-9; PMID:8670866
  • Page AP, Johnstone IL. The cuticle. WormBook 2007:1-15; PMID:18050497; https://doi.org/10.1895/wormbook.1.138.1
  • McMahon L, Muriel JM, Roberts B, Quinn M, Johnstone IL. Two sets of interacting collagens form functionally distinct substructures within a Caenorhabditis elegans extracellular matrix. Mol Biol Cell 2003; 14:1366-78; PMID:12686594; https://doi.org/10.1091/mbc.E02-08-0479
  • Ambros V, Horvitz HR. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 1984; 226:409-16; PMID:6494891; https://doi.org/10.1126/science.6494891
  • Moss EG. Heterochronic genes and the nature of developmental time. Curr Biol 2007; 17:R425-34; PMID:17550772; https://doi.org/10.1016/j.cub.2007.03.043
  • Lin SY, Johnson SM, Abraham M, Vella MC, Pasquinelli A, Gamberi C, Gottlieb E, Slack FJ. The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 2003; 4:639-50; PMID:12737800; https://doi.org/10.1016/S1534-5807(03)00124-2
  • Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 2000; 5:659-69; PMID:10882102; https://doi.org/10.1016/S1097-2765(00)80245-2
  • Vella MC, Slack FJ. C. elegans microRNAs. WormBook 2005; PMID:18050425; https://doi.org/10.1895/wormbook.1.26.1
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75:843-54; PMID:8252621; https://doi.org/10.1016/0092-8674(93)90529-Y
  • Ruaud AF, Bessereau JL. Activation of nicotinic receptors uncouples a developmental timer from the molting timer in C. elegans. Development 2006; 133:2211-22; PMID:16672334; https://doi.org/10.1242/dev.02392
  • Gissendanner CR, Kelley TD. The C. elegans gene pan-1 encodes novel transmembrane and cytoplasmic leucine-rich repeat proteins and promotes molting and the larva to adult transition. BMC Dev Biol 2013; 13:21; PMID:23682709; https://doi.org/10.1186/1471-213X-13-21
  • Russel S, Frand AR, Ruvkun G. Regulation of the C. elegans molt by pqn-47. Dev Biol 2011; 360:297-309; PMID:21989027; https://doi.org/10.1016/j.ydbio.2011.09.025
  • Edelman TL, McCulloch KA, Barr A, Frokjaer-Jensen C, Jorgensen EM, Rougvie AE. Analysis of a lin-42/period Null Allele Implicates All Three Isoforms in Regulation of Caenorhabditis elegans molting and developmental timing. G3 (Bethesda) 2016; 6:4077-86; PMID:27729432
  • Monsalve GC, Van Buskirk C, Frand AR. LIN-42/PERIOD controls cyclical and developmental progression of C. elegans molts. Curr Biol 2011; 21:2033-45; PMID:22137474; https://doi.org/10.1016/j.cub.2011.10.054
  • Hayes GD, Frand AR, Ruvkun G. The mir-84 and let-7 paralogous microRNA genes of Caenorhabditis elegans direct the cessation of molting via the conserved nuclear hormone receptors NHR-23 and NHR-25. Development 2006; 133:4631-41; PMID:17065234; https://doi.org/10.1242/dev.02655
  • Matyash V, Entchev EV, Mende F, Wilsch-Brauninger M, Thiele C, Schmidt AW, Knölker HJ, Ward S, Kurzchalia TV. Sterol-derived hormone(s) controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16. PLoS Biol 2004; 2:e280; PMID:15383841; https://doi.org/10.1371/journal.pbio.0020280
  • Entchev EV, Kurzchalia TV. Requirement of sterols in the life cycle of the nematode Caenorhabditis elegans. Semin Cell Dev Biol 2005; 16:175-82; PMID:15797828; https://doi.org/10.1016/j.semcdb.2005.01.004
  • Li TM, Chen J, Li X, Ding XJ, Wu Y, Zhao LF, Chen S, Lei X, Dong MQ. Absolute quantification of a steroid hormone that regulates development in Caenorhabditis elegans. Anal Chem 2013; 85:9281-7; PMID:24010904; https://doi.org/10.1021/ac402025c
  • Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 2006; 124:1209-23; https://doi.org/10.1016/j.cell.2006.01.037
  • Gissendanner CR, Crossgrove K, Kraus KA, Maina CV, Sluder AE. Expression and function of conserved nuclear receptor genes in Caenorhabditis elegans. Dev Biol 2004; 266:399-416; PMID:14738886; https://doi.org/10.1016/j.ydbio.2003.10.014
  • Antebi A. Nuclear hormone receptors in C. elegans. WormBook 2006:1-13; PMID:18050471
  • Yochem J, Tuck S, Greenwald I, Han M. A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development 1999; 126:597-606; PMID:9876188
  • Maglich JM, Sluder A, Guan X, Shi Y, McKee DD, Carrick K, Kamdar K, Willson TM, Moore JT. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol 2001; 2:RESEARCH0029; PMID:11532213; https://doi.org/10.1186/gb-2001-2-8-research0029
  • Lam G, Hall BL, Bender M, Thummel CS. DHR3 is required for the prepupal-pupal transition and differentiation of adult structures during Drosophila metamorphosis. Dev Biol 1999; 212:204-16; PMID:10419696; https://doi.org/10.1006/dbio.1999.9343
  • Kostrouchova M, Krause M, Kostrouch Z, Rall JE. Nuclear hormone receptor CHR3 is a critical regulator of all four larval molts of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 2001; 98:7360-5; PMID:11416209; https://doi.org/10.1073/pnas.131171898
  • Kouns NA, Nakielna J, Behensky F, Krause MW, Kostrouch Z, Kostrouchova M. NHR-23 dependent collagen and hedgehog-related genes required for molting. Biochem Biophys Res Commun 2011; 413:515-20; PMID:21910973; https://doi.org/10.1016/j.bbrc.2011.08.124
  • Asahina M, Ishihara T, Jindra M, Kohara Y, Katsura I, Hirose S. The conserved nuclear receptor Ftz-F1 is required for embryogenesis, moulting and reproduction in Caenorhabditis elegans. Genes Cells 2000; 5:711-23; PMID:10971653; https://doi.org/10.1046/j.1365-2443.2000.00361.x
  • Gissendanner CR, Sluder AE. nhr-25, the Caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonad development. Dev Biol 2000; 221:259-72; PMID:10772806; https://doi.org/10.1006/dbio.2000.9679
  • Brooks DR, Appleford PJ, Murray L, Isaac RE. An essential role in molting and morphogenesis of Caenorhabditis elegans for ACN-1, a novel member of the angiotensin-converting enzyme family that lacks a metallopeptidase active site. J Biol Chem 2003; 278:52340-6; PMID:14559923; https://doi.org/10.1074/jbc.M308858200
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974; 77:71-94; PMID:4366476
  • Hieb WF, Rothstein M. Sterol requirement for reproduction of a free-living nematode. Science 1968; 160:778-80; PMID:4869093; https://doi.org/10.1126/science.160.3829.778
  • Cole RJ, Dutky SR. A Sterol Requirement in Turbatrix aceti and Panagrellus redivivus. J Nematol 1969; 1:72-5; PMID:19325657
  • Chitwood DJ. Biochemistry and function of nematode steroids. Crit Rev Biochem Mol Biol 1999; 34:273-84; PMID:10517647; https://doi.org/10.1080/10409239991209309
  • Ritter KS. Steinernema feltiae (=Neoaplectana carpocapsae): effect of sterols and hypolipidemic agents on development. Exp Parasitol 1988; 67:257-67; PMID:3191959; https://doi.org/10.1016/0014-4894(88)90073-2
  • Barrett J, Cain GD, Fairbairn D. Sterols in Ascaris lumbricoides (Nematoda), Macracanthorhynchus hirudinaceus and Moniliformis dubius (Acanthocephala), and Echinostoma revolutum (Trematoda). J Parasitol 1970; 56:1004-8; PMID:5504522; https://doi.org/10.2307/3277525
  • Rothstein M. Nematode biochemistry. IX. Lack of sterol biosynthesis in free-living nematodes. Comp Biochem Physiol 1968; 27:309-17; PMID:5758374; https://doi.org/10.1016/0010-406X(68)90773-1
  • Lu NC, Newton C, Stokstad ELR. The Requirement of Sterol and Various Sterol Precursors in Free-Living Nematodes Nematologica. 1977; 23:57-61
  • Willett JD, Downey WL. Sterol biosynthesis in the free-living nematode Panagrellus redivivus. Biochem J 1974; 138:233-7; PMID:4822732; https://doi.org/10.1042/bj1380233
  • Cole RJ, Krusberg LR. Sterol composition of the nematodes Ditylenchus triformis and Ditylenchus dipsaci, and host tissues. Exp Parasitol 1967; 21:232-9; PMID:6080012; https://doi.org/10.1016/0014-4894(67)90085-9
  • Cheong MC, Na K, Kim H, Jeong SK, Joo HJ, Chitwood DJ, Paik YK. A potential biochemical mechanism underlying the influence of sterol deprivation stress on Caenorhabditis elegans longevity. J Biol Chem 2011; 286:7248-56; PMID:21186286; https://doi.org/10.1074/jbc.M110.189183
  • Fielenbach N, Antebi A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 2008; 22:2149-65; PMID:18708575; https://doi.org/10.1101/gad.1701508
  • Vowels JJ, Thomas JH. Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics 1992; 130:105-23; PMID:1732156
  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403:901-6; PMID:10706289; https://doi.org/10.1038/35002607
  • Jia K, Albert PS, Riddle DL. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 2002; 129:221-31; PMID:11782415
  • Ohkura K, Suzuki N, Ishihara T, Katsura I. SDF-9, a protein tyrosine phosphatase-like molecule, regulates the L3/dauer developmental decision through hormonal signaling in C. elegans. Development 2003; 130:3237-48
  • Roberts B, Clucas C, Johnstone IL. Loss of SEC-23 in Caenorhabditis elegans causes defects in oogenesis, morphogenesis, and extracellular matrix secretion. Mol Biol Cell 2003; 14:4414-26; PMID:14551256; https://doi.org/10.1091/mbc.E03-03-0162
  • Kang YL, Yochem J, Bell L, Sorensen EB, Chen L, Conner SD. Caenorhabditis elegans reveals a FxNPxY-independent low-density lipoprotein receptor internalization mechanism mediated by epsin1. Mol Biol Cell 2013; 24:308-18; PMID:23242996; https://doi.org/10.1091/mbc.E12-02-0163
  • Roudier N, Lefebvre C, Legouis R. CeVPS-27 is an endosomal protein required for the molting and the endocytic trafficking of the low-density lipoprotein receptor-related protein 1 in Caenorhabditis elegans. Traffic 2005; 6:695-705; PMID:15998324; https://doi.org/10.1111/j.1600-0854.2005.00309.x
  • Kamikura DM, Cooper JA. Lipoprotein receptors and a disabled family cytoplasmic adaptor protein regulate EGL-17/FGF export in C. elegans. Genes Dev 2003; 17:2798-811; PMID:14630941; https://doi.org/10.1101/gad.1136103
  • Holmes A, Flett A, Coudreuse D, Korswagen HC, Pettitt J. C. elegans Disabled is required for cell-type specific endocytosis and is essential in animals lacking the AP-3 adaptor complex. J Cell Sci 2007; 120:2741-51; PMID:17636000; https://doi.org/10.1242/jcs.03474
  • Kuervers LM, Jones CL, O'Neil NJ, Baillie DL. The sterol modifying enzyme LET-767 is essential for growth, reproduction and development in Caenorhabditis elegans. Mol Genet Genomics 2003; 270:121-31; PMID:12905072; https://doi.org/10.1007/s00438-003-0900-9
  • Matyash V, Geier C, Henske A, Mukherjee S, Hirsh D, Thiele C, Grant B, Maxfield FR, Kurzchalia TV. Distribution and transport of cholesterol in Caenorhabditis elegans. Mol Biol Cell 2001; 12:1725-36; PMID:11408580; https://doi.org/10.1091/mbc.12.6.1725
  • Merris M, Wadsworth WG, Khamrai U, Bittman R, Chitwood DJ, Lenard J. Sterol effects and sites of sterol accumulation in Caenorhabditis elegans: developmental requirement for 4alpha-methyl sterols. J Lipid Res 2003; 44:172-81; PMID:12518036; https://doi.org/10.1194/jlr.M200323-JLR200
  • Wei JH, Yin X, Welander PV. Sterol Synthesis in Diverse Bacteria. Front Microbiol 2016; 7:990; PMID:27446030; https://doi.org/10.3389/fmicb.2016.00990
  • Kiontke K, Sudhaus W. Ecology of Caenorhabditis species. WormBook 2006:1-14; PMID:18050464
  • Fleming MW, Fetterer RH. Ascaris suum: continuous perfusion of the pseudocoelom and nutrient absorption. Exp Parasitol 1984; 57:142-8; PMID:6201385; https://doi.org/10.1016/0014-4894(84)90073-0
  • Sym M, Basson M, Johnson C. A model for niemann-pick type C disease in the nematode Caenorhabditis elegans. Curr Biol 2000; 10:527-30; PMID:10801441; https://doi.org/10.1016/S0960-9822(00)00468-1
  • Neufeld EB, Wastney M, Patel S, Suresh S, Cooney AM, Dwyer NK, Roff CF, Ohno K, Morris JA, Carstea ED, et al. The Niemann-Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J Biol Chem 1999; 274:9627-35; PMID:10092649; https://doi.org/10.1074/jbc.274.14.9627
  • Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis 2010; 5:16; PMID:20525256; https://doi.org/10.1186/1750-1172-5-16
  • Millat G, Marcais C, Tomasetto C, Chikh K, Fensom AH, Harzer K, Wenger DA, Ohno K, Vanier MT. Niemann-Pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop. Am J Hum Genet 2001; 68:1373-85; PMID:11333381; https://doi.org/10.1086/320606
  • Li J, Brown G, Ailion M, Lee S, Thomas JH. NCR-1 and NCR-2, the C. elegans homologs of the human Niemann-Pick type C1 disease protein, function upstream of DAF-9 in the dauer formation pathways. Development 2004; 131:5741-52; PMID:15509773; https://doi.org/10.1242/dev.01408
  • Zugasti O, Rajan J, Kuwabara PE. The function and expansion of the Patched- and Hedgehog-related homologs in C. elegans. Genome Res 2005; 15:1402-10; PMID:16204193; https://doi.org/10.1101/gr.3935405
  • Hao L, Mukherjee K, Liegeois S, Baillie D, Labouesse M, Burglin TR. The hedgehog-related gene qua-1 is required for molting in Caenorhabditis elegans. Dev Dyn 2006; 235:1469-81; PMID:16502424; https://doi.org/10.1002/dvdy.20721
  • Kuwabara PE, Lee MH, Schedl T, Jefferis GS. A C. elegans patched gene, ptc-1, functions in germ-line cytokinesis. Genes Dev 2000; 14:1933-44; PMID:10921907
  • Hao L, Johnsen R, Lauter G, Baillie D, Burglin TR. Comprehensive analysis of gene expression patterns of hedgehog-related genes. BMC Genomics 2006; 7:280; PMID:; PMID:17076889; https://doi.org/10.1186/1471-2164-7-280
  • Christ A, Christa A, Kur E, Lioubinski O, Bachmann S, Willnow TE, Hammes A. LRP2 is an auxiliary SHH receptor required to condition the forebrain ventral midline for inductive signals. Dev Cell 2012; 22:268-78; PMID:22340494; https://doi.org/10.1016/j.devcel.2011.11.023
  • Burke R, Nellen D, Bellotto M, Hafen E, Senti KA, Dickson BJ, Basler K. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 1999; 99:803-15; PMID:10619433; https://doi.org/10.1016/S0092-8674(00)81677-3
  • Michaux G, Gansmuller A, Hindelang C, Labouesse M. CHE-14, a protein with a sterol-sensing domain, is required for apical sorting in C. elegans ectodermal epithelial cells. Curr Biol 2000; 10:1098-107; PMID:10996790; https://doi.org/10.1016/S0960-9822(00)00695-3
  • Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF, St-Jacques B, McMahon AP. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 2001; 105:599-612; PMID:11389830; https://doi.org/10.1016/S0092-8674(01)00369-5
  • Porter JA, Ekker SC, Park WJ, von Kessler DP, Young KE, Chen CH, Ma Y, Woods AS, Cotter RJ, Koonin EV. Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 1996; 86:21-34; PMID:8689684; https://doi.org/10.1016/S0092-8674(00)80074-4
  • Hao L, Aspock G, Burglin TR. The hedgehog-related gene wrt-5 is essential for hypodermal development in Caenorhabditis elegans. Dev Biol 2006; 290:323-36; PMID:16413526; https://doi.org/10.1016/j.ydbio.2005.11.028
  • Kaplan RM. Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol 2004; 20:477-81; PMID:15363441; https://doi.org/10.1016/j.pt.2004.08.001
  • Geurden T, Chartier C, Fanke J, di Regalbono AF, Traversa D, von Samson-Himmelstjerna G, Demeler J, Vanimisetti HB, Bartram DJ, Denwood MJ. Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe. Int J Parasitol Drugs Drug Resist 2015; 5:163-71; PMID:26448902; https://doi.org/10.1016/j.ijpddr.2015.08.001
  • Srivastava M, Misra-Bhattacharya S. Overcoming drug resistance for macro parasites. Future Microbiology 2015; 10:1783-9; PMID:26517758; https://doi.org/10.2217/fmb.15.73
  • WHO. WHO Model Prescribing Information: Drugs used in Parasitic Diseases, Second edition. 1995
  • Roeber F, Jex AR, Gasser RB. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective. Parasit Vectors 2013; 6:153; PMID:23711194; https://doi.org/10.1186/1756-3305-6-153
  • Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Tahna Maafi Z. Genomics and molecular genetics of plant-nematode interactions: Current Nematode Threats to World Agriculture. 2011
  • Chisholm AD, Xu S. The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles. Wiley Interdiscip Rev Dev Biol 2012; 1:879-902; PMID:23539358; https://doi.org/10.1002/wdev.79 10.1002/wdev.77
  • Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 2011; 4:165-78; PMID:21324931; https://doi.org/10.1242/dmm.004077
  • Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011; 3; PMID:21917992; https://doi.org/10.1101/cshperspect.a005058
  • Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012; 196:395-406; PMID:22351925; https://doi.org/10.1083/jcb.201102147

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.