1,636
Views
15
CrossRef citations to date
0
Altmetric
Review

A paradigm shift: Cancer therapy with peptide-based B-cell epitopes and peptide immunotherapeutics targeting multiple solid tumor types: Emerging concepts and validation of combination immunotherapy

Pages 1368-1386 | Received 31 Oct 2014, Accepted 26 Feb 2015, Published online: 18 Jun 2015

References

  • Kaumaya PT, Foy KC. Peptide vaccines and targeting HER and VEGF proteins may offer a potentially new paradigm in cancer immunotherapy. Future Oncol 2012; 8:961–87; PMID:22894670; http://dx.doi.org/10.2217/fon.12.95
  • Kaumaya PT. Bridging oncology and immunology: expanding horizons with innovative peptide vaccines and peptidomimetics. Immunotherapy 2013; 5:1159–63; PMID:24188668; http://dx.doi.org/10.2217/imt.13.128
  • Miller MJ, Foy KC, Kaumaya PT. Cancer immunotherapy: present status, future perspective, and a new paradigm of peptide immunotherapeutics. Discov Med 2013; 15:166–76; PMID:23545045
  • Vicari D, Foy KC, Liotta EM, Kaumaya PT. Engineered conformation-dependent VEGF peptide mimics are effective in inhibiting VEGF signaling pathways. J Biol Chem 2011; 286:13612–25; PMID:21321115; http://dx.doi.org/10.1074/jbc.M110.216812
  • Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol 2012; 9:208–14; PMID:22327211; http://dx.doi.org/10.1038/cmi.2012.2
  • Zamarin D, Postow MA. Immune checkpoint modulation: Rational design of combination strategies. Pharmacol Ther 2015; PMID:25583297
  • Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 2011; 11:239–53; PMID:21430696; http://dx.doi.org/10.1038/nrc3007
  • Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 2012; 12:237–51; PMID:22437869; http://dx.doi.org/10.1038/nrc3237
  • Galmarini D, Galmarini CM, Galmarini FC. Cancer chemotherapy: a critical analysis of its 60 years of history. Crit Rev Oncol Hematol 2012; 84:181–99; PMID:22542531; http://dx.doi.org/10.1016/j.critrevonc.2012.03.002
  • Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2:127–37; PMID:11252954; http://dx.doi.org/10.1038/35052073
  • Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 1989; 9:1165–72; PMID:2566907
  • Shepard HM, Lewis GD, Sarup JC, Fendly BM, Maneval D, Mordenti J, Figari I, Kotts CE, Palladino MA, Jr., Ullrich A, et al. Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. J Clin Immunol 1991; 11:117–27; PMID:1679763; http://dx.doi.org/10.1007/BF00918679
  • Ryan AJ, Wedge SR. ZD6474–a novel inhibitor of VEGFR and EGFR tyrosine kinase activity. Br J Cancer 2005; 92 Suppl 1:S6–13; PMID:15928657; http://dx.doi.org/10.1038/sj.bjc.6602603
  • Li B, Ogasawara AK, Yang R, Wei W, He GW, Zioncheck TF, Bunting S, de Vos AM, Jin H. KDR (VEGF receptor 2) is the major mediator for the hypotensive effect of VEGF. Hypertension 2002; 39:1095–100; PMID:12052848; http://dx.doi.org/10.1161/01.HYP.0000018588.56950.7A
  • Eskens FA, Verweij J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer 2006; 42:3127–39; PMID:17098419; http://dx.doi.org/10.1016/j.ejca.2006.09.015
  • Grothey A. Recognizing and managing toxicities of molecular targeted therapies for colorectal cancer. Oncology (Williston Park) 2006; 20:21–8; PMID:17354514
  • Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 1992; 89:4285–9; PMID:1350088; http://dx.doi.org/10.1073/pnas.89.10.4285
  • Kaumaya P. Her-2/neu Cancer Vaccines: Present Status and Future Prospects. International journal of peptide research and therapeutics 2006; 12:65–77; http://dx.doi.org/10.1007/s10989-005-9000-5
  • Amit AG, Mariuzza RA, Phillips SE, Poljak RJ. Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science 1986; 233:747–53; PMID:2426778; http://dx.doi.org/10.1126/science.2426778
  • Kaumaya P, Kobs-Conrad, S, Digeorge, AM, Stevens, V. Denovo Engineering of Protein Immunogenic & Antigenic Determinants. 1994:133–64
  • Gao J, Kurgan L. Computational prediction of B cell epitopes from antigen sequences. Methods Mol Biol 2014; 1184:197–215; PMID:25048126; http://dx.doi.org/10.1007/978-1-4939-1115-8_11
  • Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-antigen recognition. Front Immunol 2013; 4:302; PMID:24115948; http://dx.doi.org/10.3389/fimmu.2013.00302
  • Kaumaya PT, VanBuskirk AM, Goldberg E, Pierce SK. Design and immunological properties of topographic immunogenic determinants of a protein antigen (LDH-C4) as vaccines. J Biol Chem 1992; 267:6338–46; PMID:1372905
  • Kobs-Conrad S, Lee H, DiGeorge AM, Kaumaya PT. Engineered topographic determinants with α β, β α β, and β α β α topologies show high affinity binding to native protein antigen (lactate dehydrogenase-C4). J Biol Chem 1993; 268:25285–95; PMID:8244959
  • Dakappagari NK, LuteKD, Rawale S, Steele JT, Allen SD, Phillips G, Reilly RT, Kaumaya PT. Conformational HER-2/neu B-cell epitope peptide vaccine designed to incorporate two native disulfide bonds enhances tumor cell binding and antitumor activities. J Biol Chem 2005; 280:54–63; PMID:15507452; http://dx.doi.org/10.1074/jbc.M411020200
  • Garrett JT, Rawale S, Allen SD, Phillips G, Forni G, Morris JC, Kaumaya PT. Novel engineered trastuzumab conformational epitopes demonstrate in vitro and in vivo antitumor properties against HER-2/neu. Journal of immunology 2007; 178:7120–31; http://dx.doi.org/10.4049/jimmunol.178.11.7120
  • Allen SD, Garrett JT, Rawale SV, Jones AL, Phillips G, Forni G, Morris JC, Oshima RG, Kaumaya PT. Peptide vaccines of the HER-2/neu dimerization loop are effective in inhibiting mammary tumor growth in vivo. J Immunol 2007; 179:472–82; http://dx.doi.org/10.4049/jimmunol.179.1.472
  • Gabrielli F, Salvi R, Garulli C, Kalogris C, Arima S, Tardella L, Monaci P, Pupa SM, Tagliabue E, Montani M, et al. Identification of relevant conformational epitopes on the HER2 oncoprotein by using Large Fragment Phage Display (LFPD). PLoS One 2013; 8:e58358; PMID:23555577; http://dx.doi.org/10.1371/journal.pone.0058358
  • Kaumaya PT, Kobs-Conrad S, Seo YH, Lee H, VanBuskirk AM, Feng N, Sheridan JF, Stevens V. Peptide vaccines incorporating a ‘promiscuous’ T-cell epitope bypass certain haplotype restricted immune responses and provide broad spectrum immunogenicity. J Mol Recognit 1993; 6:81–94; PMID:7508238; http://dx.doi.org/10.1002/jmr.300060206
  • Cai H, Chen MS, Sun ZY, Zhao YF, Kunz H, Li YM. Self-adjuvanting synthetic antitumor vaccines from MUC1 glycopeptides conjugated to T-cell epitopes from tetanus toxoid. Angew Chem Int Ed Engl 2013; 52:6106–10; PMID:23616304; http://dx.doi.org/10.1002/anie.201300390
  • Wiedermann U, Wiltschke C, Jasinska J, Kundi M, Zurbriggen R, Garner-Spitzer E, Bartsch R, Steger G, Pehamberger H, Scheiner O, et al. A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study. Breast Cancer Res Treat 2010; 119:673–83; PMID:20092022; http://dx.doi.org/10.1007/s10549-009-0666-9
  • Wiedermann U, Davis AB, Zielinski CC. Vaccination for the prevention and treatment of breast cancer with special focus on Her-2/neu peptide vaccines. Breast Cancer Res Treat 2013; 138:1–12; PMID:23340862; http://dx.doi.org/10.1007/s10549-013-2410-8
  • Miyako H, Kametani Y, Katano I, Ito R, Tsuda B, Furukawa A, Saito Y, Ishikawa D, Ogino K, Sasaki S, et al. Antitumor effect of new HER2 peptide vaccination based on B cell epitope. Anticancer Res 2011; 31:3361–8; PMID:21965747
  • Riemer AB, Kurz H, Klinger M, Scheiner O, Zielinski CC, Jensen-Jarolim E. Vaccination with cetuximab mimotopes and biological properties of induced anti-epidermal growth factor receptor antibodies. J Natl Cancer Inst 2005; 97:1663–70; PMID:16288119; http://dx.doi.org/10.1093/jnci/dji373
  • Zhu L, Zhao L, Wu M, Chen Z, Li H. B-cell epitope peptide vaccination targeting dimer interface of epidermal growth factor receptor (EGFR). Immunol Lett 2013; 153:33–40; PMID:23871733; http://dx.doi.org/10.1016/j.imlet.2013.07.003
  • Sundaram R, Dakappagari NK, Kaumaya PTP. Synthetic peptides as cancer vaccines. Biopolymers - Peptide Science Section 2002; 66:200–16; http://dx.doi.org/10.1002/bip.10258
  • Kaumaya PTP. HER-2/neu cancer vaccines: Present status and future prospects. International Journal of Peptide Research and Therapeutics 2006; 12:65–77; http://dx.doi.org/10.1007/s10989-005-9000-5
  • Lynch MP, Kaumaya PTP. Advances in HTLV-1 peptide vaccines and therapeutics. Current Protein and Peptide Science 2006; 7:137–45; PMID:16611139; http://dx.doi.org/10.2174/138920306776359803
  • Steele JT, Allen SD, Kaumaya PTP. Cancer Immunotherapy with Rationally Designed Synthetic Peptides. Handbook of Biologically Active Peptides, 2006:491–8; http://dx.doi.org/10.1016/B978-012369442-3/50074-X
  • Foy KC, Vicari D, Kaumaya PTP. Therapeutic Peptides Targeting HER-2/neu and VEGF Signaling Pathways in Breast Cancer. Handbook of Biologically Active Peptides, 2013:612–6; http://dx.doi.org/10.1016/B978-0-12-385095-9.00083-X
  • Miller MJ, Foy KC, Kaumaya PTP. Cancer immunotherapy: Present status, future perspective, and a new paradigm of peptide immunotherapeutics. Discov Med 2013; 15:166–76; PMID:23545045
  • Kaumaya PT, Berndt KD, Heidorn DB, Trewhella J, Kezdy FJ, Goldberg E. Synthesis and biophysical characterization of engineered topographic immunogenic determinants with α α topology. Biochemistry 1990; 29:13–23; PMID:1691014; http://dx.doi.org/10.1021/bi00453a002
  • Dakappagari NK, Pyles J, Parihar R, Carson WE, Young DC, Kaumaya PT. A chimeric multi-human epidermal growth factor receptor-2 B cell epitope peptide vaccine mediates superior antitumor responses. JImmunol 2003; 170:4242–53; http://dx.doi.org/10.4049/jimmunol.170.8.4242
  • Srinivasan M, Wardrop RM, Gienapp IE, Stuckman SS, Whitacre CC, Kaumaya PT. A retro-inverso peptide mimic of CD28 encompassing the MYPPPY motif adopts a polyproline type II helix and inhibits encephalitogenic T cells in vitro. J Immunol 2001; 167:578–85; http://dx.doi.org/10.4049/jimmunol.167.1.578
  • Srinivasan M, Gienapp IE, Stuckman SS, Rogers CJ, Jewell SD, Kaumaya PT, Whitacre CC. Suppression of experimental autoimmune encephalomyelitis using peptide mimics of CD28. J Immunol 2002; 169:2180–8; http://dx.doi.org/10.4049/jimmunol.169.4.2180
  • Kaumaya PT, Foy KC, Garrett J, Rawale SV, Vicari D, Thurmond JM, Lamb T, Mani A, Kane Y, Balint CR, et al. Phase I active immunotherapy with combination of two chimeric, human epidermal growth factor receptor 2, B-cell epitopes fused to a promiscuous T-cell epitope in patients with metastatic and/or recurrent solid tumors. J Clin Oncol 2009; 27:5270–7; PMID:19752336; http://dx.doi.org/10.1200/JCO.2009.22.3883
  • Srinivasan M, Domanico SZ, Kaumaya PT, Pierce SK. Peptides of 23 residues or greater are required to stimulate a high affinity class II-restricted T cell response. Eur J Immunol 1993; 23:1011–6; PMID:8386663; http://dx.doi.org/10.1002/eji.1830230504
  • Dakappagari NK, Douglas DB, Triozzi PL, Stevens VC, Kaumaya PT. Prevention of mammary tumors with a chimeric HER-2 B-cell epitope peptide vaccine. Cancer Res 2000; 60:3782–9; PMID:10919651
  • Foy KC, Miller MJ, Moldovan N, Bozanovic T, Carson Iii WE, Kaumaya PT. Immunotherapy with HER-2 and VEGF peptide mimics plus metronomic paclitaxel causes superior antineoplastic effects in transplantable and transgenic mouse models of human breast cancer. Oncoimmunology 2012; 1:1004–16; PMID:23170249; http://dx.doi.org/10.4161/onci.21057
  • Smolenski LA, Kaumaya P, Atassi MZ, Pierce SK. Characteristics of peptides which compete for presented antigen-binding sites on antigen-presenting cells. Eur J Immunol 1990; 20:953–60; PMID:2162778; http://dx.doi.org/10.1002/eji.1830200502
  • Mizejewski GJ. Peptides as receptor ligand drugs and their relationship to G-coupled signal transduction. Exp Opin Investig Drugs 2001; 10:1063–73; PMID:11772235; http://dx.doi.org/10.1517/13543784.10.6.1063
  • Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and market. Drug Discov Today 2010; 15:40–56; PMID:19879957; http://dx.doi.org/10.1016/j.drudis.2009.10.009
  • Reichert J. development trends for peptide therapeutics. Tufts Center for the Study of Drug Development, Tufts University, 2008
  • Fischer PM. The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr Protein Pept Sci 2003; 4:339–56; PMID:14529528; http://dx.doi.org/10.2174/1389203033487054
  • Hruby VJ. Conformational and topographical considerations in the design of biologically active peptides. Biopolymers 1993; 33:1073–82; PMID:8102072; http://dx.doi.org/10.1002/bip.360330709
  • Fletcher MD, Campbell MM. Partially Modified Retro-Inverso Peptides: Development, Synthesis, and Conformational Behavior. Chem Rev 1998; 98:763–96; PMID:11848914; http://dx.doi.org/10.1021/cr970468t
  • Taylor EM, Otero DA, Banks WA, O'Brien JS. Retro-inverso prosaptide peptides retain bioactivity, are stable In vivo, and are blood-brain barrier permeable. J Pharmacol Exp Ther 2000; 295:190–4; PMID:10991978
  • Arens R, van Hall T, van der Burg SH, Ossendorp F, Melief CJ. Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Semin Immunol 2013; 25:182–90; PMID:23706598; http://dx.doi.org/10.1016/j.smim.2013.04.008
  • Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 2007; 6:404–14; PMID:17473845; http://dx.doi.org/10.1038/nrd2224
  • Croft NP, Purcell AW. Peptidomimetics: modifying peptides in the pursuit of better vaccines. Exp Rev Vaccines 2011; 10:211–26; PMID:21332270; http://dx.doi.org/10.1586/erv.10.161
  • Gokhale AS, Satyanarayanajois S. Peptides and peptidomimetics as immunomodulators. Immunotherapy 2014; 6:755–74; PMID:25186605; http://dx.doi.org/10.2217/imt.14.37
  • Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 2012; 12:553–63; PMID:22785351; http://dx.doi.org/10.1038/nrc3309
  • Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103:211–25; PMID:11057895; http://dx.doi.org/10.1016/S0092-8674(00)00114-8
  • Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci U S A 2010; 107:7692–7; PMID:20351256; http://dx.doi.org/10.1073/pnas.1002753107
  • Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 2005; 23:2445–59; PMID:15753456; http://dx.doi.org/10.1200/JCO.2005.11.890
  • Baselga J. Targeting tyrosine kinases in cancer: the second wave. Science 2006; 312:1175–8; PMID:16728632; http://dx.doi.org/10.1126/science.1125951
  • Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 2006; 3:24–40; PMID:16407877; http://dx.doi.org/10.1038/ncponc0403
  • Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 1991; 5:1806–14; PMID:1791831; http://dx.doi.org/10.1210/mend-5-12-1806
  • Cobleigh MA, Langmuir VK, Sledge GW, Miller KD, Haney L, Novotny WF, Reimann JD, Vassel A. A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 2003; 30:117–24; PMID:14613032; http://dx.doi.org/10.1053/j.seminoncol.2003.08.013
  • Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005; 5:341–54; PMID:15864276; http://dx.doi.org/10.1038/nrc1609
  • Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56:549–80; PMID:15602010; http://dx.doi.org/10.1124/pr.56.4.3
  • Zhu Z, Witte L. Inhibition of tumor growth and metastasis by targeting tumor-associated angiogenesis with antagonists to the receptors of vascular endothelial growth factor. Invest New Drugs 1999; 17:195–212; PMID:10665474; http://dx.doi.org/10.1023/A:1006314501634
  • Oshima RG, Lesperance J, Munoz V, Hebbard L, Ranscht B, Sharan N, Muller WJ, Hauser CA, Cardiff RD. Angiogenic acceleration of Neu induced mammary tumor progression and metastasis. Cancer Res 2004; 64:169–79; PMID:14729621; http://dx.doi.org/10.1158/0008-5472.CAN-03-1944
  • Folkman J. Tumor angiogenesis: therapeutic implications. NEng J Med 1971; 285:1182–6; PMID:4938153; http://dx.doi.org/10.1056/NEJM197108122850711
  • Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 2009; 9:463–75; PMID:19536107; http://dx.doi.org/10.1038/nrc2656
  • Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer 2004; 4:505–18; PMID:15229476; http://dx.doi.org/10.1038/nrc1387
  • Pollak MN. Insulin-like growth factors and neoplasia. Novartis Found Symp 2004; 262:84–98; discussion -107, 265–8
  • Folkman J. Fighting cancer by attacking its blood supply. Scientific American 1996; 275:150–4; PMID:8701285; http://dx.doi.org/10.1038/scientificamerican0996-150
  • Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005; 438:967–74; PMID:16355214; http://dx.doi.org/10.1038/nature04483
  • Yakar S, Leroith D, Brodt P. The role of the growth hormone/insulin-like growth factor axis in tumor growth and progression: Lessons from animal models. Cytokine Growth Factor Rev 2005; 16:407–20; PMID:15886048; http://dx.doi.org/10.1016/j.cytogfr.2005.01.010
  • Resnicoff M, Burgaud JL, Rotman HL, Abraham D, Baserga R. Correlation between apoptosis, tumorigenesis, and levels of insulin-like growth factor I receptors. Cancer Res 1995; 55:3739–41; PMID:7641185
  • Resnicoff M, Abraham D, Yutanawiboonchai W, Rotman HL, Kajstura J, Rubin R, Zoltick P, Baserga R. The insulin-like growth factor I receptor protects tumor cells from apoptosis in vivo. Cancer Res 1995; 55:2463–9; PMID:7758000
  • Baserga R, Resnicoff M, D'Ambrosio C, Valentinis B. The role of the IGF-I receptor in apoptosis. Vitam Horm 1997; 53:65–98; PMID:9197178; http://dx.doi.org/10.1016/S0083-6729(08)60704-9
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer 2012; 12:278–87; PMID:22437872; http://dx.doi.org/10.1038/nrc3236
  • Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 2010; 10:317–27; PMID:20414205; http://dx.doi.org/10.1038/nri2744
  • von Mehren M, Adams GP, Weiner LM. Monoclonal antibody therapy for cancer. Annu Rev Med 2003; 54:343–69; PMID:12525678; http://dx.doi.org/10.1146/annurev.med.54.101601.152442
  • Shuptrine CW, Surana R, Weiner LM. Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol 2012; 22:3–13; PMID:22245472; http://dx.doi.org/10.1016/j.semcancer.2011.12.009
  • Weiner LM, Murray JC, Shuptrine CW. Antibody-based immunotherapy of cancer. Cell 2012; 148:1081–4; PMID:22424219; http://dx.doi.org/10.1016/j.cell.2012.02.034
  • Kubota T, Niwa R, Satoh M, Akinaga S, Shitara K, Hanai N. Engineered therapeutic antibodies with improved effector functions. Cancer Sci 2009; 100:1566–72; PMID:19538497; http://dx.doi.org/10.1111/j.1349-7006.2009.01222.x
  • Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 2006; 3:269–80; PMID:16683005; http://dx.doi.org/10.1038/ncponc0509
  • Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, Lofgren JA, Tindell C, Evans DP, Maiese K, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2002; 2:127–37; PMID:12204533; http://dx.doi.org/10.1016/S1535-6108(02)00097-1
  • Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 2004; 64:2343–6; PMID:15059883; http://dx.doi.org/10.1158/0008-5472.CAN-03-3856
  • Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, Press MF, Allison DE, Sliwkowski MX, Lieberman G, et al. Phase I Clinical Study of Pertuzumab, a Novel HER Dimerization Inhibitor, in Patients With Advanced Cancer. J Clin Oncol 2005; 23:2534–43; PMID:15699478; http://dx.doi.org/10.1200/JCO.2005.03.184
  • Walshe JM, Denduluri N, Berman AW, Rosing DR, Swain SM. A phase II trial with trastuzumab and pertuzumab in patients with HER2-overexpressed locally advanced and metastatic breast cancer. Clin Breast Cancer 2006; 6:535–9; PMID:16595039; http://dx.doi.org/10.3816/CBC.2006.n.009
  • Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 2005; 333:328–35; PMID:15961063; http://dx.doi.org/10.1016/j.bbrc.2005.05.132
  • Sebolt-Leopold JS, English JM. Mechanisms of drug inhibition of signalling molecules. Nature 2006; 441:457–62; PMID:16724058; http://dx.doi.org/10.1038/nature04874
  • Dancey JE, Chen HX. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat Rev Drug discov 2006; 5:649–59; PMID:16883303; http://dx.doi.org/10.1038/nrd2089
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9:669–76; PMID:12778165; http://dx.doi.org/10.1038/nm0603-669
  • Herley MT, Yu Y, Whitney RG, Sato JD. Characterization of the VEGF binding site on the Flt-1 receptor. Biochem Biophys Res Commun 1999; 262:731–8; PMID:10471394; http://dx.doi.org/10.1006/bbrc.1999.1282
  • Kanno S, Oda N, Abe M, Terai Y, Ito M, Shitara K, Tabayashi K, Shibuya M, Sato Y. Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene 2000; 19:2138–46; PMID:10815805; http://dx.doi.org/10.1038/sj.onc.1203533
  • Keyt BA, Nguyen HV, Berleau LT, Duarte CM, Park J, Chen H, Ferrara N. Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis. J Biol Chem 1996; 271:5638–46; PMID:8621427; http://dx.doi.org/10.1074/jbc.271.10.5638
  • Zhang W, Ran S, Sambade M, Huang X, Thorpe PE. A monoclonal antibody that blocks VEGF binding to VEGFR2 (KDR/Flk-1) inhibits vascular expression of Flk-1 and tumor growth in an orthotopic human breast cancer model. Angiogenesis 2002; 5:35–44; PMID:12549858; http://dx.doi.org/10.1023/A:1021540120521
  • Lu D, Shen J, Vil MD, Zhang H, Jimenez X, Bohlen P, Witte L, Zhu Z. Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. J Biol Chem 2003; 278:43496–507; PMID:12917408; http://dx.doi.org/10.1074/jbc.M307742200
  • Boldicke T, Tesar M, Griesel C, Rohde M, Grone HJ, Waltenberger J, Kollet O, Lapidot T, Yayon A, Weich H. Anti-VEGFR-2 scFvs for cell isolation. Single-chain antibodies recognizing the human vascular endothelial growth factor receptor-2 (VEGFR-2/flk-1) on the surface of primary endothelial cells and preselected CD34+ cells from cord blood. Stem cells 2001; 19:24–36; PMID:11209088; http://dx.doi.org/10.1634/stemcells.19-1-24
  • Binetruy-Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, Kraemer M, Plouet J, Derbin C, Perret G, Mazie JC. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. The EMBO journal 2000; 19:1525–33; PMID:10747021; http://dx.doi.org/10.1093/emboj/19.7.1525
  • Verhoef C, de Wilt JH, Verheul HM. Angiogenesis inhibitors: perspectives for medical, surgical and radiation oncology. Current pharmaceutical design 2006; 12:2623–30; PMID:16842162; http://dx.doi.org/10.2174/138161206777698756
  • Zha J, Lackner MR. Targeting the insulin-like growth factor receptor-1R pathway for cancer therapy. Clin Cancer Res 2010; 16:2512–7; PMID:20388853; http://dx.doi.org/10.1158/1078-0432.CCR-09-2232
  • Foy KC, Miller MJ, Moldovan N, Carson Iii WE, Kaumaya PT. Combined vaccination with HER-2 peptide followed by therapy with VEGF peptide mimics exerts effective anti-tumor and anti-angiogenic effects in vitro and in vivo. Oncoimmunology 2012; 1:1048–60; PMID:23170253; http://dx.doi.org/10.4161/onci.20708
  • Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene 1990; 5:953–62; PMID:1973830
  • Paik S, Hazan R, Fisher ER, Sass RE, Fisher B, Redmond C, Schlessinger J, Lippman ME, King CR. Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 1990; 8:103–12; PMID:1967301
  • Niehans GA, Singleton TP, Dykoski D, Kiang DT. Stability of HER-2/neu expression over time and at multiple metastatic sites. J Natl Cancer Inst 1993; 85:1230–5; PMID:8101229; http://dx.doi.org/10.1093/jnci/85.15.1230
  • Dakappagari NK, Sundaram R, Rawale S, Liner A, Galloway DR, Kaumaya PT. Intracellular delivery of a novel multiepitope peptide vaccine by an amphipathic peptide carrier enhances cytotoxic T-cell responses in HLA-A*201 mice. J Pept Res 2005; 65:189–99; PMID:15705163; http://dx.doi.org/10.1111/j.1399-3011.2005.00212.x
  • Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW, Jr., Leahy DJ. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 2003; 421:756–60; PMID:12610629; http://dx.doi.org/10.1038/nature01392
  • Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Kofler M, Jorissen RN, Nice EC, Burgess AW, et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 2003; 11:495–505; PMID:12620236; http://dx.doi.org/10.1016/S1097-2765(03)00048-0
  • Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer cell 2004; 5:317–28; PMID:15093539; http://dx.doi.org/10.1016/S1535-6108(04)00083-2
  • Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy. The oncologist 2004; 9 Suppl 1:2–10; PMID:15178810; http://dx.doi.org/10.1634/theoncologist.9-suppl_1-2
  • Saito H, Tsujitani S, Ikeguchi M, Maeta M, Kaibara N. Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue. British journal of cancer 1998; 78:1573–7; PMID:9862566; http://dx.doi.org/10.1038/bjc.1998.725
  • Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991; 266:11947–54; PMID:1711045
  • Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161:851–8; PMID:2735925; http://dx.doi.org/10.1016/0006-291X(89)92678-8
  • Casella I, Feccia T, Chelucci C, Samoggia P, Castelli G, Guerriero R, Parolini I, Petrucci E, Pelosi E, Morsilli O, et al. Autocrine-paracrine VEGF loops potentiate the maturation of megakaryocytic precursors through Flt1 receptor. Blood 2003; 101:1316–23; PMID:12406876; http://dx.doi.org/10.1182/blood-2002-07-2184
  • Carpenito C, Davis PD, Dougherty ST, Dougherty GJ. Exploiting the differential production of angiogenic factors within the tumor microenvironment in the design of a novel vascular-targeted gene therapy-based approach to the treatment of cancer. Int J Radiat Oncol, Biol, Phys 2002; 54:1473–8; PMID:12459373; http://dx.doi.org/10.1016/S0360-3016(02)03921-4
  • Monsky WL, Mouta Carreira C, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK. Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 2002; 8:1008–13; PMID:11948107
  • Foy KC, Liu Z, Phillips G, Miller M, Kaumaya PT. Combination Treatment with HER-2 and VEGF Peptide Mimics Induces Potent Anti-tumor and Anti-angiogenic Responses in Vitro and in Vivo. J Biol Chem 2011; 286:13626–37; PMID:21325276; http://dx.doi.org/10.1074/jbc.M110.216820
  • Foy KC, Wygle RM, Miller MJ, Overholser JP, Bekaii-Saab T, Kaumaya PTP. Peptide vaccines and peptidomimetics of EGFR (HER-1) ligand binding domain inhibit cancer cell growth in vitro and in vivo. J Immunol 2013; 191:217–27; http://dx.doi.org/10.4049/jimmunol.1300231
  • Lee-Hoeflich ST, Crocker L, Yao E, Pham T, Munroe X, Hoeflich KP, Sliwkowski MX, Stern HM. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res 2008; 68:5878–87; PMID:18632642; http://dx.doi.org/10.1158/0008-5472.CAN-08-0380
  • Alimandi M, Romano A, Curia MC, Muraro R, Fedi P, Aaronson SA, Di Fiore PP, Kraus MH. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene 1995; 10:1813–21; PMID:7538656
  • Schoeberl B, Faber AC, Li D, Liang MC, Crosby K, Onsum M, Burenkova O, Pace E, Walton Z, Nie L, et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res 2010; 70:2485–94; PMID:20215504; http://dx.doi.org/10.1158/0008-5472.CAN-09-3145
  • Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF, 3rd, Hynes NE. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 2003; 100:8933–8; PMID:12853564; http://dx.doi.org/10.1073/pnas.1537685100
  • Sithanandam G, Anderson LM. The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther 2008; 15:413–48; PMID:18404164; http://dx.doi.org/10.1038/cgt.2008.15
  • Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 1996; 16:5276–87; PMID:8816440
  • Sergina NV, Moasser MM. The HER family and cancer: emerging molecular mechanisms and therapeutic targets. Trends in molecular medicine 2007; 13:527–34; PMID:17981505; http://dx.doi.org/10.1016/j.molmed.2007.10.002
  • Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316:1039–43; PMID:17463250; http://dx.doi.org/10.1126/science.1141478
  • Amler LC. HER3 mRNA as a predictive biomarker in anticancer therapy. Exp Opin Biol Ther 2010; 10:1343–55; PMID:20695834; http://dx.doi.org/10.1517/14712598.2010.512003
  • Osipo C, Meeke K, Cheng D, Weichel A, Bertucci A, Liu H, Jordan VC. Role for HER2/neu and HER3 in fulvestrant-resistant breast cancer. Int J Oncol 2007; 30:509–20; PMID:17203234
  • Frogne T, Benjaminsen RV, Sonne-Hansen K, Sorensen BS, Nexo E, Laenkholm AV, Rasmussen LM, Riese DJ, 2nd, de Cremoux P, Stenvang J, et al. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant. Breast Cancer Res Treat 2009; 114:263–75; PMID:18409071; http://dx.doi.org/10.1007/s10549-008-0011-8
  • Miller TW, Perez-Torres M, Narasanna A, Guix M, Stal O, Perez-Tenorio G, Gonzalez-Angulo AM, Hennessy BT, Mills GB, Kennedy JP, et al. Loss of Phosphatase and Tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer. Cancer Res 2009; 69:4192–201; PMID:19435893; http://dx.doi.org/10.1158/0008-5472.CAN-09-0042
  • Hamburger AW. The role of ErbB3 and its binding partners in breast cancer progression and resistance to hormone and tyrosine kinase directed therapies. J Mammary Gland Biol Neoplasia 2008; 13:225–33; PMID:18425425; http://dx.doi.org/10.1007/s10911-008-9077-5
  • Miller MJ, Foy KC, Overholser JP, Nahta R, Kaumaya PTP. HER-3 peptide vaccines/mimics: Combined therapy with IGF-1R, HER-2, and HER-1 peptides induces synergistic antitumor effects against breast and pancreatic cancer cells. OncoImmunology 2014; 3:e956012; http://dx.doi.org/10.4161/21624011.2014.956012
  • Adams TE, Epa VC, Garrett TP, Ward CW. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci 2000; 57:1050–93; PMID:10961344; http://dx.doi.org/10.1007/PL00000744
  • Yu H, Spitz MR, Mistry J, Gu J, Hong WK, Wu X. Plasma levels of insulin-like growth factor-I and lung cancer risk: a case-control analysis. J Natl Cancer Inst 1999; 91:151–6; PMID:9923856; http://dx.doi.org/10.1093/jnci/91.2.151
  • Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, Rosner B, Speizer FE, Pollak M. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 1998; 351:1393–6; PMID:9593409; http://dx.doi.org/10.1016/S0140-6736(97)10384-1
  • Bergmann U, Funatomi H, Yokoyama M, Beger HG, Korc M. Insulin-like growth factor I overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Cancer Res 1995; 55:2007–11; PMID:7743492
  • Ma J, Pollak MN, Giovannucci E, Chan JM, Tao Y, Hennekens CH, Stampfer MJ. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst 1999; 91:620–5; PMID:10203281; http://dx.doi.org/10.1093/jnci/91.7.620
  • Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH, Pollak M. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 1998; 279:563–6; PMID:9438850; http://dx.doi.org/10.1126/science.279.5350.563
  • Wu X, Zhao H, Do KA, Johnson MM, Dong Q, Hong WK, Spitz MR. Serum levels of insulin growth factor (IGF-I) and IGF-binding protein predict risk of second primary tumors in patients with head and neck cancer. Clin Cancer Res 2004; 10:3988–95; PMID:15217929; http://dx.doi.org/10.1158/1078-0432.CCR-03-0762
  • Morgillo F, Woo JK, Kim ES, Hong WK, Lee HY. Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer research 2006; 66:10100–11; PMID:17047074; http://dx.doi.org/10.1158/0008-5472.CAN-06-1684
  • Kuribayashi A, Kataoka K, Kurabayashi T, Miura M. Evidence that basal activity, but not transactivation, of the epidermal growth factor receptor tyrosine kinase is required for insulin-like growth factor I-induced activation of extracellular signal-regulated kinase in oral carcinoma cells. Endocrinology 2004; 145:4976–84; PMID:15271882; http://dx.doi.org/10.1210/en.2004-0713
  • Epa VC, Ward CW. Model for the complex between the insulin-like growth factor I and its receptor: towards designing antagonists for the IGF-1 receptor. Protein Eng Des Sel 2006; 19:377–84; PMID:16772308; http://dx.doi.org/10.1093/protein/gzl022
  • Foy KC, Miller MJ, Overholser J, Donnelly SM, Nahta R, Kaumaya PTP. IGF-1R peptide vaccines/mimics inhibit the growth of BxPC3 and JIMT-1 cancer cells and exhibit synergistic antitumor effects with HER-1 and HER-2 peptides. OncoImmunology 2014; 3:e956005; http://dx.doi.org/10.4161/21624011.2014.956005
  • Balana ME, Labriola L, Salatino M, Movsichoff F, Peters G, Charreau EH, Elizalde PV. Activation of ErbB-2 via a hierarchical interaction between ErbB-2 and type I insulin-like growth factor receptor in mammary tumor cells. Oncogene 2001; 20:34–47; PMID:11244498; http://dx.doi.org/10.1038/sj.onc.1204050
  • Camirand A, Lu Y, Pollak M. Co-targeting HER2/ErbB2 and insulin-like growth factor-1 receptors causes synergistic inhibition of growth in HER2-overexpressing breast cancer cells. Med Sci Monit 2002; 8:BR521–6
  • Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005; 65:11118–28; PMID:16322262; http://dx.doi.org/10.1158/0008-5472.CAN-04-3841
  • Slomiany MG, Black LA, Kibbey MM, Day TA, Rosenzweig SA. IGF-1 induced vascular endothelial growth factor secretion in head and neck squamous cell carcinoma. Biochem Biophys Res Commun 2006; 342:851–8; PMID:16499871; http://dx.doi.org/10.1016/j.bbrc.2006.02.043
  • Liu B, Ordonez-Ercan D, Fan Z, Edgerton SM, Yang X, Thor AD. Downregulation of erbB3 abrogates erbB2-mediated tamoxifen resistance in breast cancer cells. Int J Cancer 2007; 120:1874–82; PMID:17266042; http://dx.doi.org/10.1002/ijc.22423
  • Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM, Moasser MM. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 2007; 445:437–41; PMID:17206155; http://dx.doi.org/10.1038/nature05474
  • Lu Y, Zi X, Pollak M. Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int J Cancer 2004; 108:334–41; PMID:14648698; http://dx.doi.org/10.1002/ijc.11445
  • Haluska P, Carboni JM, TenEyck C, Attar RM, Hou X, Yu C, Sagar M, Wong TW, Gottardis MM, Erlichman C. HER receptor signaling confers resistance to the insulin-like growth factor-I receptor inhibitor, BMS-536924. Mol Cancer Ther 2008; 7:2589–98; PMID:18765823; http://dx.doi.org/10.1158/1535-7163.MCT-08-0493
  • Sanabria-Figueroa E, Donnelly S, Foy K, Buss M, Castellino RC, Paplomata E, Taliaferro-Smith L, Kaumaya P, Nahta R. Insulin-like growth factor-1 receptor signaling increases the invasive potential of HER2-overexpressing breast cancer cells via Src-FAK and FoxM1. Mol Pharmacol 2014; 87(2):150-61; PMID:25391374
  • Guix M, Faber AC, Wang SE, Olivares MG, Song Y, Qu S, Rinehart C, Seidel B, Yee D, Arteaga CL, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest 2008; 118:2609–19; PMID:18568074
  • Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60:277–300; PMID:20610543; http://dx.doi.org/10.3322/caac.20073
  • Cartwright T, Richards DA, Boehm KA. Cancer of the pancreas: are we making progress? A review of studies in the US Oncology Research Network. Cancer Control 2008; 15:308–13; PMID:18813198
  • Valsecchi ME, McDonald M, Brody JR, Hyslop T, Freydin B, Yeo CJ, Solomides C, Peiper SC, Witkiewicz AK. Epidermal growth factor receptor and insulinlike growth factor 1 receptor expression predict poor survival in pancreatic ductal adenocarcinoma. Cancer 2012; 118:3484–93; PMID:22086503; http://dx.doi.org/10.1002/cncr.26661
  • Dong M, Nio Y, Guo KJ, Tamura K, Tian YL, Dong YT. Epidermal growth factor and its receptor as prognostic indicators in Chinese patients with pancreatic cancer. Anticancer Res 1998; 18:4613–9; PMID:9891528
  • Sherwood ER, Van Dongen JL, Wood CG, Liao S, Kozlowski JM, Lee C. Epidermal growth factor receptor activation in androgen-independent but not androgen-stimulated growth of human prostatic carcinoma cells. Br J Cancer 1998; 77:855–61; PMID:9528825; http://dx.doi.org/10.1038/bjc.1998.142
  • Stoeltzing O, Liu W, Reinmuth N, Fan F, Parikh AA, Bucana CD, Evans DB, Semenza GL, Ellis LM. Regulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-I receptor autocrine loop in human pancreatic cancer. A J Pathol 2003; 163:1001–11; PMID:12937141; http://dx.doi.org/10.1016/S0002-9440(10)63460-8
  • Ishiwata T, Bergmann U, Kornmann M, Lopez M, Beger HG, Korc M. Altered expression of insulin-like growth factor II receptor in human pancreatic cancer. Pancreas 1997; 15:367–73; PMID:9361090; http://dx.doi.org/10.1097/00006676-199711000-00006
  • Li P, Veldwijk MR, Zhang Q, Li ZB, Xu WC, Fu S. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells. BMC Cancer 2013; 13:297; PMID:23777562; http://dx.doi.org/10.1186/1471-2407-13-297
  • Campbell MR, Amin D, Moasser MM. HER3 comes of age: new insights into its functions and role in signaling, tumor biology, and cancer therapy. Clin Cancer Res 2010; 16:1373–83; PMID:20179223; http://dx.doi.org/10.1158/1078-0432.CCR-09-1218
  • Schulze WX, Deng L, Mann M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol 2005; 1:2005 0008; PMID:16729043; http://dx.doi.org/10.1038/msb4100012
  • Tai YT, Podar K, Catley L, Tseng YH, Akiyama M, Shringarpure R, Burger R, Hideshima T, Chauhan D, Mitsiades N, et al. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling. Cancer Res 2003; 63:5850–8; PMID:14522909
  • Valentinis B, Baserga R. IGF-I receptor signalling in transformation and differentiation. Mol Pathol 2001; 54:133–7; PMID:11376123; http://dx.doi.org/10.1136/mp.54.3.133
  • Vartanian T, Goodearl A, Lefebvre S, Park SK, Fischbach G. Neuregulin induces the rapid association of focal adhesion kinase with the erbB2-erbB3 receptor complex in schwann cells. Biochem Biophys Res Commun 2000; 271:414–7; PMID:10799311; http://dx.doi.org/10.1006/bbrc.2000.2624
  • Yang XH, Flores LM, Li Q, Zhou P, Xu F, Krop IE, Hemler ME. Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists. Cancer Res 2010; 70:2256–63; PMID:20197472; http://dx.doi.org/10.1158/0008-5472.CAN-09-4032
  • Bryant P, Zheng Q, Pumiglia K. Focal adhesion kinase controls cellular levels of p27/Kip1 and p21/Cip1 through Skp2-dependent and -independent mechanisms. Mol Cell Biol 2006; 26:4201–13; PMID:16705171; http://dx.doi.org/10.1128/MCB.01612-05
  • Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 2008; 68:8022–30; PMID:18829560; http://dx.doi.org/10.1158/0008-5472.CAN-08-1385
  • She QB, Chandarlapaty S, Ye Q, Lobo J, Haskell KM, Leander KR, DeFeo-Jones D, Huber HE, Rosen N. Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. PLoS One 2008; 3:e3065; PMID:18725974; http://dx.doi.org/10.1371/journal.pone.0003065
  • Tseng PH, Wang YC, Weng SC, Weng JR, Chen CS, Brueggemeier RW, Shapiro CL, Chen CY, Dunn SE, Pollak M. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor. Mol Pharmacol 2006; 70:1534–41; PMID:16887935; http://dx.doi.org/10.1124/mol.106.023911
  • Jin Q, Esteva FJ. Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J Mammary Gland Biol Neoplasia 2008; 13:485–98; PMID:19034632; http://dx.doi.org/10.1007/s10911-008-9107-3
  • Garrett JT, Olivares MG, Rinehart C, Granja-Ingram ND, Sanchez V, Chakrabarty A, Dave B, Cook RS, Pao W, McKinely E, et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci U S A 2011; 108:5021–6; PMID:21385943; http://dx.doi.org/10.1073/pnas.1016140108
  • Kamath AV, Lu D, Gupta P, Jin D, Xiang H, Wong A, Leddy C, Crocker L, Schaefer G, Sliwkowski MX, et al. Preclinical pharmacokinetics of MEHD7945A, a novel EGFR/HER3 dual-action antibody, and prediction of its human pharmacokinetics and efficacious clinical dose. Cancer Chemother Pharmacol 2012; 69(4):1063-69; PMID:22203367; http://dx.doi.org/10:1007/s00280-011-1806-6
  • Schaefer G, Haber L, Crocker LM, Shia S, Shao L, Dowbenko D, Totpal K, Wong A, Lee CV, Stawicki S, et al. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell 2011; 20:472–86; PMID:22014573; http://dx.doi.org/10.1016/j.ccr.2011.09.003
  • Yen L, Benlimame N, Nie ZR, Xiao D, Wang T, Al Moustafa AE, Esumi H, Milanini J, Hynes NE, Pages G, et al. Differential regulation of tumor angiogenesis by distinct ErbB homo- and heterodimers. Mol Biol Cell 2002; 13:4029–44; PMID:12429844; http://dx.doi.org/10.1091/mbc.E02-02-0084
  • Rajkumar T, Stamp GW, Hughes CM, Gullick WJ. c-erbB3 protein expression in ovarian cancer. Clin Mol Pathol 1996; 49:M199–202; PMID:16696074; http://dx.doi.org/10.1136/mp.49.4.M199
  • Lollini PL, De Giovanni C, Nanni P. Preclinical HER-2 Vaccines: From Rodent to Human HER-2. Front Oncol 2013; 3:151; PMID:23772419; http://dx.doi.org/10.3389/fonc.2013.00151
  • Nomura T, Tamaoki N, Takakura A, Suemizu H. Basic concept of development and practical application of animal models for human diseases. Curr Top Microbiol Immunol 2008; 324:1–24; PMID:18481450
  • Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100:3175–82; PMID:12384415; http://dx.doi.org/10.1182/blood-2001-12-0207
  • De Giovanni C, Nicoletti G, Landuzzi L, Romani F, Croci S, Palladini A, Murgo A, Antognoli A, Ianzano ML, Stivani V, et al. Human responses against HER-2-positive cancer cells in human immune system-engrafted mice. Br J Cancer 2012; 107:1302–9; PMID:22929887; http://dx.doi.org/10.1038/bjc.2012.394
  • Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004; 304:104–7; PMID:15064419; http://dx.doi.org/10.1126/science.1093933

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.