3,045
Views
66
CrossRef citations to date
0
Altmetric
Research Papers

A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease

, , , , , , , & show all
Pages 519-527 | Received 27 May 2015, Accepted 26 Jul 2015, Published online: 23 Feb 2016

References

  • WHO, Crimean-Congo haemorrhagic fever. Factsheet No208, 2013; http://www.who.int/mediacentre/fact sheets/fs208/en/
  • Ergonul O Crimean-Congo haemorrhagic fever. Lancet Infect Dis, 2006; 6(4): p:203-14; PMID:16554245; http://dx.doi.org/10.1016/S1473-3099(06)70435-2
  • Watts DM, Kziasek TG, Linthicum KJ, Hoogstraal H.Crimean-Congo hemorrhagic fever. In: Monath TP (ed.) The Arboviruses: Epidemiology and Ecology. Vol 2. Boca Raton, FL: CRC Press; 1988; 177-260
  • Maltezou HC, Andonova L, Andraghetti R, Bouloy M, Ergonul O, Jongejan F, Kalvatchev N, Nichol S, Niedrig M, Platonov A, et al. Crimean-Congo hemorrhagic fever in Europe: current situation calls for preparedness. Euro Surveill 2010; 15(10): p:19504; PMID:20403306
  • Sidwell RW, Smee DF. Viruses of the Bunya- and Togaviridae families: potential as bioterrorism agents and means of control. Antiviral Res 2003; 57(1-2): p:101-11; PMID:12615306; http://dx.doi.org/10.1016/S0166-3542(02)00203-6
  • Zilinskas RA. Iraq's biological weapons. The past as future? Jama 1997; 278(5): p:418-24; PMID:9244334; http://dx.doi.org/10.1001/jama.1997.03550050080037
  • Bronze MS, Huycke MM, Machado LJ, Voskuhl GW, Greenfield RA. Viral agents as biological weapons and agents of bioterrorism. Am J Med Sci 2002; 323(6): p:316-25; PMID:12074486; http://dx.doi.org/10.1097/00000441-200206000-00004
  • Papa A, Papadimitriou E, Christova I. The Bulgarian vaccine Crimean-Congo haemorrhagic fever virus strain. Scand J Infect Dis 2011; 43(3): p:225-9; PMID:21142621; http://dx.doi.org/10.3109/00365548.2010.540036
  • Mousavi-Jazi M, Karlberg H, Papa A, Christova I, Mirazimi A. Healthy individuals' immune response to the Bulgarian Crimean-Congo hemorrhagic fever virus vaccine. Vaccine 2012; 30(44): p:6225-9; PMID:22902680; http://dx.doi.org/10.1016/j.vaccine.2012.08.003
  • Spik K, Shurtleff A, McElroy AK, Guttieri MC, Hooper JW, SchmalJohn C. Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine 2006; 24(21): p:4657-66; PMID:16174542; http://dx.doi.org/10.1016/j.vaccine.2005.08.034
  • Ghiasi SM, Salmanian AH, Chinikar S, Zakeri S. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus. Clin Vaccine Immunol 2011; 18(12): p:2031-7; PMID:22012978; http://dx.doi.org/10.1128/CVI.05352-11
  • Buttigieg KR, Dowall SD, Findlay-Wilson S, Miloszewska A, Rayner E, Hewson R, Carroll MW. A novel vaccine against Crimean-Congo Haemorrhagic Fever protects 100% of animals against lethal challenge in a mouse model. PLoS One 2014; 9(3): p:e91516; PMID:24621656; http://dx.doi.org/10.1371/journal.pone.0091516
  • Schmaljohn CS, Nichol ST, Bunyaviridae, in Fields Virology, Knipe DM, Howley PM, Editors. Lippincott Williams & Wilkins: Philadelphia 2007. p:1741-1789
  • Hewson R, Chamberlain J, Mioulet V, Lloyd G, Jamil B, Hasan R, Gmyl A, Gmyl L, Smirnova SE, Lukashev A, et al. Crimean-Congo haemorrhagic fever virus: sequence analysis of the small RNA segments from a collection of viruses world wide. Virus Res 2004; 102(2): p:185-9; PMID:15084400; http://dx.doi.org/10.1016/j.virusres.2003.12.035
  • Maes P, Clement J, Van Ranst M. Recent approaches in hantavirus vaccine development. Expert Rev Vaccines 2009; 8(1): p:67-76; PMID:19093774; http://dx.doi.org/10.1586/14760584.8.1.67
  • Boshra H, Lorenzo G, Rodriguez F, Brun A. A DNA vaccine encoding ubiquitinated Rift Valley fever virus nucleoprotein provides consistent immunity and protects IFNAR(−/−) mice upon lethal virus challenge. Vaccine 2011; 29(27): p:4469-75; PMID:21549790; http://dx.doi.org/10.1016/j.vaccine.2011.04.043
  • Carter SD, Surtees R, Walter CT, Ariza A, Bergeron É, Nichol ST, Hiscox JA, Edwards TA, Barr JN. Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein. J Virol 2012; 86(20): p:10914-23; PMID:22875964; http://dx.doi.org/10.1128/JVI.01555-12
  • Wang Y, Dutta S, Karlberg H, Devignot S, Weber F, Hao Q, Tan YJ, Mirazimi A, Kotaka M. Structure of Crimean-Congo hemorrhagic fever virus nucleoprotein: superhelical homo-oligomers and the role of caspase-3 cleavage. J Virol 2012; 86(22): p:12294-303; PMID:22951837; http://dx.doi.org/10.1128/JVI.01627-12
  • Karlberg H, Tan YJ, Mirazimi A. Induction of caspase activation and cleavage of the viral nucleocapsid protein in different cell types during Crimean-Congo hemorrhagic fever virus infection. J Biol Chem 2011; 286(5): p:3227-34; PMID:21123175; http://dx.doi.org/10.1074/jbc.M110.149369
  • Wilson JA, Hart MK. Protection from Ebola virus mediated by cytotoxic T lymphocytes specific for the viral nucleoprotein. J Virol 2001; 75(6): p:2660-4; PMID:11222689; http://dx.doi.org/10.1128/JVI.75.6.2660-2664.2001
  • Tsuda Y, Caposio P, Parkins CJ, Botto S, Messaoudi I, Cicin-Sain L, Feldmann H, Jarvis MA. A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus. PLoS Negl Trop Dis 2011; 5(8): p:e1275; PMID:21858240; http://dx.doi.org/10.1371/journal.pntd.0001275
  • Xu X, Ruo SL, McCormick JB, Fisher-Hoch SP. Immunity to Hantavirus challenge in Meriones unguiculatus induced by vaccinia-vectored viral proteins. Am J Trop Med Hyg 1992; 47(4): p:397-404; PMID:1359802
  • Epstein SL, Kong WP, Misplon JA, Lo CY, Tumpey TM, Xu L, Nabel GJ. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine 2005; 23(46-47): p:5404-10; PMID:16011865; http://dx.doi.org/10.1016/j.vaccine.2005.04.047
  • Hashem A, Jaentschke B, Gravel C, Tocchi M, Doyle T, Rosu-Myles M, He R, Li X. Subcutaneous immunization with recombinant adenovirus expressing influenza A nucleoprotein protects mice against lethal viral challenge. Hum Vaccin Immunother 2012; 8(4): p:425-30; PMID:22370512; http://dx.doi.org/10.4161/hv.19109
  • Clegg JC, Lloyd G. Vaccinia recombinant expressing Lassa-virus internal nucleocapsid protein protects guineapigs against Lassa fever. Lancet 1987; 2(8552): p. 186-8; PMID:2885642; http://dx.doi.org/10.1016/S0140-6736(87)90767-7
  • Bankamp B, Brinckmann UG, Reich A, Niewiesk S, ter Meulen V, Liebert UG. Measles virus nucleocapsid protein protects rats from encephalitis. J Virol 1991; 65(4): p:1695-700; PMID:1825854
  • Ozols DY, Rawls WE, Rosenthal KL, Harnish DG. The nucleoprotein of Pichinde virus expressed by a vaccinia-Pichinde virus recombinant partially protects hamsters from lethal virus challenge. Arch Virol 1994; 139(1–2): p“23-36; PMID:7826212; http://dx.doi.org/10.1007/BF01309452
  • Lodmell DL, Sumner JW, Esposito JJ, Bellini WJ, Ewalt LC. Raccoon poxvirus recombinants expressing the rabies virus nucleoprotein protect mice against lethal rabies virus infection. J Virol 1991; 65(6): p:3400-5; PMID:2033678
  • Marriott AC, Nuttall PA. Comparison of the S RNA segments and nucleoprotein sequences of Crimean-Congo hemorrhagic fever, Hazara, and Dugbe viruses. Virology 1992; 189(2): p. 795-9; PMID:1641991; http://dx.doi.org/10.1016/0042-6822(92)90609-S
  • Gomez CE, Nájera JL, Krupa M, Perdiguero B, Esteban M. MVA and NYVAC as vaccines against emergent infectious diseases and cancer. Curr Gene Ther 2011; 11(3): p:189-217; PMID:21453284; http://dx.doi.org/10.2174/156652311795684731
  • Rollier CS, Reyes-Sandoval A, Cottingham MG, Ewer K, Hill AV. Viral vectors as vaccine platforms: deployment in sight. Curr Opin Immunol 2011; 23(3): p:377-82; http://dx.doi.org/10.1016/j.coi.2011.03.006
  • Kolibab K, Yang A, Derrick SC, Waldmann TA, Perera LP, Morris SL. Highly persistent and effective prime/boost regimens against tuberculosis that use a multivalent modified vaccine virus Ankara-based tuberculosis vaccine with interleukin-15 as a molecular adjuvant. Clin Vaccine Immunol 2010; 17(5): p:793-801; PMID:20357059; http://dx.doi.org/10.1128/CVI.00006-10
  • Mehendale S, Thakar M, Sahay S, Kumar M, Shete A, Sathyamurthi P, Verma A, Kurle S, Shrotri A, Gilmour J, et al. Safety and immunogenicity of DNA and MVA HIV-1 subtype C vaccine prime-boost regimens: a phase I randomised Trial in HIV-uninfected Indian volunteers. PLoS One 2013; 8(2): p:e55831; PMID:23418465; http://dx.doi.org/10.1371/journal.pone.0055831
  • Cottingham MG, Carroll MW. Recombinant MVA vaccines: dispelling the myths. Vaccine 2013; 31(39): p:4247-51; PMID:23523407; http://dx.doi.org/10.1016/j.vaccine.2013.03.021
  • Harrop R, Shingler W, Kelleher M, de Belin J, Treasure P. Cross-trial analysis of immunologic and clinical data resulting from phase I and II trials of MVA-5T4 (TroVax) in colorectal, renal, and prostate cancer patients. J Immunother 2010; 33(9): p:999-1005; PMID:20948436; http://dx.doi.org/10.1097/CJI.0b013e3181f5dac7
  • Goepfert PA, Elizaga ML, Sato A, Qin L, Cardinali M, Hay CM, Hural J, DeRosa SC, DeFawe OD, Tomaras GD, et al. Phase 1 safety and immunogenicity testing of DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J Infect Dis 2011; 203(5): p:610-9; PMID:21282192; http://dx.doi.org/10.1093/infdis/jiq105
  • Bertolotti-Ciarlet A, Smith J, Strecker K, Paragas J, Altamura LA, McFalls JM, Frias-Stäheli N, García-Sastre A, Schmaljohn CS, Doms RW. Cellular localization and antigenic characterization of crimean-congo hemorrhagic fever virus glycoproteins. J Virol 2005; 79(10): p. 6152-61; PMID:15858000; http://dx.doi.org/10.1128/JVI.79.10.6152-6161.2005
  • Blackburn NK, Besselaar TG, Shepherd AJ, Swanepoel R. Preparation and use of monoclonal antibodies for identifying Crimean-Congo hemorrhagic fever virus. Am J Trop Med Hyg 1987; 37(2): p:392-7; PMID:3116871
  • Bente DA, Alimonti JB, Shieh WJ, Camus G, Ströher U, Zaki S, Jones SM. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J Virol 2010; 84(21): p:11089-100; PMID:20739514; http://dx.doi.org/10.1128/JVI.01383-10
  • Bereczky S, Lindegren G, Karlberg H, Akerström S, Klingström J, Mirazimi A. Crimean-Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout mice. J Gen Virol 2010; 91(Pt 6): p:1473-7; PMID:20164263; http://dx.doi.org/10.1099/vir.0.019034-0
  • Akira S. Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells 1999; 17(3): p:138-46; PMID:10342556; http://dx.doi.org/10.1002/stem.170138
  • Schroder K, Hertzog PJ, RavasiT, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004; 75(2): p:163-89; PMID:14525967; http://dx.doi.org/10.1189/jlb.0603252
  • Sen GC. Viruses and interferons. Annu Rev Microbiol 2001; 55: p:255-81; PMID:11544356; http://dx.doi.org/10.1146/annurev.micro.55.1.255
  • Yauch LE, Prestwood TR, May MM, Morar MM, Zellweger RM, Peters B, Sette A, Shresta S. CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination. J Immunol 2010; 185(9): p:5405-16; PMID:20870934; http://dx.doi.org/10.4049/jimmunol.1001709
  • Yauch LE, Zellweger RM, Kotturi MF, Qutubuddin A, Sidney J, Peters B, Prestwood TR, Sette A, Shresta S. A protective role for dengue virus-specific CD8+ T cells. J Immunol 2009; 182(8): p:4865-73; PMID:19342665; http://dx.doi.org/10.4049/jimmunol.0801974
  • Zompi S, Santich BH, Beatty PR, Harris E. Protection from secondary dengue virus infection in a mouse model reveals the role of serotype cross-reactive B and T cells. J Immunol 2012; 188(1): p:404-16; PMID:22131327; http://dx.doi.org/10.4049/jimmunol.1102124
  • Chu H, Das SC, Fuchs JF, Suresh M, Weaver SC, Stinchcomb DT, Partidos CD, Osorio JE. Deciphering the protective role of adaptive immunity to CHIKV/IRES a novel candidate vaccine against Chikungunya in the A129 mouse model. Vaccine 2013; 31(33): p:3353-60; PMID:23727003; http://dx.doi.org/10.1016/j.vaccine.2013.05.059
  • Ma G, Eschbaumer M, Said A, Hoffmann B, Beer M, Osterrieder N. An equine herpesvirus type 1 (EHV-1) expressing VP2 and VP5 of serotype 8 bluetongue virus (BTV-8) induces protection in a murine infection model. PLoS One 2012; 7(4): p:e34425; PMID:22511939; http://dx.doi.org/10.1371/journal.pone.0034425
  • Paran N, Suezer Y, Lustig S, Israely T, Schwantes A, Melamed S, Katz L, Preuss T, Hanschmann KM, Kalinke U, et al. Postexposure immunization with modified vaccinia virus Ankara or conventional Lister vaccine provides solid protection in a murine model of human smallpox. J Infect Dis 2009; 199(1): p:39-48; PMID:19012492; http://dx.doi.org/10.1086/595565
  • Castillo-Olivares J, Calvo-Pinilla E, Casanova I, Bachanek-Bankowska K, Chiam R, Maan S, Nieto JM, Ortego J, Mertens PP. A modified vaccinia Ankara virus (MVA) vaccine expressing African horse sickness virus (AHSV) VP2 protects against AHSV challenge in an IFNAR -/- mouse model. PLoS One 2011; 6(1): p:e16503; PMID:21298069; http://dx.doi.org/10.1371/journal.pone.0016503
  • Grant E, Wu C, Chan KF, Eckle S, Bharadwaj M, Zou QM, Kedzierska K, Chen W. Nucleoprotein of influenza A virus is a major target of immunodominant CD8+ T-cell responses. Immunol Cell Biol 2013; 91(2): p;184-94; PMID:23399741; http://dx.doi.org/10.1038/icb.2012.78
  • Carragher DM, Kaminski DA, Moquin A, Hartson L, Randall TD. A novel role for non-neutralizing antibodies against nucleoprotein in facilitating resistance to influenza virus. J Immunol 2008; 181(6): p:4168-76; PMID:18768874; http://dx.doi.org/10.4049/jimmunol.181.6.4168
  • Yewdell JW, Frank E, Gerhard W. Expression of influenza A virus internal antigens on the surface of infected P815 cells. J Immunol 1981; 126(5): p:1814-9; PMID:7217668
  • Zheng B, Zhang Y, He H, Marinova E, Switzer K, Wansley D, Mbawuike I, Han S. Rectification of age-associated deficiency in cytotoxic T cell response to influenza A virus by immunization with immune complexes. J Immunol 2007; 179(9): p:6153-9; PMID:17947690; http://dx.doi.org/10.4049/jimmunol.179.9.6153
  • Sambhara S, Kurichh A, Miranda R, Tumpey T, Rowe T, Renshaw M, Arpino R, Tamane A, Kandil A, James O, et al. Heterosubtypic immunity against human influenza A viruses, including recently emerged avian H5 and H9 viruses, induced by FLU-ISCOM vaccine in mice requires both cytotoxic T-lymphocyte and macrophage function. Cell Immunol 2001; 211(2): p:143-53; PMID:11591118; http://dx.doi.org/10.1006/cimm.2001.1835
  • Vassilenko SM, Vassilev TL, Bozadjiev LG, Bineva IL, Kazarov GZ. Specific intravenous immunoglobulin for Crimean-Congo haemorrhagic fever. Lancet 1990; 335(8692): p:791-2; PMID:1969533; http://dx.doi.org/10.1016/0140-6736(90)90906-L
  • Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res 2013; 100(1): p:159-89
  • Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, Nabel GJ. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004; 428(6982): p:561-4; PMID:15024391; http://dx.doi.org/10.1038/nature02463
  • Zellweger RM, Miller R, EddyWE, White LJ, Johnston RE, Shresta S. Role of humoral vs. cellular responses induced by a protective dengue vaccine candidate. PLoS Pathog 2013; 9(10): p:e1003723; PMID:24204271; http://dx.doi.org/10.1371/journal.ppat.1003723
  • Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, Murphy BR, Subbarao K, Moss B. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A 2004; 101(17): p:6641-6; PMID:15096611; http://dx.doi.org/10.1073/pnas.0401939101
  • Wang Z, Martinez J, Zhou W, La Rosa C, Srivastava T, Dasgupta A, Rawal R, Li Z, Britt WJ, Diamond D. Modified H5 promoter improves stability of insert genes while maintaining immunogenicity during extended passage of genetically engineered MVA vaccines. Vaccine 2010; 28(6): p:1547-57; PMID:19969118; http://dx.doi.org/10.1016/j.vaccine.2009.11.056
  • Luo M, Tao P, Li J, Zhou S, Guo D, Pan Z. Immunization with plasmid DNA encoding influenza A virus nucleoprotein fused to a tissue plasminogen activator signal sequence elicits strong immune responses and protection against H5N1 challenge in mice. J Virol Methods 2008; 154(1-2): p:121-7; PMID:18789973; http://dx.doi.org/10.1016/j.jviromet.2008.08.011
  • Vipond J, Vipond R, Allen-Vercoe E, Clark SO, Hatch GJ, Gooch KE, Bacon J, Hampshire T, Shuttleworth H, Minton NP, et al. Selection of novel TB vaccine candidates and their evaluation as DNA vaccines against aerosol challenge. Vaccine 2006; 24(37-39): p:6340-50; PMID:16781800; http://dx.doi.org/10.1016/j.vaccine.2006.05.025
  • Katzen F. Gateway((R)) recombinational cloning: a biological operating system. Expert Opin Drug Discov 2007 2(4): p. 571-89; PMID:23484762; http://dx.doi.org/10.1517/17460441.2.4.571
  • Earl PL, Moss B, Wyatt LS, Carroll MW. Generation of recombinant vaccinia viruses. Curr Protoc Protein Sci 2001 Chapter 5: p. Unit5 13; PMID:18429179; http://www.ncbi.nlm.nih.gov/pubmed/18429179
  • Earl PL, Cooper N, Wyatt LS, Moss B, Carroll MW. Preparation of cell cultures and vaccinia virus stocks. Curr Protoc Protein Sci 2001 Chapter 5: p. Unit5 12; PMID:18429178; http://www.ncbi.nlm.nih.gov/pubmed/18429178
  • Shimizu S. Routes of Administration, in The Laboratory Mouse. Hedrich HJ, Bullock G, Editors. Elsevier. 2004:p:527-542.