3,013
Views
30
CrossRef citations to date
0
Altmetric
Commentary

Recent advancements in combination subunit vaccine development

&
Pages 180-185 | Received 04 Aug 2016, Accepted 24 Aug 2016, Published online: 26 Jan 2017

References

  • Duizer E, Schwab KJ, Neill FH, Atmar RL, Koopmans MP, Estes MK. Laboratory efforts to cultivate noroviruses. J Gen Virol 2004; 85:79-87; PMID:14718622; http://dx.doi.org/10.1099/vir.0.19478-0
  • Tan M, Jiang X. Subviral particle as vaccine and vaccine platform. Curr Opin Virol 2014; 6C:24-33; http://dx.doi.org/10.1016/j.coviro.2014.02.009
  • Zhao Q, Li S, Yu H, Xia N, Modis Y. Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol 2013; 31:654-63; PMID:24125746; http://dx.doi.org/10.1016/j.tibtech.2013.09.002
  • Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 2012; 31:58-83; PMID:23142589; http://dx.doi.org/10.1016/j.vaccine.2012.10.083
  • Jiang X, Wang M, Graham DY, Estes MK. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 1992; 66:6527-32; PMID:1328679
  • Zeng CQ, Wentz MJ, Cohen J, Estes MK, Ramig RF. Characterization and replicase activity of double-layered and single-layered rotavirus-like particles expressed from baculovirus recombinants. J Virol 1996; 70:2736-42; PMID:8627747
  • Shoja Z, Tagliamonte M, Jalilvand S, Mollaei-Kandelous Y, De Stradis A, Tornesello ML, Buonaguro FM, Buonaguro L. Formation of self-assembled triple-layered rotavirus-like particles (tlRLPs) by constitutive co-expression of VP2, VP6, and VP7 in stably transfected high-five insect cell lines. J Med Virol 2015; 87:102-11; PMID:24797918; http://dx.doi.org/10.1002/jmv.23973
  • Mortola E, Roy P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett 2004; 576:174-8; PMID:15474033; http://dx.doi.org/10.1016/j.febslet.2004.09.009
  • Tan M, Fang P, Chachiyo T, Xia M, Huang P, Fang Z, Jiang W, Jiang X. Noroviral P particle: Structure, function and applications in virus-host interaction. Virology 2008; 382:115-23; PMID:18926552; http://dx.doi.org/10.1016/j.virol.2008.08.047
  • Tan M, Jiang X. The p domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J Virol 2005; 79:14017-30; PMID:16254337; http://dx.doi.org/10.1128/JVI.79.22.14017-14030.2005
  • Tan M, Fang PA, Xia M, Chachiyo T, Jiang W, Jiang X. Terminal modifications of norovirus P domain resulted in a new type of subviral particles, the small P particles. Virology 2011; 410:345-52; PMID:21185050; http://dx.doi.org/10.1016/j.virol.2010.11.017
  • Bereszczak JZ, Barbu IM, Tan M, Xia M, Jiang X, van Duijn E, Heck AJ. Structure, stability and dynamics of norovirus P domain derived protein complexes studied by native mass spectrometry. J Struct Biol 2012; 177:273-82; PMID:22266117; http://dx.doi.org/10.1016/j.jsb.2012.01.005
  • Li SW, Zhang J, Li YM, Ou SH, Huang GY, He ZQ, Ge SX, Xian YL, Pang SQ, Ng MH, et al. A bacterially expressed particulate hepatitis E vaccine: antigenicity, immunogenicity and protectivity on primates. Vaccine 2005; 23:2893-901; PMID:15780738; http://dx.doi.org/10.1016/j.vaccine.2004.11.064
  • Wang L, Huang P, Fang H, Xia M, Zhong W, McNeal MM, Jiang X, Tan M. Polyvalent complexes for vaccine development. Biomaterials 2013; 34:4480-92; PMID:23498893; http://dx.doi.org/10.1016/j.biomaterials.2013.02.041
  • Wang L, Xia M, Huang P, Fang H, Cao D, Meng XJ, McNeal M, Jiang X, Tan M. Branched-linear and agglomerate protein polymers as vaccine platforms. Biomaterials 2014; 35:8427-38; PMID:24985736; http://dx.doi.org/10.1016/j.biomaterials.2014.06.021
  • Plummer EM, Manchester M. Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley interdisciplinary reviews Nanomedicine and nanobiotechnology 2010; PMID:20872839
  • Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A 1992; 89:12180-4; PMID:1334560; http://dx.doi.org/10.1073/pnas.89.24.12180
  • Jagu S, Kwak K, Garcea RL, Roden RB. Vaccination with multimeric L2 fusion protein and L1 VLP or capsomeres to broaden protection against HPV infection. Vaccine 2010; 28:4478-86; PMID:20434552; http://dx.doi.org/10.1016/j.vaccine.2010.04.039
  • Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A, Zahaf T, Innis B, Naud P, De Carvalho NS, et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 2004; 364:1757-65; PMID:15541448; http://dx.doi.org/10.1016/S0140-6736(04)17398-4
  • Villa LL, Costa RL, Petta CA, Andrade RP, Ault KA, Giuliano AR, Wheeler CM, Koutsky LA, Malm C, Lehtinen M, et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol 2005; 6:271-8; PMID:15863374; http://dx.doi.org/10.1016/S1470-2045(05)70101-7
  • McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR. Human hepatitis B vaccine from recombinant yeast. Nature 1984; 307:178-80; PMID:6318124; http://dx.doi.org/10.1038/307178a0
  • Andre FE, Safary A. Summary of clinical findings on Engerix-B, a genetically engineered yeast derived hepatitis B vaccine. Postgraduate Med J 1987; 63(Suppl 2):169-77; PMID:3317357
  • Proffitt A. First HEV vaccine approved. Nat Biotechnol 2012; 30:300; PMID:22491268; http://dx.doi.org/10.1038/nbt0412-300a
  • Atmar RL, Bernstein DI, Harro CD, Al-Ibrahim MS, Chen WH, Ferreira J, Estes MK, Graham DY, Opekun AR, Richardson C, et al. Norovirus vaccine against experimental human Norwalk Virus illness. N Engl J Med 2011; 365:2178-87; PMID:22150036; http://dx.doi.org/10.1056/NEJMoa1101245
  • Chandramouli S, Medina-Selby A, Coit D, Schaefer M, Spencer T, Brito LA, Zhang P, Otten G, Mandl CW, Mason PW, et al. Generation of a parvovirus B19 vaccine candidate. Vaccine 2013; 31:3872-8; PMID:23827313; http://dx.doi.org/10.1016/j.vaccine.2013.06.062
  • Bernstein DI, El Sahly HM, Keitel WA, Wolff M, Simone G, Segawa C, Wong S, Shelly D, Young NS, Dempsey W. Safety and immunogenicity of a candidate parvovirus B19 vaccine. Vaccine 2011; 29:7357-63; PMID:21807052; http://dx.doi.org/10.1016/j.vaccine.2011.07.080
  • Tan M, Huang P, Xia M, Fang PA, Zhong W, McNeal M, Wei C, Jiang W, Jiang X. Norovirus P particle, a novel platform for vaccine development and antibody production. J Virol 2011; 85:753-64; PMID:21068235; http://dx.doi.org/10.1128/JVI.01835-10
  • Tan M, Jiang X. Norovirus P particle: a subviral nanoparticle for vaccine development against norovirus, rotavirus and influenza virus. Nanomedicine (Lond) 2012; 7:889-97; PMID:22734641
  • Tan M, Jiang X. Nanoparticles of Norovirus. In: Khudyakov Y, Pumpens P, eds. Viral Nanptechnology. Norwich, UK: CRC Press, Taylor &Francis Group, 2015:363-71.
  • Xia M, Tan M, Wei C, Zhong W, Wang L, McNeal M, Jiang X. A candidate dual vaccine against influenza and noroviruses. Vaccine 2011; 29:7670-7; PMID:21839795; http://dx.doi.org/10.1016/j.vaccine.2011.07.139
  • Cohen J, Nussenzweig V, Nussenzweig R, Vekemans J, Leach A. From the circumsporozoite protein to the RTS, S/AS candidate vaccine. Hum Vaccines 2010; 6:90-6; PMID:19806009; http://dx.doi.org/10.4161/hv.6.1.9677
  • Tan M, Xia M, Huang P, Wang L, Zhong W, McNeal M, Wei C, Jiang X. Norovirus P Particle as a Platform for Antigen Presentation. Procedia Vaccinol 2011; 4:19-26; http://dx.doi.org/10.1016/j.provac.2011.07.004
  • Gosling R, von Seidlein L. The future of the RTS,S/AS01 malaria vaccine: an alternative development plan. PLoS Med 2016; 13:e1001994; PMID:27070151; http://dx.doi.org/10.1371/journal.pmed.1001994
  • Rts SCTP. Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med 2014; 11:e1001685; PMID:25072396; http://dx.doi.org/10.1371/journal.pmed.1001685
  • Rts SCTP. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 2015; 386:31-45; PMID:25913272; http://dx.doi.org/10.1016/S0140-6736(15)60721-8
  • Rts SCTP, Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BG, Kabwende AL, Adegnika AA, Mordmuller B, Issifou S, et al. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N Engl J Med 2012; 367:2284-95; PMID:23136909; http://dx.doi.org/10.1056/NEJMoa1208394
  • Brown MJ. Success and failure of vaccines against renin-angiotensin system components. Nat Rev Cardiol 2009; 6:639-47; PMID:19707182; http://dx.doi.org/10.1038/nrcardio.2009.156
  • Cornuz J, Zwahlen S, Jungi WF, Osterwalder J, Klingler K, van Melle G, Bangala Y, Guessous I, Muller P, Willers J, et al. A vaccine against nicotine for smoking cessation: a randomized controlled trial. PLoS One 2008; 3:e2547; PMID:18575629; http://dx.doi.org/10.1371/journal.pone.0002547
  • Maurer P, Jennings GT, Willers J, Rohner F, Lindman Y, Roubicek K, Renner WA, Muller P, Bachmann MF. A therapeutic vaccine for nicotine dependence: preclinical efficacy, and Phase I safety and immunogenicity. Eur J Immunol 2005; 35:2031-40; PMID:15971275; http://dx.doi.org/10.1002/eji.200526285
  • Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 1999; 5:1157-63; PMID:10502819; http://dx.doi.org/10.1038/13484
  • De Filette M, Ramne A, Birkett A, Lycke N, Lowenadler B, Min Jou W, Saelens X, Fiers W. The universal influenza vaccine M2e-HBc administered intranasally in combination with the adjuvant CTA1-DD provides complete protection. Vaccine 2006; 24:544-51; PMID:16169634; http://dx.doi.org/10.1016/j.vaccine.2005.08.061
  • Schotsaert M, De Filette M, Fiers W, Saelens X. Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. Exp Rev Vaccines 2009; 8:499-508; PMID:19348565; http://dx.doi.org/10.1586/erv.09.6
  • Gong X, Yin H, Shi Y, He X, Yu Y, Guan S, Kuai Z, Haji NM, Haji NM, Kong W, et al. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus P particle immunogen displaying influenza HA2 from subtypes H1, H3 and B. Emerg Microbes Infect 2016; 5:e51; PMID:27222326; http://dx.doi.org/10.1038/emi.2016.51
  • Yu Y, Fu L, Shi Y, Guan S, Yang L, Gong X, Yin H, He X, Liu D, Kuai Z, et al. Elicitation of HIV-1 neutralizing antibodies by presentation of 4E10 and 10E8 epitopes on Norovirus P particles. Immunol Lett 2015; 168:271-8; PMID:26455781; http://dx.doi.org/10.1016/j.imlet.2015.10.003
  • Jiang L, Fan R, Sun S, Fan P, Su W, Zhou Y, Gao F, Xu F, Kong W, Jiang C. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice. Vaccine 2015; 33:6596-603; PMID:26529072; http://dx.doi.org/10.1016/j.vaccine.2015.10.104
  • Wang L, Cao D, Wei C, Meng XJ, Jiang X, Tan M. A dual vaccine candidate against norovirus and hepatitis E virus. Vaccine 2014; 32:445-52; PMID:24291540; http://dx.doi.org/10.1016/j.vaccine.2013.11.064
  • Xia M, Wei C, Wang L, Cao D, Meng XJ, Jiang X, Tan M. A trivalent vaccine candidate against hepatitis E virus, norovirus, and astrovirus. Vaccine 2016; 34:905-13; PMID:26778421; http://dx.doi.org/10.1016/j.vaccine.2015.12.068
  • Tan M, Jiang X. The formation of P particle increased immunogenicity of norovirus P protein. Immunology 2012; 136:28-9; PMID:22257239; http://dx.doi.org/10.1111/j.1365-2567.2012.03555.x
  • Xia M, Wei C, Wang L, Cao D, Meng XJ, Jiang X, Tan M. Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus. Sci Rep 2016; 6:25735; PMID:27194006; http://dx.doi.org/10.1038/srep25735

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.