1,506
Views
0
CrossRef citations to date
0
Altmetric
Addendum

Listen to your gut: Using adhesion to shape the surface of functionally diverse epithelia

Article: e1220469 | Received 01 Jun 2016, Accepted 28 Jul 2016, Published online: 25 Aug 2016

References

  • Crawley SW, Mooseker MS, Tyska MJ. Shaping the intestinal brush border. J Cell Biol 2014; 207(4):441-51; PMID:25422372; http://dx.doi.org/10.1083/jcb.201407015
  • Delacour D, Salomon J, Robine S, Louvard D. Plasticity of the brush border - the yin and yang of intestinal homeostasis. Nat Rev Gastroenterol Hepatol 2016; 13(3):161-74; PMID:26837713; http://dx.doi.org/10.1038/nrgastro.2016.5
  • Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 1977; 31:107-33; PMID:334036; http://dx.doi.org/10.1146/annurev.mi.31.100177.000543
  • Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004; 101(44):15718-23; PMID:15505215; http://dx.doi.org/10.1073/pnas.0407076101
  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307(5717):1915-20; PMID:15790844; http://dx.doi.org/10.1126/science.1104816
  • Shifrin DA, Jr., McConnell RE, Nambiar R, Higginbotham JN, Coffey RJ, Tyska MJ. Enterocyte microvillus-derived vesicles detoxify bacterial products and regulate epithelial-microbial interactions. Curr Biol 2012; 22(7):627-31; PMID:22386311; http://dx.doi.org/10.1016/j.cub.2012.02.022
  • McConnell RE, Higginbotham JN, Shifrin DA, Jr., Tabb DL, Coffey RJ, Tyska MJ. The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 2009; 185(7):1285-98; PMID:19564407; http://dx.doi.org/10.1083/jcb.200902147
  • Helander HF, Fandriks L. Surface area of the digestive tract - revisited. Scand J Gastroenterol 2014; 49(6):681-9; PMID:24694282; http://dx.doi.org/10.3109/00365521.2014.898326
  • Wilson W, Scott RB, Pinto A, Robertson MA. Intractable diarrhea in a newborn infant: microvillous inclusion disease. Can J Gastroenterol 2001; 15(1):61-4; PMID:11173328; http://dx.doi.org/10.1155/2001/743925
  • Khubchandani SR, Vohra P, Chitale AR, Sidana P. Microvillous inclusion disease?an ultrastructural diagnosis: with a review of the literature. Ultrastruct Pathol 2011; 35(2):87-91; PMID:21299349; http://dx.doi.org/10.3109/01913123.2010.537438
  • Vallance BA, Chan C, Robertson ML, Finlay BB. Enteropathogenic and enterohemorrhagic Escherichia coli infections: emerging themes in pathogenesis and prevention. Can J Gastroenterol 2002; 16(11):771-8; PMID:12464970; http://dx.doi.org/10.1155/2002/410980
  • Bailey DS, Freedman AR, Price SC, Chescoe D, Ciclitira PJ. Early biochemical responses of the small intestine of coeliac patients to wheat gluten. Gut 1989; 30(1):78-85; PMID:2563983; http://dx.doi.org/10.1136/gut.30.1.78
  • Tilney LG, Cotanche DA, Tilney MS. Actin filaments, stereocilia and hair cells of the bird cochlea. VI. How the number and arrangement of stereocilia are determined. Development 1992; 116(1):213-26; PMID:1483389
  • Crawley SW, Shifrin DA Jr, Grega-Larson NE, McConnell RE, Benesh AE, Mao S, Zheng Y, Zheng QY, Nam KT, Millis BA, et al. Intestinal brush border assembly driven by protocadherin-based intermicrovillar adhesion. Cell 2014; 157(2):433-46; PMID:24725409; http://dx.doi.org/10.1016/j.cell.2014.01.067
  • Crawley SW, Weck ML, Grega-Larson NE, Shifrin DA, Jr., Tyska MJ. ANKS4B Is Essential for Intermicrovillar Adhesion Complex Formation. Dev Cell 2016; 36(2):190-200; PMID:26812018; http://dx.doi.org/10.1016/j.devcel.2015.12.022
  • Almagro S, Durmort C, Chervin-Pétinot A, Heyraud S, Dubois M, Lambert O, Maillefaud C, Hewat E, Schaal JP, Huber P, et al. The motor protein myosin-X transports VE-cadherin along filopodia to allow the formation of early endothelial cell-cell contacts. Mol Cell Biol 2010; 30(7):1703-17; PMID:20123970; http://dx.doi.org/10.1128/MCB.01226-09
  • Berg JS, Cheney RE. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 2002; 4(3):246-50; PMID:11854753; http://dx.doi.org/10.1038/ncb762
  • Pi X, Ren R, Kelley R, Zhang C, Moser M, Bohil AB, Divito M, Cheney RE, Patterson C. Sequential roles for myosin-X in BMP6-dependent filopodial extension, migration, and activation of BMP receptors. J Cell Biol 2007; 179(7):1569-82; PMID:18158328; http://dx.doi.org/10.1083/jcb.200704010
  • Tokuo H, Ikebe M. Myosin X transports Mena/VASP to the tip of filopodia. Biochem Biophys Res Commun 2004; 319(1):214-20; PMID:15158464; http://dx.doi.org/10.1016/j.bbrc.2004.04.167
  • Zhang H, Berg JS, Li Z, Wang Y, Lang P, Sousa AD, Bhaskar A, Cheney RE, Stromblad S. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol 2004; 6(6):523-31; PMID:15156152; http://dx.doi.org/10.1038/ncb1136
  • Zhu XJ, Wang CZ, Dai PG, Xie Y, Song NN, Liu Y, Du QS, Mei L, Ding YQ, Xiong WC. Myosin X regulates netrin receptors and functions in axonal path-finding. Nat Cell Biol 2007; 9(2):184-92; PMID:17237772; http://dx.doi.org/10.1038/ncb1535
  • Li J, He Y, Lu Q, Zhang M. Mechanistic Basis of Organization of the Harmonin/USH1C-Mediated Brush Border Microvilli Tip-Link Complex. Dev Cell 2016; 36(2):179-89; PMID:26812017; http://dx.doi.org/10.1016/j.devcel.2015.12.020
  • Johnston AM, Naselli G, Niwa H, Brodnicki T, Harrison LC, Gonez LJ. Harp (harmonin-interacting, ankyrin repeat-containing protein), a novel protein that interacts with harmonin in epithelial tissues. Genes Cells 2004; 9(10):967-82; PMID:15461667; http://dx.doi.org/10.1111/j.1365-2443.2004.00776.x
  • Pan L, Zhang M. Structures of usher syndrome 1 proteins and their complexes. Physiology (Bethesda) 2012; 27(1):25-42; PMID:22311968; http://dx.doi.org/10.1152/physiol.00037.2011
  • Frolenkov GI, Belyantseva IA, Friedman TB, Griffith AJ. Genetic insights into the morphogenesis of inner ear hair cells. Nat Rev Genet 2004; 5(7):489-98; PMID:15211351; http://dx.doi.org/10.1038/nrg1377
  • Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Muller U, Kachar B. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 2007; 449(7158):87-91; PMID:17805295; http://dx.doi.org/10.1038/nature06091
  • Pan L, Yan J, Wu L, Zhang M. Assembling stable hair cell tip link complex via multidentate interactions between harmonin and cadherin 23. Proc Natl Acad Sci U S A 2009; 106(14):5575-80; PMID:19297620; http://dx.doi.org/10.1073/pnas.0901819106
  • Wu L, Pan L, Zhang C, Zhang M. Large protein assemblies formed by multivalent interactions between cadherin23 and harmonin suggest a stable anchorage structure at the tip link of stereocilia. J Biol Chem 2012; 287(40):33460-71; PMID:22879593; http://dx.doi.org/10.1074/jbc.M112.378505
  • Wu L, Pan L, Wei Z, Zhang M. Structure of MyTH4-FERM domains in myosin VIIa tail bound to cargo. Science 2011; 331(6018):757-60; PMID:21311020; http://dx.doi.org/10.1126/science.1198848
  • Yan J, Pan L, Chen X, Wu L, Zhang M. The structure of the harmonin/sans complex reveals an unexpected interaction mode of the two Usher syndrome proteins. Proc Natl Acad Sci U S A 2010; 107(9):4040-5; PMID:20142502; http://dx.doi.org/10.1073/pnas.0911385107
  • Bahloul A, Michel V, Hardelin JP, Nouaille S, Hoos S, Houdusse A, England P, Petit C. Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 2010; 19(18):3557-65; PMID:20639393; http://dx.doi.org/10.1093/hmg/ddq271
  • Boeda B, El-Amraoui A, Bahloul A, Goodyear R, Daviet L, Blanchard S, Perfettini I, Fath KR, Shorte S, Reiners J, et al. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J 2002; 21(24):6689-99; PMID:12485990; http://dx.doi.org/10.1093/emboj/cdf689
  • Kikkawa Y, Shitara H, Wakana S, Kohara Y, Takada T, Okamoto M, Taya C, Kamiya K, Yoshikawa Y, Tokano H, et al. Mutations in a new scaffold protein Sans cause deafness in Jackson shaker mice. Hum Mol Genet 2003; 12(5):453-61; PMID:12588793; http://dx.doi.org/10.1093/hmg/ddg042
  • Maeda R, Kindt KS, Mo W, Morgan CP, Erickson T, Zhao H, Clemens-Grisham R, Barr-Gillespie PG, Nicolson T. Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc Natl Acad Sci U S A 2014; 111(35):12907-12; PMID:25114259; http://dx.doi.org/10.1073/pnas.1402152111
  • Pan B, Geleoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K, Kawashima Y, Griffith AJ, Holt JR. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 2013; 79(3):504-15; PMID:23871232; http://dx.doi.org/10.1016/j.neuron.2013.06.019
  • Lefevre G, Michel V, Weil D, Lepelletier L, Bizard E, Wolfrum U, Hardelin JP, Petit C. A core cochlear phenotype in USH1 mouse mutants implicates fibrous links of the hair bundle in its cohesion, orientation and differential growth. Development 2008; 135(8):1427-37; PMID:18339676; http://dx.doi.org/10.1242/dev.012922
  • D'Alterio C, Tran DD, Yeung MW, Hwang MS, Li MA, Arana CJ, Mulligan VK, Kubesh M, Sharma P, Chase M, et al. Drosophila melanogaster Cad99C, the orthologue of human Usher cadherin PCDH15, regulates the length of microvilli. J Cell Biol 2005; 171(3):549-58; PMID:16260500; http://dx.doi.org/10.1083/jcb.200507072
  • Glowinski C, Liu RH, Chen X, Darabie A, Godt D. Myosin VIIA regulates microvillus morphogenesis and interacts with cadherin Cad99C in Drosophila oogenesis. J Cell Sci 2014; 127(Pt 22):4821-32; PMID:25236597; http://dx.doi.org/10.1242/jcs.099242
  • Tilney LG, Tilney MS, DeRosier DJ. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu Rev Cell Biol 1992; 8:257-74; PMID:1476800; http://dx.doi.org/10.1146/annurev.cb.08.110192.001353
  • Reiners J, Nagel-Wolfrum K, Jurgens K, Marker T, Wolfrum U. Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res 2006; 83(1):97-119; PMID:16545802; http://dx.doi.org/10.1016/j.exer.2005.11.010
  • Bitner-Glindzicz M, Lindley KJ, Rutland P, Blaydon D, Smith VV, Milla PJ, Hussain K, Furth-Lavi J, Cosgrove KE, Shepherd RM, et al. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nat Genet 2000; 26(1):56-60; PMID:10973248; http://dx.doi.org/10.1038/79178
  • Verpy E, Leibovici M, Zwaenepoel I, Liu XZ, Gal A, Salem N, Mansour A, Blanchard S, Kobayashi I, Keats BJ, et al. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet 2000; 26(1):51-5; PMID:10973247; http://dx.doi.org/10.1038/79171
  • Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD, et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 1995; 374(6517):60-1; PMID:7870171; http://dx.doi.org/10.1038/374060a0
  • Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, Polomeno R, Ramesh A, Schloss M, Srisailpathy CR, et al. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet 2001; 68(1):26-37; PMID:11090341; http://dx.doi.org/10.1086/316954
  • Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ, Morell RJ, Friedman TB, Riazuddin S, Wilcox ER. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am J Hum Genet 2001; 69(1):25-34; PMID:11398101; http://dx.doi.org/10.1086/321277
  • Mathur P, Yang J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta 2015; 1852(3):406-20; PMID:25481835; http://dx.doi.org/10.1016/j.bbadis.2014.11.020
  • Hussain K, Bitner-Glindzicz M, Blaydon D, Lindley KJ, Thompson DA, Kriss T, Rajput K, Ramadan DG, Al-Mazidi Z, Cosgrove KE, et al. Infantile hyperinsulinism associated with enteropathy, deafness and renal tubulopathy: clinical manifestations of a syndrome caused by a contiguous gene deletion located on chromosome 11p. J Pediatr Endocrinol Metab 2004; 17(12):1613-21; PMID:15645695
  • Weil D, El-Amraoui A, Masmoudi S, Mustapha M, Kikkawa Y, Lainé S, Delmaghani S, Adato A, Nadifi S, Zina ZB, et al. Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Hum Mol Genet 2003; 12(5):463-71; PMID:12588794; http://dx.doi.org/10.1093/hmg/ddg051
  • Caberlotto E, Michel V, Foucher I, Bahloul A, Goodyear RJ, Pepermans E, Michalski N, Perfettini I, Alegria-Prévot O, Chardenoux S, et al. Usher type 1G protein sans is a critical component of the tip-link complex, a structure controlling actin polymerization in stereocilia. Proc Natl Acad Sci U S A 2011; 108(14):5825-30; PMID:21436032; http://dx.doi.org/10.1073/pnas.1017114108
  • Goodyear RJ, Marcotti W, Kros CJ, Richardson GP. Development and properties of stereociliary link types in hair cells of the mouse cochlea. J Comp Neurol 2005; 485(1):75-85; PMID:15776440; http://dx.doi.org/10.1002/cne.20513
  • Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA, Cui R, Nakanishi H, Fujikawa T, Kawashima Y, et al. TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell stereocilia. Cell Rep 2015; 12(10):1606-17; PMID:26321635; http://dx.doi.org/10.1016/j.celrep.2015.07.058
  • Shin JB, Krey JF, Hassan A, Metlagel Z, Tauscher AN, Pagana JM, Sherman NE, Jeffery ED, Spinelli KJ, Zhao H, et al. Molecular architecture of the chick vestibular hair bundle. Nat Neurosci 2013; 16(3):365-74; PMID:23334578; http://dx.doi.org/10.1038/nn.3312
  • Wilmarth PA, Krey JF, Shin JB, Choi D, David LL, Barr-Gillespie PG. Hair-bundle proteomes of avian and mammalian inner-ear utricles. Sci Data 2015; 2:150074; PMID:26645194; http://dx.doi.org/10.1038/sdata.2015.74
  • McConnell RE, Benesh AE, Mao S, Tabb DL, Tyska MJ. Proteomic analysis of the enterocyte brush border. Am J Physiol Gastrointest Liver Physiol 2011; 300(5):G914-26; PMID:21330445; http://dx.doi.org/10.1152/ajpgi.00005.2011