214
Views
1
CrossRef citations to date
0
Altmetric
Clinical Measurement

Yield of EEG features as markers of disease severity in amyotrophic lateral sclerosis: a pilot study

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 295-303 | Received 09 Jun 2022, Accepted 16 Nov 2022, Published online: 15 Dec 2022

References

  • Brooks BR. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci. 1994;124: 96–107. Cited: in:: PMID: 7807156.
  • Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases. El escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–9. Cited: in:: PMID: 11464847.
  • Shefner JM, Al-Chalabi A, Baker MR, Cui LY, de Carvalho M, Eisen A, et al. A proposal for new diagnostic criteria for ALS. Clin Neurophysiol. 2020;131:1975–8. Cited: in:: PMID: 32387049.
  • Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci. 1999;169:13–21. Cited: in:: PMID: 10540002.
  • Verber NS, Shepheard SR, Sassani M, McDonough HE, Moore SA, Alix JJP, et al. Biomarkers in motor neuron disease: a state of the art review. Front Neurol 2019;10:291. Cited: in:: PMID: 31001186.
  • Bryan WW, Reisch JS, McDonald G, Herbelin LL, Barohn RJ, Fleckenstein JL. Magnetic resonance imaging of muscle in amyotrophic lateral sclerosis. Neurology 1998;51:110–3. Cited: in:: PMID: 9674787.
  • Cha CH, Patten BM. Amyotrophic lateral sclerosis: abnormalities of the tongue on magnetic resonance imaging. Ann Neurol. 1989;25:468–72. Cited: in:: PMID: 2774487.
  • Simon NG, Lagopoulos J, Paling S, Pfluger C, Park SB, Howells J, et al. Peripheral nerve diffusion tensor imaging as a measure of disease progression in ALS. J Neurol. 2017;264:882–90. Cited: in:: PMID: 28265751.
  • de Albuquerque M, Branco LMT, Rezende TJR, de Andrade HMT, Nucci A, França MC. Longitudinal evaluation of cerebral and spinal cord damage in amyotrophic lateral sclerosis. Neuroimage Clin. 2017;14:269–76. Cited: in:: PMID: 28203530.
  • Meier JM, van der Burgh HK, Nitert AD, Bede P, de Lange SC, Hardiman O, et al. Connectome-based propagation model in amyotrophic lateral sclerosis. Ann Neurol. 2020;87:725–38. Cited: in:: PMID: 32072667.
  • Agosta F, Canu E, Valsasina P, Riva N, Prelle A, Comi G, et al. Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiol Aging. 2013;34:419–27. Cited: in:: PMID: 22608240.
  • Li F, Zhou F, Huang M, Gong H, Xu R. Frequency-specific abnormalities of intrinsic functional connectivity strength among patients with amyotrophic lateral sclerosis: a resting-state fMRI study. Front Aging Neurosci. 2017;9:351. Cited: in:: PMID: 29163133.
  • Mohammadi B, Kollewe K, Samii A, Krampfl K, Dengler R, Münte TF. Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol. 2009;217:147–53. Cited: in:: PMID: 19416664.
  • Schulthess I, Gorges M, Müller HP, Lulé D, Del Tredici K, Ludolph AC, et al. Functional connectivity changes resemble patterns of pTDP-43 pathology in amyotrophic lateral sclerosis. Sci Rep. 2016;6:38391. Cited: in:: PMID: 27929102.
  • Trojsi F, Di Nardo F, Siciliano M, Caiazzo G, Passaniti C, D’Alvano G, et al. Resting state functional MRI brain signatures of fast disease progression in amyotrophic lateral sclerosis: a retrospective study. Amyotroph Lateral Scler Frontotemporal Degener. 2021;22:117–26. Cited: in:: PMID: 32885698.
  • Blain-Moraes S, Mashour GA, Lee H, Huggins JE, Lee U. Altered cortical communication in amyotrophic lateral sclerosis. Neurosci Lett. 2013;543:172–6. Cited: in:: PMID: 23567743.
  • Iyer PM, Egan C, Pinto-Grau M, Burke T, Elamin M, Nasseroleslami B, et al. Functional connectivity changes in resting-state EEG as potential biomarker for amyotrophic lateral sclerosis. PLoS One. 2015;10:e0128682. Cited: in:: PMID: 26091258.
  • Fraschini M, Demuru M, Hillebrand A, Cuccu L, Porcu S, Di Stefano F, et al. EEG functional network topology is associated with disability in patients with amyotrophic lateral sclerosis. Sci Rep. 2016;6:38653. Cited: in:: PMID: 27924954.
  • Nasseroleslami B, Dukic S, Broderick M, Mohr K, Schuster C, Gavin B, et al. Characteristic increases in EEG connectivity correlate with changes of structural MRI in amyotrophic lateral sclerosis. Cereb Cortex. 2019;29:27–41. Cited: in:: PMID: 29136131.
  • Dukic S, McMackin R, Buxo T, Fasano A, Chipika R, Pinto-Grau M, et al. Patterned functional network disruption in amyotrophic lateral sclerosis. Hum Brain Mapp. 2019;40:4827–42. Cited: in:: PMID: 31348605.
  • van der Graaff MM, de Jong JMBV, Baas F, de Visser M. Upper motor neuron and extra-motor neuron involvement in amyotrophic lateral sclerosis: a clinical and brain imaging review. Neuromuscul Disord. 2009;19:53–8. Cited: in:: PMID: 19070491.
  • Custo A, Van De Ville D, Wells WM, Tomescu MI, Brunet D, Michel CM. Electroencephalographic resting-state networks: source localization of microstates. Brain Connect. 2017;7:671–82. Cited: in:: PMID: 28938855.
  • Murray MM, Brunet D, Michel CM. Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr. 2008;20:249–64.
  • Britz J, Díaz Hernàndez L, Ro T, Michel CM. EEG-microstate dependent emergence of perceptual awareness. Front Behav Neurosci. 2014;8:163. Cited: in:: PMID: 24860450.
  • Croce P, Zappasodi F, Capotosto P. Offline stimulation of human parietal cortex differently affects resting EEG microstates. Sci Rep. 2018;8:1287.
  • Croce P, Zappasodi F, Spadone S, Capotosto P. Magnetic stimulation selectively affects pre-stimulus EEG microstates. Neuroimage. 2018;176:239–45.
  • Milz P, Faber PL, Lehmann D, Koenig T, Kochi K, Pascual-Marqui RD. The functional significance of EEG microstates–Associations with modalities of thinking. Neuroimage. 2016;125:643–56. Cited: in:: PMID: 26285079.
  • Seitzman BA, Abell M, Bartley SC, Erickson MA, Bolbecker AR, Hetrick WP. Cognitive manipulation of brain electric microstates. Neuroimage 2017;146:533–43. Cited: in:: PMID: 27742598.
  • da Cruz JR, Favrod O, Roinishvili M, Chkonia E, Brand A, Mohr C, et al. EEG microstates are a candidate endophenotype for schizophrenia. Nat Commun. 2020;11:3089. Cited: in:: PMID: 32555168.
  • Vellante F, Ferri F, Baroni G, Croce P, Migliorati D, Pettoruso M, et al. Euthymic bipolar disorder patients and EEG microstates: a neural signature of their abnormal self experience? J Affect Disord. 2020;272:326–34.
  • Zappasodi F, Croce P, Giordani A, Assenza G, Giannantoni NM, Profice P, et al. Prognostic value of EEG microstates in acute stroke. Brain Topogr. 2017;30:698–710.
  • Sikka A, Jamalabadi H, Krylova M, Alizadeh S, van der Meer JN, Danyeli L, et al. Investigating the temporal dynamics of electroencephalogram (EEG) microstates using recurrent neural networks. Hum Brain Mapp. 2020;41:2334–46. Cited: in:: PMID: 32090423.
  • Ferree TC. Spherical splines and average referencing in scalp electroencephalography. Brain Topogr. 2006;19:43–52. Cited: in:: PMID: 17019635.
  • Barbati G, Porcaro C, Zappasodi F, Rossini PM, Tecchio F. Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals. Clin Neurophysiol. 2004;115:1220–32. Cited: in:: PMID: 15066548.
  • Croce P, Zappasodi F, Marzetti L, Merla A, Pizzella V, Chiarelli AM. Deep convolutional neural networks for feature-less automatic classification of independent components in multi-channel electrophysiological brain recordings. IEEE Trans Biomed Eng. 2019;66:2372–80.
  • Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999;29:169–95. Cited: in:: PMID: 10209231.
  • Michel CM, Koenig T, Brandeis D, Gianotti LRR, Wackermann J, editors. Electrical neuroimaging. Cambridge: Cambridge University Press; 2009. [cited 2022 Sep 14]. Available from: https://www.cambridge.org/core/books/electrical-neuroimaging/DB6F5991EF51762172A59823E132905E.
  • Brunet D, Murray MM, Michel CM. Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell Neurosci. 2011;2011:813870. Cited: in:: PMID: 21253358.
  • Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods. 2007;164:177–90. Cited: in:: PMID: 17517438.
  • Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869. Cited: in:: PMID: 21253357.
  • Müller-Putz GR. Electroencephalography. Handb Clin Neurol. 2020;168:249–62. Cited: in:: PMID: 32164856.
  • Del Campo-Vera RM, Gogia AS, Chen KH, Sebastian R, Kramer DR, Lee MB, et al. Beta-band power modulation in the human hippocampus during a reaching task. J Neural Eng. 2020;17:036022. Cited: in:: PMID: 32413878.
  • Engel AK, Fries P. Beta-band oscillations–signalling the status quo? Curr Opin Neurobiol. 2010;20:156–65. Cited: in:: PMID: 20359884.
  • Androulidakis AG, Jones SJ. Detection of signals in modulated and unmodulated noise observed using auditory evoked potentials. Clin Neurophysiol. 2006;117:1783–93. Cited: in:: PMID: 16793334.
  • Baker SN. Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol. 2007;17:649–55. Cited: in:: PMID: 18339546.
  • Gilbertson T, Lalo E, Doyle L, Di Lazzaro V, Cioni B, Brown P. Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system. J Neurosci. 2005;25:7771–9. Cited: in:: PMID: 16120778.
  • Schoffelen J-M, Oostenveld R, Fries P. Neuronal coherence as a mechanism of effective corticospinal interaction. Science. 2005;308:111–3. Cited: in:: PMID: 15802603.
  • Britz J, Van De Ville D, Michel CM. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage. 2010;52:1162–70. Cited: in:: PMID: 20188188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.