346
Views
0
CrossRef citations to date
0
Altmetric
Poster Communications Themes

Theme 04 - In Vivo Experimetal Models

References

  • Gayle S, Landrette S, Beeharry N. et al., Blood. 2017;129(13):1768–1778.
  • Polito VA, Li H, Martini-Stoica H. et al., EMBO Mol Med. 2014;6(9):1142–1160.
  • Xiao Q, Yan P, Ma X. et al., J Neurosc. 2014;34(29):9607–9620
  • Decressac M, Mattsson B, Weikop P, et al. PNAS. 2013;110(19):E1817–E1826.
  • Shi Y, Lin S, Staats KA. et al. Nature Med. 2018;24(3):313–325.
  • Hung ST, Linares GR, Chang WH. et al. Cell. 2023;2023;186(4):786–802.e28.
  • Walker AK, Spiller KJ, Ge G. et al. Acta Neurophathol. 2015;130(5):643–660.

References

Reference

  • Luan W, Wright AL, Brown-Wright H, Le S, San Gil R, Madrid San Martin L, Ling K, Jafar-Nejad P, Rigo F, Walker AK. Early activation of cellular stress and death pathways caused by cytoplasmic TDP-43 in the rNLS8 mouse model of ALS and FTD. Mol Psychiat. 2023.

References

  • Cohen-Adad J, El Mendili MM, Morizot-Koutlidis R. et al. ALS-FTD. 2012;14(1):30–38.
  • Branco LM, De Albuquerque M, De Andarade HM. et al. ALS-FTD. 2013;15(1-2):93--97.
  • El Mendili M-M, Cohen-Adad J, Pelegrini-Isaac M. et al. PLOS One. 2014;9(4):e95516.
  • Cathcart SJ, Appel SH, Peterson LE. et al. J Neuropathol Exp Neurol. 2021;80(8):754–763.

References

  • Krug L, Chatterjee N, Borges-Monroy,   et al. Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS. PLoS Genet. 2017;13(3):e1006635.

References

References

References

  • Blacher E, Bashiardes S, Shapiro H. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature. 2019;572(7770):474–480
  • Burberry, A, Wells MF, Limone F. et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature. 2020;582(7810):89–94.
  • Cox LM, Calcagno N, Gauthier C. et al. The microbiota restrains neurodegenerative microglia in a model of amyotrophic lateral sclerosis. Microbiome. 2022;10(1):47.

References

  • Liguori F, Amadio S, Volonté C. Where and why modeling amyotrophic lateral sclerosis. Int J Mol Sci. 2021;22(8):3977.
  • Liguori F, Amadio S, Volonté C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cell Mol Life Sci. 2021;78(17–18):6143–60.
  • Watson MR, Lagow RD, Xu K et al. A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. J Biol Chem. 2008;283(36):24972–81.

References

  • Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Berg ZS, van den LH. Amyotrophic lateral sclerosis. Nat Rev Dis Prim. 2017;3:1–17.
  • Merrilees J, Klapper J, Murphy J, Lomen-Hoerth C, and Miller BL. Cognitive and behavioral challenges in caring for patients with frontotemporal dementia and amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2010;11:298–302.
  • Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, and Van Den Berg LH. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol. 2012;124,339–52.
  • Peters OM, Ghasemi M, Brown RH, Jr. Emerging mechanisms of molecular pathology in ALS find the latest version: emerging mechanisms of molecular pathology in ALS. J Clin Invest. 2015;125:1767–79.
  • McGown A, Pamela D, Shaw J, Ramesh T. ZNStress: a high-throughput drug screening protocol for identification of compounds modulating neuronal stress in the transgenic mutant sod1G93R zebrafish model of amyotrophic lateral sclerosis. Mol Neurodegener. 2016;56:3–11.
  • Ramesh T, Lyon AN, Pineda RH, Wang C, Janssen PML, Canan BD, Burghes AHM, Beattie CE. A genetic model of amyotrophic lateral sclerosis in zebrafish displays phenotypic hallmarks of motoneuron disease. Dis Model Mech. 2010;3:652–62.
  • Abduljabbar O. A novel developing neurotherapeutics in ALS. Thesis (embargo). University of Sheffield; 2020: 1–220.

References

Reference

References

  • Fischer LR, Culver LR, Tennant P. et al. Amyotrophic lateral sclerosisis a distal axonopathy: evidence in mice and man. Exp Neurol. 2004;185:232–40.
  • Dadon-Nachum M, Melamed E, Offen D. et al. The “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci. 2011;43:470–7.
  • Martineau È, Di Polo A, Vande Velde C. et al. Dynamic neuromuscular remodelling precedes motor-unit loss in a mouse model of ALS. Elife. 2018;7:e41973.
  • Duchen LW, Gomez S, Queiroz LS. et al. The neuromuscular junction of the mouse after black widow spider venom. J Physiol. 1981;316:279–91
  • Duregotti E, Negro S, Scorzeto M. et al. Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells. Proc Natl Acad Sci USA. 2015;112(5):E497–505.
  • Negro S, Lessi F, Duregotti E. et al. CXCL12α/SDF-1 from perisynaptic Schwann cells promotes regeneration of injured motor axon terminals. EMBO Mol Med. 2017;9:1000–1010

References

Reference

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.