639
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigated treatments for lipoprotein lipase deficiency and related metabolic disorders

&
Pages 411-420 | Received 26 Feb 2017, Accepted 22 Mar 2017, Published online: 17 Apr 2017

References

  • Hegele RA, Ginsberg HN, Chapman MJ, et al. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014;2:655–666.
  • Fredrickson DS, Lees RS. A system for phenotyping hyperlipoproteinemia. Circulation. 1965;31:321–327.
  • Koren MJ, Giugliano RP, Raal FJ, et al. Efficacy and safety of longer-term administration of evolocumab (AMG 145) in patients with hypercholesterolemia: 52-week results from the Open-Label Study of Long-Term Evaluation Against LDL-C (OSLER) randomized trial. Circulation. 2014;129:234–243.
  • Hassan M. OSLER and ODYSSEY LONG TERM: PCSK9 inhibitors on the right track of reducing cardiovascular events. Glob Cardiol Sci Pract. 2015;2015:20.
  • Brahm AJ, Hegele RA. Chylomicronaemia–current diagnosis and future therapies. Nat Rev Endocrinol. 2015;11:352–362.
  • Al-Shali K, Wang J, Fellows F, et al. Successful pregnancy outcome in a patient with severe chylomicronemia due to compound heterozygosity for mutant lipoprotein lipase. Clin Biochem. 2002;35:125–130.
  • Chokshi N, Blumenschein SD, Ahmad Z, et al. Genotype-phenotype relationships in patients with type I hyperlipoproteinemia. J Clin Lipidol. 2014;8:287–295.
  • Gotoda T, Shirai K, Ohta T, et al. Diagnosis and management of type I and type V hyperlipoproteinemia. J Atheroscler Thromb. 2012;19:1–12.
  • Lewis GF, Xiao C, Hegele RA. Hypertriglyceridemia in the genomic era: a new paradigm. Endocr Rev. 2015;36(1):131–147.
  • Hegele RA, Pollex RL. Hypertriglyceridemia: phenomics and genomics. Mol Cell Biochem. 2009;326:35–43.
  • Rahalkar AR, Hegele RA. Monogenic pediatric dyslipidemias: classification, genetics and clinical spectrum. Mol Genet Metab. 2008;93:282–294.
  • Martin-Campos JM, Julve J, Roig R, et al. Molecular analysis of chylomicronemia in a clinical laboratory setting: diagnosis of 13 cases of lipoprotein lipase deficiency. Clin Chim Acta. 2014;429:61–68.
  • Stefanutti C, Gozzer M, Pisciotta L, et al. A three month-old infant with severe hyperchylomicronemia: molecular diagnosis and extracorporeal treatment. Atheroscler Suppl. 2013;14:73–76.
  • Voss CV, Davies BS, Tat S, et al. Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1. Proc Natl Acad Sci U S A. 2011;108:7980–7984.
  • Pasalic D, Jurcic Z, Stipancic G, et al. Missense mutation W86R in exon 3 of the lipoprotein lipase gene in a boy with chylomicronemia. Clin Chim Acta. 2004;343:179–184.
  • Jap TS, Jenq SF, Wu YC, et al. Mutations in the lipoprotein lipase gene as a cause of hypertriglyceridemia and pancreatitis in Taiwan. Pancreas. 2003;27:122–126.
  • Henderson HE, Bijvoet SM, Mannens MA, et al. Ile225Thr loop mutation in the lipoprotein lipase (LPL) gene is a de novo event. Am J Med Genet. 1998;78:313–316.
  • Ma Y, Wilson BI, Bijvoet S, et al. A missense mutation (Asp250—-asn) in exon 6 of the human lipoprotein lipase gene causes chylomicronemia in patients of different ancestries. Genomics. 1992;13(3):649–653.
  • Okubo M, Toromanovic A, Ebara T, et al. Apolipoprotein C-II Tuzla: a novel large deletion in APOC2 caused by Alu-Alu homologous recombination in an infant with apolipoprotein C-II deficiency. Clin Chim Acta. 2015;438:148–153.
  • Lam CW, Yuen YP, Cheng WF, et al. Missense mutation Leu72Pro located on the carboxyl terminal amphipathic helix of apolipoprotein C-II causes familial chylomicronemia syndrome. Clin Chim Acta. 2006;364:256–259.
  • Streicher R, Geisel J, Weisshaar C, et al. A single nucleotide substitution in the promoter region of the apolipoprotein C-II gene identified in individuals with chylomicronemia. J Lipid Res. 1996;37:2599–2607.
  • Albers K, Schlein C, Wenner K, et al. Homozygosity for a partial deletion of apoprotein A-V signal peptide results in intracellular missorting of the protein and chylomicronemia in a breast-fed infant. Atherosclerosis. 2014;233:97–103.
  • Calandra S, Priore Oliva C, Tarugi P, et al. APOA5 and triglyceride metabolism, lesson from human APOA5 deficiency. Curr Opin Lipidol. 2006;17:122–127.
  • Okubo M, Ishihara M, Iwasaki T, et al. A novel APOA5 splicing mutation IVS2+1g>a in a Japanese chylomicronemia patient. Atherosclerosis. 2009;207:24–25.
  • Brahm A, Hegele RA. Hypertriglyceridemia. Nutrients. 2013;5:981–1001.
  • Gin P, Goulbourne CN, Adeyo O, et al. Chylomicronemia mutations yield new insights into interactions between lipoprotein lipase and GPIHBP1. Hum Mol Genet. 2012;21:2961–2972.
  • Beigneux AP, Franssen R, Bensadoun A, et al. Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler Thromb Vasc Biol. 2009;29:956–962.
  • Young SG, Davies BS, Voss CV, et al. GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J Lipid Res. 2011;52:1869–1884.
  • Rios JJ, Shastry S, Jasso J, et al. Deletion of GPIHBP1 causing severe chylomicronemia. J Inherit Metab Dis. 2012;35:531–540.
  • Olivecrona G, Ehrenborg E, Semb H, et al. Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia. J Lipid Res. 2010;51:1535–1545.
  • Wang J, Hegele RA. Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650). Lipids Health Dis. 2007;6:23.
  • Beigneux AP, Davies BS, Bensadoun A, et al. GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. J Lipid Res. 2009;50:S57–62.
  • Peterfy M. Lipase maturation factor 1: a lipase chaperone involved in lipid metabolism. Biochim Biophys Acta. 2012;1821:790–794.
  • Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res. 2011;52:189–206.
  • Mohandas MK, Jemila J, Ajith Krishnan AS, et al. Familial chylomicronemia syndrome. Indian J Pediatr. 2005;72:181.
  • Hegele RA. Plasma lipoproteins: genetic influences and clinical implications. Nat Rev Genet. 2009;10:109–121.
  • Sugandhan S, Khandpur S, Sharma VK. Familial chylomicronemia syndrome. Pediatr Dermatol. 2007;24:323–325.
  • Leaf DA. Chylomicronemia and the chylomicronemia syndrome: a practical approach to management. Am J Med. 2008;121:10–12.
  • Sandhu S, Al-Sarraf A, Taraboanta C, et al. Incidence of pancreatitis, secondary causes, and treatment of patients referred to a specialty lipid clinic with severe hypertriglyceridemia: a retrospective cohort study. Lipids Health Dis. 2011;10:157.
  • Christian JB, Arondekar B, Buysman EK, et al. Clinical and economic benefits observed when follow-up triglyceride levels are less than 500 mg/dL in patients with severe hypertriglyceridemia. J Clin Lipidol. 2012;6:450–461.
  • Rahalkar AR, Giffen F, Har B, et al. Novel LPL mutations associated with lipoprotein lipase deficiency: two case reports and a literature review. Can J Physiol Pharmacol. 2009;87:151–160.
  • Johansen CT, Dube JB, Loyzer MN, et al. LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias. J Lipid Res. 2014;55:765–772.
  • Tsai EC, Brown JA, Veldee MY, et al. Potential of essential fatty acid deficiency with extremely low fat diet in lipoprotein lipase deficiency during pregnancy: A case report. BMC Pregnancy Childbirth. 2004;4:27.
  • Brunzell JD. Familial lipoprotein lipase deficiency. GeneReviews. Seattle (WA): University of Washington; 1999 Oct 12. [updated 2011 Dec 15].
  • Berglund L, Brunzell JD, Goldberg AC, et al. Treatment options for hypertriglyceridemia: from risk reduction to pancreatitis. Best Pract Res Clin Endocrinol Metab. 2014;28:423–437.
  • Jabbar MA, Zuhri-Yafi MI, Larrea J. Insulin therapy for a non-diabetic patient with severe hypertriglyceridemia. J Am Coll Nutr. 1998;17:458–461.
  • You M, Fischer M, Deeg MA, et al. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem. 2002;277:29342–29347.
  • Pi-Sunyer X, Blackburn G, Brancati FL, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30:1374–1383.
  • Jialal I, Amess W, Kaur M. Management of hypertriglyceridemia in the diabetic patient. Curr Diab Rep. 2010;10:316–320.
  • Leaf DA, Connor WE, Illingworth DR, et al. The hypolipidemic effects of gemfibrozil in type V hyperlipidemia. A double-blind, crossover study. Jama. 1989;262:3154–3160.
  • Yuan G, Al-Shali KZ, Hegele RA. Hypertriglyceridemia: its etiology, effects and treatment. Cmaj. 2007;176:1113–1120.
  • Gotto AM Jr., Moon JE. Pharmacotherapies for lipid modification: beyond the statins. Nat Rev Cardiol. 2013;10:560–570.
  • Sahebkar A, Chew GT, Watts GF. Recent advances in pharmacotherapy for hypertriglyceridemia. Prog Lipid Res. 2014;56:47–66.
  • Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98:2088–2093.
  • Kamanna VS, Kashyap ML. Mechanism of action of niacin. Am J Cardiol. 2008;101:20B–26B.
  • Goldberg A, Alagona P Jr., Capuzzi DM, et al. Multiple-dose efficacy and safety of an extended-release form of niacin in the management of hyperlipidemia. Am J Cardiol. 2000;85:1100–1105.
  • Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–2267.
  • Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–212.
  • Chan DC, Watts GF, Barrett PH, et al. Effect of atorvastatin on chylomicron remnant metabolism in visceral obesity: a study employing a new stable isotope breath test. J Lipid Res. 2002;43:706–712.
  • Tremblay AJ, Lamarche B, Hogue JC, et al. Effects of ezetimibe and simvastatin on apolipoprotein B metabolism in males with mixed hyperlipidemia. J Lipid Res. 2009;50:1463–1471.
  • Davidson MH. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol. 2006;98:27i–33i.
  • Skulas-Ray AC, West SG, Davidson MH, et al. Omega-3 fatty acid concentrates in the treatment of moderate hypertriglyceridemia. Expert Opin Pharmacother. 2008;9:1237–1248.
  • Connor WE, DeFrancesco CA, Connor SL. N-3 fatty acids from fish oil. Effects on plasma lipoproteins and hypertriglyceridemic patients. Ann N Y Acad Sci. 1993;683:16–34.
  • Pschierer V, Richter WO, Schwandt P. Primary chylomicronemia in patients with severe familial hypertriglyceridemia responds to long-term treatment with (n-3) fatty acids. J Nutr. 1995;125:1490–1494.
  • Richter WO, Jacob BG, Ritter MM, et al. Treatment of primary chylomicronemia due to familial hypertriglyceridemia by omega-3 fatty acids. Metabolism. 1992;41:1100–1105.
  • Hamilton JA. Medium-chain fatty acid binding to albumin and transfer to phospholipid bilayers. Proc Natl Acad Sci U S A. 1989;86:2663–2667.
  • Ahmad Z, Wilson DP. Familial chylomicronemia syndrome and response to medium-chain triglyceride therapy in an infant with novel mutations in GPIHBP1. J Clin Lipidol. 2014;8:635–639.
  • St-Onge MP, Jones PJ. Physiological effects of medium-chain triglycerides: potential agents in the prevention of obesity. J Nutr. 2002;132:329–332.
  • You YQ, Ling PR, Qu JZ, et al. Effects of medium-chain triglycerides, long-chain triglycerides, or 2-monododecanoin on fatty acid composition in the portal vein, intestinal lymph, and systemic circulation in rats. JPEN J Parenter Enteral Nutr. 2008;32:169–175.
  • Suzuki T, Sawada S, Ishigaki Y, et al. Lipoprotein lipase deficiency (R243H) in a type 2 diabetes patient with multiple arterial aneurysms. Intern Med. 2016;55:1131–1136.
  • Furman RH, Howard RP, Brusco OJ, et al. Effects of medium chain length triglyceride (MCT) on serum lipids and lipoproteins in familial hyperchylomicronemia (dietary fat-induced lipemia) and dietary carbohydrate-accentuated lipemia. J Lab Clin Med. 1965;66(6):912–926.
  • Shirai K, Kobayashi J, Inadera H, et al. Type I hyperlipoproteinemia caused by lipoprotein lipase defect in lipid-interface recognition was relieved by administration of medium-chain triglyceride. Metabolism. 1992;41:1161–1164.
  • Hen K, Bogdanski P, Pupek-Musialik D. [Successful treatment of severe hypertriglyceridemia with plasmapheresis–case report]. Pol Merkur Lekarski. 2009;26:62–64.
  • Basar R, Uzum AK, Canbaz B, et al. Therapeutic apheresis for severe hypertriglyceridemia in pregnancy. Arch Gynecol Obstet. 2013;287:839–843.
  • Lennertz A, Parhofer KG, Samtleben W, et al. Therapeutic plasma exchange in patients with chylomicronemia syndrome complicated by acute pancreatitis. Ther Apher. 1999;3:227–233.
  • Seda G, Meyer JM, Amundson DE, et al. Plasmapheresis in the management of severe hypertriglyceridemia. Crit Care Nurse. 2013;33:18–23.
  • Izquierdo-Ortiz MJ, Abaigar-Luquin P. Severe hypertriglyceridaemia. Treatment with plasmapheresis. Nefrologia. 2012;32:417–418.
  • Syed H, Bilusic M, Rhondla C, et al. Plasmapheresis in the treatment of hypertriglyceridemia-induced pancreatitis: A community hospital’s experience. J Clin Apher. 2010;25:229–234.
  • Ewald N, Kloer HU. Severe hypertriglyceridemia: an indication for apheresis? Atheroscler Suppl. 2009;10:49–52.
  • Iskandar SB, Olive KE. Plasmapheresis as an adjuvant therapy for hypertriglyceridemia-induced pancreatitis. Am J Med Sci. 2004;328:290–294.
  • Dominguez-Munoz JE, Malfertheiner P, Ditschuneit HH, et al. Hyperlipidemia in acute pancreatitis. Relationship with etiology, onset, and severity of the disease. Int J Pancreatol. 1991;10:261–267.
  • Valdivielso P, Ramirez-Bueno A, Ewald N. Current knowledge of hypertriglyceridemic pancreatitis. Eur J Intern Med. 2014;25:689–694.
  • Chen JH, Yeh JH, Lai HW, et al. Therapeutic plasma exchange in patients with hyperlipidemic pancreatitis. World J Gastroenterol. 2004;10:2272–2274.
  • Piolot A, Nadler F, Cavallero E, et al. Prevention of recurrent acute pancreatitis in patients with severe hypertriglyceridemia: value of regular plasmapheresis. Pancreas. 1996;13:96–99.
  • Thuzar M, Shenoy VV, Malabu UH, et al. Extreme hypertriglyceridemia managed with insulin. J Clin Lipidol. 2014;8:630–634.
  • Gaudet D, Methot J, Kastelein J. Gene therapy for lipoprotein lipase deficiency. Curr Opin Lipidol. 2012;23:310–320.
  • Carpentier AC, Frisch F, Labbe SM, et al. Effect of alipogene tiparvovec (AAV1-LPL(S447X)) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients. J Clin Endocrinol Metab. 2012;97:1635–1644.
  • Gaudet D, Methot J, Dery S, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther. 2013;20:361–369.
  • Rip J, Van Dijk KW, Sierts JA, et al. AAV1-LPL(S447X) gene therapy reduces hypertriglyceridemia in apoE2 knock in mice. Biochim Biophys Acta. 2006;1761:1163–1168.
  • Regalado A The world’s most expensive medicine is a bust. MIT Technology Review 2016 [cited 2017 Feb 1]. Available from: https://www.technologyreview.com/s/601165/the-worlds-most-expensive-medicine-is-a-bust/.
  • Wierzbicki AS, Viljoen A. Alipogene tiparvovec: gene therapy for lipoprotein lipase deficiency. Expert Opin Biol Ther. 2013;13:7–10.
  • Wierzbicki AS, Hardman TC, Viljoen A. New lipid-lowering drugs: an update. Int J Clin Pract. 2012;66:270–280.
  • Marbach JA, McKeon JL, Ross JL, et al. Novel treatments for familial hypercholesterolemia: pharmacogenetics at work. Pharmacotherapy. 2014;34:961–972.
  • Sacks FM, Stanesa M, Hegele RA. Severe hypertriglyceridemia with pancreatitis: thirteen years’ treatment with lomitapide. JAMA Intern Med. 2014;174:443–447.
  • Cuchel M, Meagher EA, Du Toit Theron H, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381:40–46.
  • Vuorio A, Tikkanen MJ, Kovanen PT. Inhibition of hepatic microsomal triglyceride transfer protein - a novel therapeutic option for treatment of homozygous familial hypercholesterolemia. Vasc Health Risk Manag. 2014;10:263–270.
  • Rader DJ, Kastelein JJ. Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation. 2014;129:1022–1032.
  • Raal FJ, Santos RD, Blom DJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:998–1006.
  • Furtado JD, Wedel MK, Sacks FM. Antisense inhibition of apoB synthesis with mipomersen reduces plasma apoC-III and apoC-III-containing lipoproteins. J Lipid Res. 2012;53:784–791.
  • Panta R, Dahal K, Kunwar S. Efficacy and safety of mipomersen in treatment of dyslipidemia: a meta-analysis of randomized controlled trials. J Clin Lipidol. 2015;9:217–225.
  • Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, et al. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371:32–41.
  • Huff MW, Hegele RA. Apolipoprotein C-III: going back to the future for a lipid drug target. Circ Res. 2013;112:1405–1408.
  • Gaudet D, Brisson D, Tremblay K, et al. Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med. 2014;371:2200–2206.
  • Gaudet D, Alexander VJ, Baker BF, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373:438–447.
  • NIH. The APPROACH study: A study of volanesorsen (Formerly ISIS-APOCIIIRx) in patients with familial chylomicronemia syndrome. 2015 [cited 2017 Feb 01]. Available from: https://clinicaltrials.gov/ct2/show/NCT02211209?term=NCT02211209&rank=1.
  • Meyers CD, Tremblay K, Amer A, et al. Effect of the DGAT1 inhibitor pradigastat on triglyceride and apoB48 levels in patients with familial chylomicronemia syndrome. Lipids Health Dis. 2015;14:8.
  • NIH. A randomized, double-blind, placebo controlled study to assess efficacy, safety and tolerability of LCQ908 in subjects with familial chylomicronemia syndrome. 2015 [cited 2017 Feb 01]. Available from: https://clinicaltrials.gov/ct2/show/NCT01514461?term=NCT01514461&rank=1.
  • Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363:2220–2227.
  • Minicocci I, Tikka A, Poggiogalle E, et al. Effects of angiopoietin-like protein 3 deficiency on postprandial lipid and lipoprotein metabolism. J Lipid Res. 2016;57:1097–1107.
  • Brandt T. Antisense ANGPTL3 is able to reduce ANGPTL3 and various lipid levels in phase I study. 2016 [cited 2017 Feb 01]. Available from: http://pace-cme.org/2016/11/15/antisense-angptl3-is-able-to-reduce-angptl3-and-various-lipid-levels-in-phase-i-study/.
  • NIH. Study to assess the safety and tolerability of single doses of REGN1500. 2016 [cited 2017 Feb 01]. Available from: https://clinicaltrials.gov/ct2/show/NCT01749878?term=NCT01749878&rank=1.
  • Anderson A. Injectable biologic therapy dramatically reduces triglycerides. EurekAlert. 2016. [cited 2017 Feb 01]. Available from: https://www.eurekalert.org/pub_releases/2016-11/uops-ibt_1111116.php.
  • Zdunek J, Martinez GV, Schleucher J, et al. Global structure and dynamics of human apolipoprotein CII in complex with micelles: evidence for increased mobility of the helix involved in the activation of lipoprotein lipase. Biochemistry. 2003;42:1872–1889.
  • Breckenridge WC, Little JA, Steiner G, et al. Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med. 1978;298:1265–1273.
  • Amar MJ, Sakurai T, Sakurai-Ikuta A, et al. A novel apolipoprotein C-II mimetic peptide that activates lipoprotein lipase and decreases serum triglycerides in apolipoprotein E-knockout mice. J Pharmacol Exp Ther. 2015;352:227–235.
  • Sakurai T, Sakurai A, Vaisman BL, et al. Creation of apolipoprotein C-II (apo C-II) mutant mice and correction of their hypertriglyceridemia with an apo C-II mimetic peptide. J Pharmacol Exp Ther. 2016;356:341–353.
  • Nilsson SK, Heeren J, Olivecrona G, et al. Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis. 2011;219:15–21.
  • Prieur X, Huby T, Rodriguez J, et al. Apolipoprotein AV: gene expression, physiological role in lipid metabolism and clinical relevance. Future Lipidol. 2008;3:371–384.
  • Van der Vliet HN, Schaap FG, Levels JH, et al. Adenoviral overexpression of apolipoprotein A-V reduces serum levels of triglycerides and cholesterol in mice. Biochem Biophys Res Commun. 2002;295:1156–1159.
  • Qu S, Perdomo G, Su D, et al. Effects of apoA-V on HDL and VLDL metabolism in APOC3 transgenic mice. J Lipid Res. 2007;48:1476–1487.
  • Fruchart-Najib J, Bauge E, Niculescu LS, et al. Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem Biophys Res Commun. 2004;319:397–404.
  • Helk O, Schreiber R, Widhalm K. Effects of two therapeutic dietary regimens on primary chylomicronemia in paediatric age: a retrospective data analysis. Eur J Clin Nutr. 2016;70:1127–1131.
  • Feuerstein A Aegerion CEO speaks on juxtapid launch, orphan drug pricing and competition. 2013 [cited 2017 Feb 01]. Available from: http://www.thestreet.com/story/11826405/1/aegerion-ceo-speaks-on-juxtapid-launch-orphan-drug-pricing-and-competition.htm
  • Staton T Genzyme’s $176K Kynamro price undercuts its $250K-plus rival. 2013 [cited 2017 Feb 01]. Available from: http://www.fiercepharma.com/sales-and-marketing/genzyme-s-176k-kynamro-price-undercuts-its-250k-plus-rival.
  • Plakogiannis R, Cioce L, Fisher E, et al. The role of mipomersen therapy in the treatment of familial hypercholesterolemia. Clin Investig. 2012;2:1033–1037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.