1,160
Views
0
CrossRef citations to date
0
Altmetric
Review

Overview of genetic testing in Prader-Willi syndrome

, , , &
Pages 16-25 | Received 15 Oct 2022, Accepted 19 Sep 2023, Published online: 28 Sep 2023

References

  • Butler MG, Miller JL, Forster JL. Prader-Willi syndrome - clinical genetics, diagnosis and treatment approaches: an update. Curr Pediatr Rev. 2019;15(4):207–244. doi: 10.2174/1573396315666190716120925
  • Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest. 2015 Dec;38(12):1249–1263. doi: 10.1007/s40618-015-0312-9
  • Beygo J, Buiting K, Ramsden SC, et al. Update of the EMQN/ACGS best practice guidelines for molecular analysis of Prader-Willi and Angelman syndromes. Eur J Hum Genet. 2019 Sep;27(9):1326–1340. doi: 10.1038/s41431-019-0435-0
  • Glenn CC, Saitoh S, Jong MT, et al. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am J Hum Genet. 1996 Feb;58(2):335–346.
  • Cheon CK. Genetics of Prader-Willi syndrome and Prader-Will-like syndrome. J Pediatr Endocrinol Metab. 2016 Sep;21(3):126–135. doi: 10.6065/apem.2016.21.3.126
  • Yang L, Shu X, Mao S, et al. Genotype–Phenotype Correlations in Angelman Syndrome. Genes. 2021;12(7):987. doi: 10.3390/genes12070987
  • Buiting K, Cassidy SB, Driscoll DJ, et al. Clinical utility gene card for: prader-Willi syndrome. Eur J Hum Genet. 2014 Sep;22(9):1153–1153. doi: 10.1038/ejhg.2014.66
  • Tauber M, Hoybye C. Endocrine disorders in Prader-Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol. 2021 Apr;9(4):235–246. doi: 10.1016/S2213-8587(21)00002-4
  • Miller JL, Lynn CH, Driscoll DC, et al. Nutritional phases in Prader-Willi syndrome. Am J Med Genet A. 2011 May;155a(5):1040–1049. doi: 10.1002/ajmg.a.33951
  • Yang L, Zhou Q, Ma B, et al. Perinatal features of Prader-Willi syndrome: a Chinese cohort of 134 patients. Orphanet J Rare Diseases. 2020 Jan 21;15(1):24. doi: 10.1186/s13023-020-1306-z
  • Gunay-Aygun M, Schwartz S, Heeger S, et al. The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria. Pediatrics. 2001 Nov;108(5):E92. doi: 10.1542/peds.108.5.e92
  • Grugni G, Sartorio A, Crinò A. Growth hormone therapy for Prader-Willi syndrome: challenges and solutions. Ther Clin Risk Manag. 2016;12:873–881. doi: 10.2147/TCRM.S70068
  • Bridges N. What is the value of growth hormone therapy in Prader Willi syndrome? Archives of disease in childhood. Arch Dischildhood. 2014 Feb;99(2):166–170. doi: 10.1136/archdischild-2013-303760
  • Brunetti G, Grugni G, Piacente L, et al. Analysis of circulating mediators of bone remodeling in Prader–Willi syndrome. Calcif Tissue Int. 2018 Jun;102(6):635–643. doi: 10.1007/s00223-017-0376-y
  • Cheng R. Early recombinant human growth hormone treatment improves mental development and alleviates deterioration of motor function in infants and young children with Prader–Willi syndrome. World J Pediatr. 2023;19(5):438–449. doi: 10.1007/s12519-022-00653-y
  • Kimonis VE, Tamura R, Gold JA, et al. Early diagnosis in Prader–Willi syndrome reduces obesity and associated co-morbidities. Genes. 2019 Nov 6;10(11):898. doi: 10.3390/genes10110898
  • Bakker NE, Siemensma EP, van Rijn M, et al. Beneficial effect of growth hormone treatment on health-related quality of life in children with Prader-Willi syndrome: a randomized controlled trial and longitudinal study. Hormone Res Paediatrics. 2015;84(4):231–239. doi: 10.1159/000437141
  • Lecka-Ambroziak A, Wysocka-Mincewicz M, Doleżal-Ołtarzewska K, et al. Effects of recombinant human growth hormone treatment, depending on the therapy start in different nutritional phases in paediatric patients with Prader–Willi Syndrome: a Polish multicentre study. JCM. 2021 Jul 19;10(14):3176. doi: 10.3390/jcm10143176
  • Bacheré N, Diene G, Delagnes V, et al. Early diagnosis and multidisciplinary care reduce the hospitalization time and duration of tube feeding and prevent early obesity in PWS infants. Hormone Res. 2008;69(1):45–52. doi: 10.1159/000111795
  • Yang-Li D, Fei-Hong L, Hui-Wen Z, et al. Recommendations for the diagnosis and management of childhood Prader-Willi syndrome in China. Orphanet J Rare Diseases. 2022 Jun 13;17(1):221. doi: 10.1186/s13023-022-02302-z
  • Cassidy SB, Schwartz S, Miller JL, et al. Prader-Willi syndrome. Genet Med. 2012 Jan;14(1):10–26. doi: 10.1038/gim.0b013e31822bead0
  • Bittel DC, Butler MG. Prader–Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med. 2005 Jul 25;7(14):1–20.
  • Torrado M, Araoz V, Baialardo E, et al. Clinical-etiologic correlation in children with Prader-Willi syndrome (PWS): an interdisciplinary study. Am J Med Genet A. 2007 Mar 1;143(5):460–468. doi: 10.1002/ajmg.a.31520
  • Kim Y, Wang SE, Jiang YH. Epigenetic therapy of Prader-Willi syndrome. Transl Res. 2019 Jun;208:105–118. doi: 10.1016/j.trsl.2019.02.012
  • Kim SJ, Miller JL, Kuipers PJ, et al. Unique and atypical deletions in Prader–Willi syndrome reveal distinct phenotypes. Eur J Hum Genet. 2012 Mar;20(3):283–290. doi: 10.1038/ejhg.2011.187
  • Butler MG, Hartin SN, Hossain WA, et al. Molecular genetic classification in Prader-Willi syndrome: a multisite cohort study. J Med Genet. 2019 Mar;56(3):149–153. doi: 10.1136/jmedgenet-2018-105301
  • Alves C, Franco RR. Prader-Willi syndrome: endocrine manifestations and management. Arch Endocrinol Metab. 2020 May;64(3):223–234. doi: 10.20945/2359-3997000000248
  • Roof E, Stone W, MacLean W, et al. Intellectual characteristics of Prader-Willi syndrome: comparison of genetic subtypes. J Intellect Disabil Res. 2000 Feb;44(1):25–30. doi: 10.1046/j.1365-2788.2000.00250.x
  • Whittington JE, Butler JV, Holland AJ. Changing rates of genetic subtypes of Prader–Willi syndrome in the UK. Eur J Hum Genet. 2007 Jan;15(1):127–130. doi: 10.1038/sj.ejhg.5201716
  • Glenn CC, Driscoll DJ, Yang TP, et al. Genomic imprinting: potential function and mechanisms revealed by the Prader-Willi and Angelman syndromes. Mol Hum Reprod. 1997 Apr;3(4):321–332. doi: 10.1093/molehr/3.4.321
  • Ohta T, Gray TA, Rogan PK, et al. Imprinting-mutation mechanisms in Prader-Willi syndrome. Am J Hum Genet. 1999 Feb;64(2):397–413. doi: 10.1086/302233
  • Ming JE, Blagowidow N, Knoll JH, et al. Submicroscopic deletion in cousins with Prader-Willi syndrome causes a grandmatrilineal inheritance pattern: effects of imprinting. Am J Med Genet A. 2000 May 1;92(1):19–24.
  • Casamassima AC, Shapiro LR, Wilmot PL, et al. Prader-Willi syndrome and Robertsonian translocations involving chromosome 15. Clin Genet. 1991 Apr;39(4):294–297. doi: 10.1111/j.1399-0004.1991.tb03028.x
  • Holm VA, Cassidy SB, Butler MG, et al. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 1993 Feb;91(2):398–402. doi: 10.1542/peds.91.2.398
  • Smith A, Prasad M, Deng ZM, et al. Comparison of high resolution cytogenetics, fluorescence in situ hybridisation, and DNA studies to validate the diagnosis of Prader-Willi and Angelman’s syndromes. Arch Dischildhood. 1995 May;72(5):397–402. doi: 10.1136/adc.72.5.397
  • Borelina D, Engel N, Esperante S, et al. Combined cytogenetic and molecular analyses for the diagnosis of Prader-Willi/Angelman syndromes. J Biochem Mol Biol. 2004 Sep 30;37(5):522–526. doi: 10.5483/BMBRep.2004.37.5.522
  • Gozzetti A, Le Beau MM. Fluorescence in situ hybridization: uses and limitations. Semin Hematol. 2000 Oct;37(4):320–333. doi: 10.1016/S0037-1963(00)90013-1
  • Schad CR, Jalal SM, Thibodeau SN. Genetic testing for Prader-Willi and Angelman syndromes. Mayo Clin Proc. 1995 Dec;70(12):1195–1196. doi: 10.4065/70.12.1195
  • Sukarova-Angelovska E, Piperkova K, Sredovska A, et al. Implementation of fluorescent in situ hybridization (FISH) as a method for detecting microdeletion syndromes - our first experiences. Prilozi. 2007 Dec;28(2):87–98.
  • Smith A, Hung D. The dilemma of diagnostic testing for Prader-Willi syndrome. Transl Pediatr. 2017 Jan;5(1):46–56. doi: 10.21037/tp.2016.07.04
  • Van den Veyver IB, Beaudet AL. Comparative genomic hybridization and prenatal diagnosis. Current Opinion In Obstetrics & Gynecology. 2006 Apr;18(2):185–191. doi: 10.1097/01.gco.0000192986.22718.cc
  • Levy B, Wapner R. Prenatal diagnosis by chromosomal microarray analysis. Fertil Sterility. 2018 Feb;109(2):201–212. doi: 10.1016/j.fertnstert.2018.01.005
  • Stosic M, Levy B, Wapner R. The use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol Clin North Am. 2018 Mar;45(1):55–68. doi: 10.1016/j.ogc.2017.10.002
  • Lo JO, Shaffer BL, Feist CD, et al. Chromosomal microarray analysis and prenatal diagnosis. Obstet Gynecol Surv. 2014 Oct;69(10):613–621. doi: 10.1097/OGX.0000000000000119
  • Southern E. Southern blotting. Nat Protoc. 2006;1(2):518–525. doi: 10.1038/nprot.2006.73
  • Wevrick R, Francke U. Diagnostic test for the Prader-Willi syndrome by SNRPN expression in blood. Lancet (London, England). 1996 Oct 19;348(9034):1068–1069.
  • Muralidhar B, Marney A, Butler MG. Analysis of imprinted genes in subjects with Prader-Willi syndrome and chromosome 15 abnormalities. Genet Med. 1999 May;1(4):141–145. doi: 10.1097/00125817-199905000-00005
  • Chotai KA, Payne SJ. A rapid, PCR based test for differential molecular diagnosis of Prader-Willi and Angelman syndromes. J Med Genet. 1998 Jun;35(6):472–475. doi: 10.1136/jmg.35.6.472
  • Herman JG, Graff JR, Myöhänen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996 Sep 3;93(18):9821–9826. doi: 10.1073/pnas.93.18.9821
  • Zeschnigk M, Lich C, Buiting K, et al. A single-tube PCR test for the diagnosis of Angelman and Prader-Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur J Hum Genet. 1997 Mar;5(2):94–98. doi: 10.1159/000484740
  • Morandi A, Bonnefond A, Lobbens S, et al. A girl with incomplete Prader-Willi syndrome and negative MS-PCR, found to have mosaic maternal UPD-15 at SNP array. Am J Med Genet A. 2015 Nov;167a(11):2720–2726. doi: 10.1002/ajmg.a.37222
  • Baumer A, Wiedemann U, Hergersberg M, et al. A novel MSP/DHPLC method for the investigation of the methylation status of imprinted genes enables the molecular detection of low cell mosaicisms. Human Mutation. 2001 May;17(5):423–430. doi: 10.1002/humu.1118
  • Hussain Askree S, Hjelm LN, Ali Pervaiz M, et al. Allelic dropout can cause false-positive results for Prader-Willi and Angelman syndrome testing. J Mol Diagn. 2011 Jan;13(1):108–112. doi: 10.1016/j.jmoldx.2010.11.006
  • Hamajima N, Saito T, Matsuo K, et al. Competitive amplification and unspecific amplification in polymerase chain reaction with confronting two-pair primers. J Mol Diagn. 2002 May;4(2):103–107. doi: 10.1016/S1525-1578(10)60688-5
  • Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998 Jul 17;281(5375):363, 365.
  • Dupont JM, Tost J, Jammes H, et al. De Novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem. 2004 Oct 1;333(1):119–127. doi: 10.1016/j.ab.2004.05.007
  • White HE, Durston VJ, Harvey JF, et al. Quantitative analysis of SNRPN(correction of SRNPN) gene methylation by pyrosequencing as a diagnostic test for Prader-Willi syndrome and Angelman syndrome. Clin Chem. 2006 Jun;52(6):1005–1013. doi: 10.1373/clinchem.2005.065086
  • Worm J, Aggerholm A, Guldberg P. In-tube DNA methylation profiling by fluorescence melting curve analysis. Clin Chem. 2001;47(7):1183–1189. doi: 10.1093/clinchem/47.7.1183
  • Hung CC, Lin SY, Lin SP, et al. Quantitative and qualitative analyses of the SNRPN gene using real-time PCR with melting curve analysis. J Mol Diagn. 2011 Nov;13(6):609–613. doi: 10.1016/j.jmoldx.2011.06.005
  • Procter M, Chou LS, Tang W, et al. Molecular diagnosis of Prader-Willi and Angelman syndromes by methylation-specific melting analysis and methylation-specific multiplex ligation-dependent probe amplification. Clin Chem. 2006 Jul;52(7):1276–1283. doi: 10.1373/clinchem.2006.067603
  • Wang W, Law HY, Chong SS. Detection and discrimination between deletional and non-deletional Prader-Willi and Angelman syndromes by methylation-specific PCR and quantitative melting curve analysis. J Mol Diagn. 2009 Sep;11(5):446–449. doi: 10.2353/jmoldx.2009.090015
  • White HE, Hall VJ, Cross NC. Methylation-sensitive high-resolution melting-curve analysis of the SNRPN gene as a diagnostic screen for Prader-Willi and Angelman syndromes. Clin Chem. 2007 Nov;53(11):1960–1962. doi: 10.1373/clinchem.2007.093351
  • Dahl C, Guldberg P. High-resolution melting for accurate assessment of DNA methylation. Clin Chem. 2007 Nov;53(11):1877–1878. doi: 10.1373/clinchem.2007.094854
  • Ribeiro Ferreira I, Darleans Dos Santos Cunha W, Henrique Ferreira Gomes L, et al. A rapid and accurate methylation-sensitive high-resolution melting analysis assay for the diagnosis of Prader Willi and Angelman patients. Mol Gene Genomic Med. 2019 Jun;7(6):e637. doi: 10.1002/mgg3.637
  • Moelans CB, Atanesyan L, Savola SP, et al. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). Methods in molecular biology. Vol. 1708, Clifton (NJ); 2018p. 537–549.
  • Bittel DC, Kibiryeva N, Butler MG. Methylation-specific multiplex ligation-dependent probe amplification analysis of subjects with chromosome 15 abnormalities. Genet Test. 2007;11(4):467–475. Winter. doi: 10.1089/gte.2007.0061
  • Henkhaus RS, Kim SJ, Kimonis VE, et al. Methylation-specific multiplex ligation-dependent probe amplification and identification of deletion genetic subtypes in Prader-Willi syndrome. Genet Test Mol Biomarkers. 2012 Mar;16(3):178–186. doi: 10.1089/gtmb.2011.0115
  • Schlötterer C. Evolutionary dynamics of microsatellite DNA. Chromosoma. 2000 Sep;109(6):365–371. doi: 10.1007/s004120000089
  • Devriendt K, Matthijs G, Claes S, et al. Prader-Willi syndrome in a child with mosaic trisomy 15 and mosaic triplo-X: a molecular analysis. J Med Genet. 1997 Apr;34(4):318–322. doi: 10.1136/jmg.34.4.318
  • Mao L. Microsatellite analysis. Applications and pitfalls. Ann N Y Acad Sci. 2000 Apr;906(1):55–62. doi: 10.1111/j.1749-6632.2000.tb06591.x
  • Yin QF, Yang L, Zhang Y, et al. Long noncoding RNAs with snoRNA ends. Molecular Cell. 2012 Oct 26;48(2):219–230. doi: 10.1016/j.molcel.2012.07.033
  • Xing YH, Chen LL. Processing and roles of snoRNA-ended long noncoding RNAs. Critical reviews in biochemistry and molecular biology. Crit Rev Biochem Mol Biol. 2018 Dec;53(6):596–606. doi: 10.1080/10409238.2018.1508411
  • Bigi N, Faure JM, Coubes C, et al. Prader-Willi syndrome: is there a recognizable fetal phenotype? Prenat Diagn. 2008 Sep;28(9):796–799. doi: 10.1002/pd.1973
  • Srebnik N, Gross Even-Zohar N, Salama A, et al. Recognizing the unique prenatal phenotype of Prader-Willi syndrome (PWS) indicates the need for a diagnostic methylation test. Prenat Diagn. 2020 Jun;40(7):878–884. doi: 10.1002/pd.5712
  • Glenn CC, Deng G, Michaelis RC, et al. DNA methylation analysis with respect to prenatal diagnosis of the Angelman and Prader-Willi syndromes and imprinting. Prenat Diagn. 2000 Apr;20(4):300–306. doi: 10.1002/(SICI)1097-0223(200004)20:4<300:AID-PD803>3.0.CO;2-A
  • Wapner RJ, Babiarz JE, Levy B, et al. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes. Am J Obstet Gynecol. 2015 Mar;212(3):332.e1–9. doi: 10.1016/j.ajog.2014.11.041
  • Vora NL, O’Brien BM. Noninvasive prenatal testing for microdeletion syndromes and expanded trisomies: proceed with caution. Obstet & Gynecol. 2014 May;123(5):1097–1099. doi: 10.1097/AOG.0000000000000237
  • Butler MG. Benefits and limitations of prenatal screening for Prader-Willi syndrome. Prenat Diagn. 2017 Jan;37(1):81–94. doi: 10.1002/pd.4914
  • Chang CW, Hsu HK, Kao CC, et al. Prenatal diagnosis of Prader-Willi syndrome and Angelman syndrome for fetuses with suspicious deletion of chromosomal region 15q11-q13. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet. 2014 Apr;125(1):18–21. doi: 10.1016/j.ijgo.2013.09.028
  • Hollegaard MV, Grauholm J, Nielsen R, et al. Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing. Mol Gene Metabol. 2013 Sep;110(1–2):65–72. doi: 10.1016/j.ymgme.2013.06.004
  • Mahmoud R, Singh P, Weiss L, et al. Newborn screening for Prader-Willi syndrome is feasible: early diagnosis for better outcomes. Am J Med Genet A. 2019 Jan;179(1):29–36. doi: 10.1002/ajmg.a.60681
  • Ferreira IR, Costa RA, Gomes LHF, et al. A newborn screening pilot study using methylation-sensitive high resolution melting on dried blood spots to detect Prader-Willi and Angelman syndromes. Sci Rep. 2020 Aug 3;10(1):13026. doi: 10.1038/s41598-020-69750-0
  • Godler DE, Ling L, Gamage D, et al. Feasibility of screening for chromosome 15 imprinting disorders in 16 579 newborns by using a novel genomic workflow. JAMA Netw Open. 2022 Jan 4;5(1):e2141911. doi: 10.1001/jamanetworkopen.2021.41911
  • Inaba Y, Schwartz CE, Bui QM, et al. Early detection of fragile X syndrome: applications of a novel approach for improved quantitative methylation analysis in venous blood and newborn blood spots. Clin Chem. 2014 Jul;60(7):963–973. doi: 10.1373/clinchem.2013.217331
  • Xiao H, Zhang J, Dong X, et al. Secondary genomic findings in the 2020 China Neonatal Genomes Project participants. World J Pediatr. 2022;18(10):687–694. doi: 10.1007/s12519-022-00558-w
  • Tong F. Application of next generation sequencing in the screening of monogenic diseases in China, 2021: a consensus among Chinese newborn screening experts. World J Pediatr. 2022;18(4):235–242. doi: 10.1007/s12519-022-00522-8