38
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-objective optimization of a sequentially inspected system prone to revealing and non-revealing failures via particle swarm optimization and a fuzzy method

ORCID Icon &
Pages 428-441 | Received 08 May 2023, Accepted 12 Mar 2024, Published online: 25 Mar 2024

References

  • Cui L, Kang F, Shen J. Maintenance planning estimations and policies optimization for single-unit systems using Hawkes processes. Quality Technol & Quantita Manage. 2022;20(2):1–25. doi: 10.1080/16843703.2022.2093817.
  • Garg R, Garg D. Availability measures and profit optimization of redundant system having single unit with imperfect switch-over device. Life Cycle Reliab Saf Eng. 2022;11(2):1–8. doi: 10.1007/s41872-022-00187-2
  • Shafiee M, Sørensen JD. Maintenance optimization and inspection planning of wind energy assets: models, methods and strategies. Reliab Eng Syst Saf. 2019;192:105993. doi: 10.1016/j.ress.2017.10.025
  • Levitin G, Finkelstein M, Xiang Y. Optimal inspections and mission abort policies for multistate systems. Reliab Eng Syst Saf. 2021;214:107700. doi: 10.1016/j.ress.2021.107700
  • Wu L, Zhou Q. Adaptive sequential predictive maintenance policy with nonperiodic inspection for hard failures. Qual Reliab Eng Int. 2021;37(3):1173–1185. doi: 10.1002/qre.2788
  • Tian Z, Liao H. Condition based maintenance optimization for multi-component systems using proportional hazards model. Reliab Eng Syst Saf. 2011;96(5):581–589. doi: 10.1016/j.ress.2010.12.023
  • Qiu Q, Cui L, Gao H. Availability and maintenance modelling for systems subject to multiple failure modes. Comput Ind Eng. 2017;108:192–198. doi: 10.1016/j.cie.2017.04.028
  • Pant H, Singh SB, Pant S, et al. Availability analysis and inspection optimisation for a competing-risk k-out-of-n: G system. Int J Reliab Safety. 2020;14(2–3), 168–181. 10.1504/IJRS.2020.113315
  • Keles B, Tekin S, Bakır NO. Maintenance policies for a deteriorating system subject to non-self-announcing failures. IEEE Trans Reliab. 2017;66(1):219–232. doi: 10.1109/TR.2016.2639358
  • Xu H, Hu W. Availability optimisation of repairable system with preventive maintenance policy. Int J Soc Syst Sci. 2008;39(6):655–664. doi: 10.1080/00207720701872057
  • Ram M, Singh SB, Singh VV. Stochastic analysis of a standby system with waiting repair strategy. IEEE Trans Syst Man Cybern. 2013;43(3):698–707. doi: 10.1109/TSMCA.2012.2217320
  • Qiu Q, Cui L. Availability analysis for general repairable systems with repair time threshold. Commun Stat Theory Methods. 2019;48(3):628–647. doi: 10.1080/03610926.2017.1417430
  • Berenguer C, Grall A, Dieulle L, et al. (2003). Maintenance policy for a continuously monitored deteriorating system. Probab Eng Inf Sci. 17(2), 235–250. 10.1017/S0269964803172063
  • Khatab A, Ait-Kadi D, Rezg N. Availability optimisation for stochastic degrading systems under imperfect preventive maintenance. Int J P Res. 2014;52(14):4132–4141. doi: 10.1080/00207543.2013.835499
  • Peng H, Feng Q, Coit DW. Simultaneous quality and reliability optimization for microengines subject to degradation. IEEE Trans Reliab. 2009;58(1):98–105. doi: 10.1109/TR.2008.2011672
  • Pant S, Kishor DAA, Singh SB (2015). A particle swarm algorithm for optimization of complex system reliability. Int J Perf Eng. 11(1), 33.
  • Shi H, Zeng J. Real-time prediction of remaining useful life and preventive opportunistic maintenance strategy for multi-component systems considering stochastic dependence. Comput Ind Eng. 2016;93:192–204. doi: 10.1016/j.cie.2015.12.016
  • Pant H, Singh SB. Modeling a sequentially inspected system prone to degradation and shocks. Int J Qual Reliab Manage. 2022;39(9):2119–2137. doi: 10.1108/IJQRM-06-2021-0187
  • Castro IT, Caballé NC, Pérez CJ. A condition-based maintenance for a system subject to multiple degradation processes and external shocks. Int J Soc Syst Sci. 2015;46(9):1692–1704. doi: 10.1080/00207721.2013.828796
  • Zhang XH, Zeng JC, Gan J. Joint optimization of condition-based maintenance and spare part inventory for two-component system. J Ind Prod Eng. 2018;35(6):394–420. doi: 10.1080/21681015.2018.1520311
  • Chuang CHEN, Ningyun LU, Bin J, et al. Condition-based maintenance optimization for continuously monitored degrading systems under imperfect maintenance actions. J Syst Eng Electron. 2020;31(4), 841–851. doi: 10.23919/JSEE.2020.000057
  • Pant H, Singh SB, Chantola N. Availability of systems subject to multiple failure modes under calendar-based inspection. Int J Reliab Qual Safe Eng. 2021;28(3):2150022. doi: 10.1142/S0218539321500224
  • Pant H, Singh SB. Markov process approach for analyzing periodically inspected competing-risk system embodying downtime threshold. Qual Technol Quant Manag. 2022;19(1):19–34. doi: 10.1080/16843703.2021.1972516
  • Babishin V, Hajipour Y, Taghipour S. Optimisation of non-periodic inspection and maintenance for multicomponent systems. Eksploatacja i Niezawodność – Maint Reliab. 2018;20(2):327–342. doi: 10.17531/ein.2018.2.20
  • Pant H, Singh SB (2021). Availability and cost assessment of systems with dormant failure undergoing sequential inspections. J Qual Maint Eng. 28(3), 533–544. 10.1108/JQME-10-2020-0112
  • Tang T, Lin D, Banjevic D, et al. Availability of a system subject to hidden failure inspected at constant intervals with non-negligible downtime due to inspection and downtime due to repair/replacement. J Stat Plann Inference. 2013;143(1), 176–185. 10.1016/j.jspi.2012.05.011
  • Qiu Q, Cui L. Reliability evaluation based on a dependent two-stage failure process with competing failures. Appl Math Modell. 2018;64:699–712. doi: 10.1016/j.apm.2018.07.039
  • Levitin G, Xing L, Huang HZ. Cost effective scheduling of imperfect inspections in systems with hidden failures and rescue possibility. Appl Math Modell. 2019;68:662–674. doi: 10.1016/j.apm.2018.12.001
  • Qiu Q, Cui L, Shen J. Availability analysis and maintenance modelling for inspected Markov systems with down time threshold. Qual Technol Quant Manag. 2019;16(4):478–495. doi: 10.1080/16843703.2018.1465228
  • Phillips MJ. A preventive maintenance plan for a system subject to revealed and unrevealed faults. Reliab Eng. 1981;2(3):221–231. doi: 10.1016/0143-8174(81)90014-7
  • Carvalho M, Nunes E, Telhada J. Optimal periodic inspection of series systems with revealed and unrevealed failures. In Safety, Reliability and Risk Analysis: Theory, Methods and Applications—Proceedings of the Joint ESREL and SRA-Europe Conference;; Valencia, Spain. CRC Press; 2009. p. 587–592.
  • Badia FG, Berrade MD, Lee H. An study of cost effective maintenance policies: age replacement versus replacement after N minimal repairs. Reliab Eng Syst Saf. 2020;201:106949. doi: 10.1016/j.ress.2020.106949
  • Pant H, Singh SB. Modeling systems with revealing and non-revealing failures undergoing periodic inspection. Commun Stat -Simul Comput. 2022;1–14. 10.1080/03610918.2022.2070215
  • Kuo YC, Lin SC. Availability analysis of wireless sensor networks based on sensor relocation algorithms. J Chin Inst Ind Eng. 2010;27(3):237–247. doi: 10.1080/10170661003651041
  • Sarkar J, Sarkar S. Availability of a periodically inspected system under perfect repair. J Stat Plann Inference. 2000;91(1):77–90. doi: 10.1016/S0378-3758(00)00128-2
  • Cui L, Xie M. Availability of a periodically inspected system with random repair or replacement times. J Stat Plann Inference. 2005;131(1):89–100. doi: 10.1016/j.jspi.2003.12.008
  • Qiu Q, Cui L. Availability analysis for periodically inspected systems subject to multiple failure modes. Int J Systems Sci Oper Logist. 2019;6(3):258–271. doi: 10.1080/23302674.2017.1384961
  • Kaio N, Osaki S. Optimal inspection policy with two types of imperfect inspection probabilities. Microelectron Reliab. 1986;26(5):935–942. doi: 10.1016/0026-2714(86)90236-2
  • Sahraoui Y, Khelif R, Chateauneuf A. Maintenance planning under imperfect inspections of corroded pipelines. Int J Pres Ves Pip. 2013;104:76–82. doi: 10.1016/j.ijpvp.2013.01.009
  • Zhang F, Shen J, Liao H, et al. Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections. Reliab Eng Syst Saf. 2021;205:107254. doi: 10.1016/j.ress.2020.107254
  • Badia FG, Berrade MD, Campos CA. Optimization of inspection intervals based on cost. J Appl Probab. 2001;38(4):872–881. doi: 10.1239/jap/1011994178
  • Bukowski JV. Modeling and analyzing the effects of periodic inspection on the performance of safety-critical systems. IEEE Trans Reliab. 2001;50(3):321–329. doi: 10.1109/24.974130
  • Liu B, Zhao X, Liu Y, et al. Maintenance optimisation for systems with multi-dimensional degradation and imperfect inspections. Int J P Res. 2021;59(24):7537–7559. doi: 10.1080/00207543.2020.1844919
  • Badıa FG, Berrade MD, Campos CA. Optimal inspection and preventive maintenance of units with revealed and unrevealed failures. Reliab Eng Syst Saf. 2002;78(2):157–163. doi: 10.1016/S0951-8320(02)00154-0
  • Chelbi A, Ait‐Kadi D, Aloui H, et al. Optimal inspection and preventive maintenance policy for systems with self‐announcing and non‐self‐announcing failures. J Qual Maint Eng. 2008;14(1):34–45. doi: 10.1108/13552510810861923
  • Yang XS. Nature-inspired optimization algorithms. London: Academic Press; 2020.
  • Kim IY, De Weck OL. Adaptive weighted-sum method for bi-objective optimization: pareto front generation. Struct Multidiscipl Optim. 2005;29(2):149–158. doi: 10.1007/s00158-004-0465-1
  • Kennedy J, Eberhart R. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks; Perth, WA, Australia. IEEE; 1995. Vol. 4, p. 1942–1948.
  • Hsieh ST, Sun TY, Liu CC, et al. Efficient population utilization strategy for particle swarm optimizer. IEEE Trans Syst Man Cybern Part B (Cybern). 2008;39(2), 444–456. doi: 10.1109/TSMCB.2008.2006628
  • Ai TJ, Kachitvichyanukul V. Particle swarm optimization and two solution representations for solving the capacitated vehicle routing problem. Comput Ind Eng. 2009;56(1):380–387. doi: 10.1016/j.cie.2008.06.012
  • Jiang Y, Liu C, Huang C, et al. Improved particle swarm algorithm for hydrological parameter optimization. Appl Math Comput. 2010;217(7):3207–3215. doi: 10.1016/j.amc.2010.08.053
  • Chiu MC, Chang CH, Chen YT, et al. Redesign for sustainability and assemblability using particle swarm optimization method. J Ind Prod Eng. 2016;33(2):103–113. doi: 10.1080/21681015.2015.1111264
  • Shi Y, Eberhart RC. Empirical study of particle swarm optimization. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406); Washington, DC, USA; IEEE; 1999. Vol. 3, p. 1945–1950.
  • Limbourg P, Aponte DES. An optimization algorithm for imprecise multi-objective problem functions. 2005 IEEE Congress on Evolutionary Computation; Edinburgh, UK; IEEE; 2005. Vol. 1, p. 459–466.
  • Zio E, Bazzo R (2012). A comparison of methods for selecting preferred solutions in multiobjective decision making. In Computational Intelligence Systems in industrial engineering; Paris: Atlantis Press, Springer; p. 23–43).
  • Qu BY, Zhu YS, Jiao YC, et al. A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems. Swarm Evol Comput. 2018;38:1–11. doi: 10.1016/j.swevo.2017.06.002
  • Kong X, Yong C, Wang C, et al. Multi-objective power supply capacity evaluation method for active distribution network in power market environment. I Int J Electr Power Energy Syst. 2020;115:105467. doi: 10.1016/j.ijepes.2019.105467
  • Sakawa M, Yano H, Yumine T. An interactive fuzzy satisficing method for multiobjective linear-programming problems and its application. IEEE Trans Syst Man Cybern. 1987;17(4):654–661. doi: 10.1109/TSMC.1987.289356
  • Abido MA. Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans Evol Comput. 2006;10(3):315–329. doi: 10.1109/TEVC.2005.857073
  • Mellal MA, Pecht M. A multi-objective design optimization framework for wind turbines under altitude consideration. Energy Convers Manag. 2020;222:113212. doi: 10.1016/j.enconman.2020.113212
  • Mellal MA, Salhi A. Multi-objective system design optimization via PPA and a fuzzy method. Int J Fuzzy Syst. 2021;23(5):1213–1221. doi: 10.1007/s40815-021-01068-z
  • Ohring M, Kasprzak L. Reliability and failure of electronic materials and devices. London, UK: Academic Press; 2014.
  • Song S, Coit DW, Feng Q, et al. Reliability analysis for multi-component systems subject to multiple dependent competing failure processes. IEEE Trans Reliab. 2014;63(1):331–345. doi: 10.1109/TR.2014.2299693
  • Yang L, Zhao Y, Ma X. Multi-level maintenance strategy of deteriorating systems subject to two-stage inspection. Comput Ind Eng. 2018;118:160–169. doi: 10.1016/j.cie.2018.02.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.