2,696
Views
14
CrossRef citations to date
0
Altmetric
Review

Quantitative analysis of nanoparticle transport through in vitro blood-brain barrier models

Article: e1143545 | Received 15 Dec 2015, Accepted 12 Jan 2016, Published online: 10 Mar 2016

References

  • Sanhai WR, Sakamoto JH, Canady R, Ferrari M. Seven challenges for nanomedicine. Nat Nanotechnol 2008; 3:242-4; PMID:18654511; http://dx.doi.org/10.1038/nnano.2008.114
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3:16-20; PMID:19206243; http://dx.doi.org/10.1021/nn90-0002m
  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: Current status and future prospects. FASEB J 2005; 19:311-30; PMID:15746175; http://dx.doi.org/10.1096/fj.04-2747rev
  • Couvreur P. Nanoparticles in drug delivery: Past, present and future. Adv Drug Deliv Rev 2013; 65:21-3; PMID:22580334; http://dx.doi.org/10.1016/j.addr.2012.04.010
  • Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63:136-51; PMID:20441782; http://dx.doi.org/10.1016/j.addr.2010.04.009
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46:6387-92; PMID:2946403
  • Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 2005; 5:161-71; PMID:15738981; http://dx.doi.org/10.1038/nrc1566
  • Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol 2010; 188:759-68; PMID:20231381; http://dx.doi.org/10.1083/jcb.200910104
  • Andrieux K, Garcia-Garcia E, Kim HR, Couvreur P. Colloidal carriers: A promising way to treat central nervous system diseases. J Nanoneurosci 2009; 1:17-34; http://dx.doi.org/10.1166/jns.2009.003
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001; 47:65-81; PMID:11251246; http://dx.doi.org/10.1016/S0169-409X(00)00122-8
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2012; 64:213-22; http://dx.doi.org/10.1016/j.addr.2012.09.015
  • Begley DJ. Delivery of therapeutic agents to the central nervous system: The problems and the possibilities. Pharmacol Ther 2004; 104:29-45; PMID:15500907; http://dx.doi.org/10.1016/j.pharmthera.2004.08.001
  • Pardridge WM. Blood–brain barrier delivery. Drug Discov Today 2007; 12:54-61; PMID:17198973; http://dx.doi.org/10.1016/j.drudis.2006.10.013
  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 2004; 377:159-69; PMID:14505488; http://dx.doi.org/10.1042/bj20031253
  • Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006; 6:662-8; PMID:16608261; http://dx.doi.org/10.1021/nl052396o
  • Salvati A, Åberg C, dos Santos T, Varela J, Pinto P, Lynch I, Dawson KA. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: Toward models of uptake kinetics. Nanomedicine Nanotechnol Biol Med 2011; 7:818-26; http://dx.doi.org/10.1016/j.nano.2011.03.005
  • Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 2009; 71:251-6; PMID:18805484; http://dx.doi.org/10.1016/j.ejpb.2008.08.021
  • Chang J, Jallouli Y, Kroubi M, Yuan X, Feng W, Kang C, Pu P, Betbeder D. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. Int J Pharm 2009; 379:285-92; PMID:19416749; http://dx.doi.org/10.1016/j.ijpharm.2009.04.035
  • Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 2002; 10:317-25; PMID:12164380; http://dx.doi.org/10.1080/10611860290031877
  • Kim H, Gil S, Andrieux K, Nicolas V, Appel M, Chacun H, Desmaële D, Taran F, Georgin D, Couvreur P. Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol Life Sci 2007; 64:356-64; PMID:17256088; http://dx.doi.org/10.1007/s00018-007-6390-x
  • Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, Büchel C, von Briesen H, Kreuter J. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Controlled Release 2009; 137:78-86; http://dx.doi.org/10.1016/j.jconrel.2009.03.002
  • Wagner S, Zensi A, Wien SL, Tschickardt SE, Maier W, Vogel T, Worek F, Pietrzik CU, Kreuter J, von Briesen H. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLoS ONE 2012; 7:e32568; PMID:22396775; http://dx.doi.org/10.1371/journal.pone.0032568
  • Reimold I, Domke D, Bender J, Seyfried CA, Radunz H-E, Fricker G. Delivery of nanoparticles to the brain detected by fluorescence microscopy. Eur J Pharm Biopharm 2008; 70:627-32; PMID:18577452; http://dx.doi.org/10.1016/j.ejpb.2008.05.007
  • Kumar P, Wu H, McBride JL, Jung K-E, Hee Kim M, Davidson BL, Kyung Lee S, Shankar P, Manjunath N. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007; 448:39-43; PMID:17572664; http://dx.doi.org/10.1038/nature05901
  • Demeule M, Régina A, Ché C, Poirier J, Nguyen T, Gabathuler R, Castaigne J-P, Béliveau R. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 2008; 324:1064-72; PMID:18156463; http://dx.doi.org/10.1124/jpet.107.131318
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113:823-39; PMID:16002369; http://dx.doi.org/10.1289/ehp.7339
  • Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311:622-7; PMID:16456071; http://dx.doi.org/10.1126/science.1114397
  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA. Nanotoxicology. Occup Environ Med 2004; 61:727-8; PMID:15317911; http://dx.doi.org/10.1136/oem.2004.013243
  • Shvedova AA, Kagan VE, Fadeel B. Close encounters of the small kind: Adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol 2010; 50:63-88; PMID:20055698; http://dx.doi.org/10.1146/annurev.pharmtox.010909.105819
  • Rivera-Gil P, Jimenez De Aberasturi D, Wulf V, Pelaz B, Del Pino P, Zhao Y, De La Fuente JM, Ruiz De Larramendi I, Rojo T, Liang X-J, et al. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res 2013; 46:743-9; PMID:22786674; http://dx.doi.org/10.1021/ar300039j
  • Valsami-Jones E, Lynch I. How safe are nanomaterials? Science 2015; 350:388-9; PMID:26494749; http://dx.doi.org/10.1126/science.aad0768
  • Oberdörster G, Elder A, Rinderknecht A. Nanoparticles and the brain: Cause for concern? J Nanosci Nanotechnol 2009; 9:4996-5007; PMID:19928180; http://dx.doi.org/10.1166/jnn.2009.GR02
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004; 16:437-45; PMID:15204759; http://dx.doi.org/10.1080/08958370490439597
  • Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdörster G. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 2009; 21 Suppl 1:55-60; PMID:19558234; http://dx.doi.org/10.1080/08958370902942517
  • Abbott NJ, Dolman DEM, Yusof SR, Reichel A. In vitro models of CNS barriers. In: Hammarlund-Udenaes M, Lange ECM de, Thorne RG, editors. Drug Delivery to the Brain. New York: Springer; 2014. page 163-97.
  • Audus KL, Borchardt RT. Characterization of an in vitro blood–brain barrier model system for studying drug transport and metabolism. Pharm Res 1986; 3:81-7; PMID:24271465; http://dx.doi.org/10.1023/A:1016337202335
  • Shaw DJ. Introduction to colloid and surface chemistry. 4th ed. Oxford: Butterworth-Heinemann; 1992. 306 p.
  • Schübbe S, Cavelius C, Schumann C, Koch M, Kraegeloh A. STED microscopy to monitor agglomeration of silica particles inside A549 cells. Adv Eng Mater 2010; 12:417-22; http://dx.doi.org/10.1002/adem.201000093
  • Wang Z, Tiruppathi C, Minshall RD, Malik AB. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano 2009; 3:4110-6; PMID:19919048; http://dx.doi.org/10.1021/nn9012274
  • Bramini M, Ye D, Hallerbach A, Nic Raghnaill M, Salvati A, Åberg C, Dawson KA. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS Nano 2014; 8:4304-12; PMID:24773217; http://dx.doi.org/10.1021/nn5018523
  • Ye D, Nic Raghnaill M, Bramini M, Mahon E, Åberg C, Salvati A, Dawson KA. Nanoparticle accumulation and transcytosis in brain endothelial cell layers. Nanoscale 2013; 5:11153-65; PMID:24077327; http://dx.doi.org/10.1039/c3nr02905k
  • Georgieva JV, Kalicharan D, Couraud P-O, Romero IA, Weksler B, Hoekstra D, Zuhorn IS. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Mol Ther 2011; 19:318-25; PMID:21045812; http://dx.doi.org/10.1038/mt.2010.236
  • Gulson B, Wong H. Stable isotopic tracing—a way forward for nanotechnology. Environ Health Perspect 2006; 114:1486-8; PMID:17035130; http://dx.doi.org/10.1289/ehp.9277
  • Gibson N, Holzwarth U, Abbas K, Simonelli F, Kozempel J, Cydzik I, Cotogno G, Bulgheroni A, Gilliland D, Ponti J, et al. Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Arch Toxicol 2011; 85:751-73; PMID:21479952; http://dx.doi.org/10.1007/s00204-011-0701-6
  • Aktaş Y, Yemisci M, Andrieux K, Gürsoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Riguera R, Sargon MF, et al. Development and brain delivery of chitosan−PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem 2005; 16:1503-11; PMID:16287248; http://dx.doi.org/10.1021/bc050217o
  • Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Büchel C, Kreuter J. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain. J Drug Target 2010; 18:842-8; PMID:20849354; http://dx.doi.org/10.3109/1061186X.2010.513712
  • Elsaesser A, Taylor A, de Yanés GS, McKerr G, Kim E-M, O'Hare E, Howard CV. Quantification of nanoparticle uptake by cells using microscopical and analytical techniques. Nanomed 2010; 5:1447-57; http://dx.doi.org/10.2217/nnm.10.118
  • Sartori A, Gatz R, Beck F, Rigort A, Baumeister W, Plitzko JM. Correlative microscopy: Bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 2007; 160:135-45; PMID:17884579; http://dx.doi.org/10.1016/j.jsb.2007.07.011
  • Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 2012; 7:779-86; PMID:23212421; http://dx.doi.org/10.1038/nnano.2012.207
  • Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 2007; 104:2050-5; PMID:17267609; http://dx.doi.org/10.1073/pnas.0608582104
  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 2009; 61:428-37; PMID:19376175; http://dx.doi.org/10.1016/j.addr.2009.03.009
  • Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 2012; 41:2780-99; PMID:22086677; http://dx.doi.org/10.1039/C1CS15233E
  • Hellstrand E, Lynch I, Andersson A, Drakenberg T, Dahlbäck B, Dawson KA, Linse S, Cedervall T. Complete high-density lipoproteins in nanoparticle corona. FEBS J 2009; 276:3372-81; PMID:19438706; http://dx.doi.org/10.1111/j.1742-4658.2009.07062.x
  • Kapralov AA, Feng WH, Amoscato AA, Yanamala N, Balasubramanian K, Winnica DE, Kisin ER, Kotchey GP, Gou P, Sparvero LJ, et al. Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration. ACS Nano 2012; 6:4147-56; PMID:22463369; http://dx.doi.org/10.1021/nn300626q
  • Gasser M, Rothen-Rutishauser B, Krug HF, Gehr P, Nelle M, Yan B, Wick P. The adsorption of biomolecules to multi-walled carbon nanotubes is influenced by both pulmonary surfactant lipids and surface chemistry. J Nanobiotechnology 2010; 8:31; PMID:21159192; http://dx.doi.org/10.1186/1477-3155-8-31
  • Raesch SS, Tenzer S, Storck W, Rurainski A, Selzer D, Ruge CA, Perez-Gil J, Schaefer UF, Lehr C-M. Proteomic and lipidomic analysis of nanoparticle corona upon contact with lung surfactant reveals differences in protein, but not lipid composition. ACS Nano 2015; 9:11872-85; PMID:26575243; http://dx.doi.org/10.1021/acsnano.5b04215
  • Zeng Z, Patel J, Lee S-H, McCallum M, Tyagi A, Yan M, Shea KJ. Synthetic polymer nanoparticle–polysaccharide interactions: A systematic study. J Am Chem Soc 2012; 134:2681-90; PMID:22229911; http://dx.doi.org/10.1021/ja209959t
  • Wan S, Kelly PM, Mahon E, Stöckmann H, Rudd PM, Caruso F, Dawson KA, Yan Y, Monopoli MP. The “sweet” side of the protein corona: Effects of glycosylation on nanoparticle–cell interactions. ACS Nano 2015; 9:2157-66; PMID:25599105; http://dx.doi.org/10.1021/nn506060q
  • Martel J, Young D, Young A, Wu C-Y, Chen C-D, Yu J-S, Young JD. Comprehensive proteomic analysis of mineral nanoparticles derived from human body fluids and analyzed by liquid chromatography–tandem mass spectrometry. Anal Biochem 2011; 418:111-25; PMID:21741946; http://dx.doi.org/10.1016/j.ab.2011.06.018
  • Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, Dawson KA. Physical−chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 2011; 133:2525-34; PMID:21288025; http://dx.doi.org/10.1021/ja107583h
  • Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: A comprehensive quantitative proteomic analysis. ACS Nano 2011; 5:7155-67; PMID:21866933; http://dx.doi.org/10.1021/nn201950e
  • Walczyk D, Baldelli Bombelli F, Monopoli MP, Lynch I, Dawson KA. What the cell “sees” in bionanoscience. J Am Chem Soc 2010; 132:5761-8; PMID:20356039; http://dx.doi.org/10.1021/ja910675v
  • Milani S, Baldelli Bombelli F, Pitek AS, Dawson KA, Rädler J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: Soft and hard corona. ACS Nano 2012; 6:2532-41; PMID:22356488; http://dx.doi.org/10.1021/nn204951s
  • Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS Nano 2010; 4:3623-32; PMID:20553005; http://dx.doi.org/10.1021/nn901372t
  • Kim HR, Andrieux K, Delomenie C, Chacun H, Appel M, Desmaële D, Taran F, Georgin D, Couvreur P, Taverna M. Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and Protein Lab-on-chip® system. Electrophoresis 2007; 28:2252-61; PMID:17557357; http://dx.doi.org/10.1002/elps.200600694
  • Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere−serum interface: Implications for stealth nanoparticle engineering. ACS Nano 2010; 4:6629-38; PMID:21028845; http://dx.doi.org/10.1021/nn101990a
  • Dai Q, Walkey C, Chan WCW. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew Chem Int Ed 2014; 53:5093-6; http://dx.doi.org/10.1002/anie.201408375
  • Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernández S, de la Fuente JM, Nienhaus GU, Parak WJ. Surface functionalization of nanoparticles with polyethylene glycol: Effects on protein adsorption and cellular uptake. ACS Nano 2015; 9:6996-7008; PMID:26079146; http://dx.doi.org/10.1021/acsnano.5b01326
  • Barrán-Berdón AL, Pozzi D, Caracciolo G, Capriotti AL, Caruso G, Cavaliere C, Riccioli A, Palchetti S, Laganà A. Time evolution of nanoparticle–protein corona in human plasma: Relevance for targeted drug delivery. Langmuir 2013; 29:6485-94; http://dx.doi.org/10.1021/la401192x
  • Ritz S, Schöttler S, Kotman N, Baier G, Musyanovych A, Kuharev J, Landfester K, Schild H, Jahn O, Tenzer S, et al. Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake. Biomacromolecules 2015; 16:1311-21; PMID:25794196; http://dx.doi.org/10.1021/acs.biomac.5b00108
  • Doorley GW, Payne CK. Cellular binding of nanoparticles in the presence of serum proteins. Chem Commun 2011; 47:466; http://dx.doi.org/10.1039/C0CC02618B
  • Doorley GW, Payne CK. Nanoparticles act as protein carriers during cellular internalization. Chem Commun 2012; 48:2961-3; http://dx.doi.org/10.1039/c2cc16937a
  • Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, Dawson KA. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine Nanotechnol Biol Med 2013; 9:1159-68; http://dx.doi.org/10.1016/j.nano.2013.04.010
  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 2008; 105:14265-70; PMID:18809927; http://dx.doi.org/10.1073/pnas.0805135105
  • Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 2009; 20:455101; PMID:19822937; http://dx.doi.org/10.1088/0957-4484/20/45/455101
  • Lück M. Plasmaproteinadsorption als möglicher Schlüsselfaktor für eine kontrollierte Arzneistoffapplikation mit partikulären Trägern [dissertation]. [Berlin]: Freie Universität Berlin; 1997. 174 p.
  • Alyaudtin R, Gothier D, Petrov V, Kharkevich D, Kreuter J. Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 1995; 41:44-8
  • Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, Elia G, Dawson K. The evolution of the protein corona around nanoparticles: A test study. ACS Nano 2011; 5:7503-9; PMID:21861491; http://dx.doi.org/10.1021/nn202458g
  • Kim JA, Salvati A, Åberg C, Dawson KA. Suppression of nanoparticle cytotoxicity approaching in vivo serum concentrations: Limitations of in vitro testing for nanosafety. Nanoscale 2014; 6:14180-4; PMID:25340311; http://dx.doi.org/10.1039/C4NR04970E
  • Lesniak A, Federico Fenaroli, Monopoli MP, Åberg C, Dawson KA, Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 2012; 6:5845-57; PMID:22721453; http://dx.doi.org/10.1021/nn300223w
  • Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci 2011; 108:16968-73; PMID:21969544; http://dx.doi.org/10.1073/pnas.1105270108
  • Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 2011; 5:3693-700; PMID:21500856; http://dx.doi.org/10.1021/nn200021j
  • Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 2013; 135:1438-44; PMID:23301582; http://dx.doi.org/10.1021/ja309812z
  • Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, Surprenant A, Lopez-Castejon G, Mann S, Davis SA, et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol 2009; 4:876-83; PMID:19893513; http://dx.doi.org/10.1038/nnano.2009.313
  • Sood A, Salih S, Roh D, Lacharme-Lora L, Parry M, Hardiman B, Keehan R, Grummer R, Winterhager E, Gokhale PJ, et al. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat Nanotechnol 2011; 6:824-33; PMID:22056725; http://dx.doi.org/10.1038/nnano.2011.188
  • Nic Raghnaill M, Bramini M, Ye D, Couraud P-O, Romero IA, Weksler B, Åberg C, Salvati A, Lynch I, Dawson KA. Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles. Analyst 2014; 139:923-30; PMID:24195103; http://dx.doi.org/10.1039/C3AN01621H
  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. Exposure of engineered nanoparticles to human lung epithelial cells:  Influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 2007; 41:4158-63; PMID:17612205; http://dx.doi.org/10.1021/es062629t
  • McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu C-M, Russell CG, Chittur KK. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci 2001; 98:8955-60; PMID:11481467; http://dx.doi.org/10.1073/pnas.171259298
  • Chen BPC, Li Y-S, Zhao Y, Chen K-D, Li S, Lao J, Yuan S, Shyy JY-J, Chien S. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics 2001; 7:55-63; PMID:11595792; http://dx.doi.org/10.1006/geno.2001.6511
  • Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. The role of shear stress in blood-brain barrier endothelial physiology. BMC Neurosci 2011; 12:40; PMID:21569296; http://dx.doi.org/10.1186/1471-2202-12-40
  • Klingberg H, Loft S, Oddershede LB, Møller P. The influence of flow, shear stress and adhesion molecule targeting on gold nanoparticle uptake in human endothelial cells. Nanoscale 2015; 7:11409-19; PMID:26077188; http://dx.doi.org/10.1039/C5NR01467K
  • Han J, Zern BJ, Shuvaev VV, Davies PF, Muro S, Muzykantov V. Acute and chronic shear stress differently regulate endothelial internalization of nanocarriers targeted to platelet-endothelial cell adhesion molecule-1. ACS Nano 2012; 6:8824-36; PMID:22957767; http://dx.doi.org/10.1021/nn302687n
  • Bhowmick T, Berk E, Cui X, Muzykantov VR, Muro S. Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1. J Controlled Release 2012; 157:485-92; http://dx.doi.org/10.1016/j.jconrel.2011.09.067
  • Decuzzi P, Ferrari M. Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials 2008; 29:377-84; PMID:17936897; http://dx.doi.org/10.1016/j.biomaterials.2007.09.025
  • Decuzzi P, Pasqualini R, Arap W, Ferrari M. Intravascular delivery of particulate systems: Does geometry really matter? Pharm Res 2008; 26:235-43; PMID:18712584; http://dx.doi.org/10.1007/s11095-008-9697-x
  • Velve-Casquillas G, Le Berre M, Piel M, Tran PT. Microfluidic tools for cell biological research. Nano Today 2010; 5:28-47; PMID:21152269; http://dx.doi.org/10.1016/j.nantod.2009.12.001
  • Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014; 32:760-72; PMID:25093883; http://dx.doi.org/10.1038/nbt.2989