2,011
Views
30
CrossRef citations to date
0
Altmetric
Reviews

An update on applications of nanostructured drug delivery systems in cancer therapy: a review

, , , , , , & show all
Pages 1058-1068 | Received 17 Mar 2016, Accepted 22 Aug 2016, Published online: 15 Sep 2016

References

  • Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Hanifepour Y, Nejati-Koshki K, Pashaei-Asl R. 2014a. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 9:247.
  • Abbasi E, Milani M, Fekri Aval S, Kouhi M, Akbarzadeh A, Tayefi Nasrabadi H. H. 2014b. Silver nanoparticles: synthesis, properties, bio-applications and limitations. Crit Rev Microbiol. 1.
  • Agudelo-Garcia PA, De Jesus JK, Williams SP, Nowicki MO, Chiocca EA, Liyanarachchi S, et al. 2011. Glioma cell migration on three-dimensional nanofiber scaffolds is regulated by substrate topography and abolished by inhibition of STAT3 signaling. Neoplasia. 13:831–840.
  • Ahmadi A, Shirazi H, Pourbagher N, Akbarzadeh A, Omidfar K. 2014. An electrochemical immunosensor for digoxin using core-shell gold coated magnetic nanoparticles as labels. Mol Biol Rep. 41:1659–1668.
  • Al Faraj A, Shaik AP, Shaik AS. 2015. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasivemonitoring using diffusion-weighted magnetic resonance imaging assensitive imaging biomarker. Int J Nanomed. 10:157–168.
  • Alimirzalu S, Akbarzadeh A, Abbasian M, Alimohammadi S, Davaran S, Hanifehpour Y, Samiei M, Joo SW. 2014. Synthesis and study of physicochemical characteristics of Fe3O4 magnetic nanocomposites based on poly(Nisopropylacrylamide) for anti-cancer drugs delivery. Asian Pac J Cancer Prev. 15:049–054.
  • Alizadeh E, Akbarzadeh A, Zarghami N, Eslaminejad MB, Hashemzadeh S, Nejati-Koshki K. 2014. Up-regulation of liver enriched transcription factors (HNF4a and HNF6) and liver specific MicroRNA (miR-122) by inhibition of Let-7b in mesenchymal stem cells. Chem Biol Drug Des. 85:600–608.
  • Alizadeh E, Eslaminejad MB, Akbarzadeh A, Sadeghi Z, Abasi M, Herizchi R, Zarghami N. 2016. Upregulation of MiR-122 via trichostatin a treatments in hepatocyte-like cells derived from mesenchymal stem cells. Chem Biol Drug Des. 87:296–305. doi: 10.1111/cbdd.12664. Epub 2015 Oct 19.
  • Alizadeh E, Zarghami N, Eslaminejad MB, Akbarzadeh A, Barzegar A, Mohammadi SA 2016. The effect of Dimethyl Sulfoxide (DMSO) on hepatic differentiation of mesenchymal stem cells. Artificial Cells Nanomed Biotechnol. 44:157–164.
  • Allen TM, Cullis PR. 2004. Drug delivery systems: entering the mainstream. Science. 303:1818–1822.
  • Ananthanarayanan B, Kim Y, Kumar S. 2011. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials. 32:7913–7923.
  • Arnold U, Ulbrich-Hofmann R. 2006. Natural and engineered ribonucleases as potential cancer therapeutics. Biotechnol Lett. 28:1615–1622.
  • Arvizo RR, Saha S, Wang E, Robertson JD, Bhattacharya R, Mukherjee P. 2013. Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proc Natl Acad Sci USA. 110:6700–6705.
  • Bao SD, Wu QL, McLendon RE, Hao YL, Shi Q, Hjelmeland AB, et al. 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760.
  • Basarkar A, Singh J. 2009. Poly (lactide-co-glycolide)-polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm Res. 26:72–81.
  • Baumann R, et al. 2012. Preparation and characterization of magnetizable aerosols. Eur J Pharm Sci. 45:693–697.
  • Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG. 2004. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol. 36:1046–1069.
  • Blakney AK, Ball C, Krogstad EA, Woodrow KA. 2013. Electrospun fibers for vaginal anti-HIV drug delivery. Antiviral Res. 100:S9–S16.
  • Chakraborty S, Liao IC, Adler A, Leong KW. 2009. Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev. 61:1043–1054.
  • Charernsriwilaiwat N, et al. 2012. Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. Int J Pharm. 427:379–384.
  • Chaturvedi K, et al. 2011. “Cyclodextrin-based siRNA delivery nanocarriers: a state-of-the-art review”. Expert Opinion on Drug Delivery 8:1455–1468.
  • Chaturvedi K, et al. 2013. “Polymeric hydrogels for oral insulin delivery”. J Control Release 165:129–138.
  • Chen Z, Wang F, Zhu L. 2013. The effects of hypoxia on uptake of positively chargednanoparticles by tumor cells. J. Bionanosci. 7:601–605.
  • Chew SY, Mi R, Hoke A, Leong KW. 2008. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials. 29:653–661.
  • Christopherson GT, Song H, Mao HQ. 2009. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials. 30:556–564.
  • Conde J, et al. 2013. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials. 34:7744–7753.
  • Coquerel B, Poyer F, Torossian F, Dulong V, Bellon G, Dubus I, et al. 2009. Elastinderived peptides: matrikines critical for glioblastoma cell aggressiveness in a 3-D system. Glia. 57:1716–1726.
  • Corey JM, Gertz CC, Wang BS, Birrell LK, Johnson SL, Martin DC, et al. 2008. The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons. Acta Biomater. 4:863–875.
  • Couvreur P, Vauthier C. 2006. Nanotechnology: intelligent design to treat complex disease. Pharm Res. 23:1417–1450.
  • Dahlin RL, Kurtis Kasper F, Mikos AG. 2011. Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev. 17:349–364.
  • Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. 2016. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 44:381–391.
  • David L, Dulong V, Coquerel B, Le Cerf D, Cazin L, Lamacz M, et al. 2008. Collagens, stromal cell-derived factor-1alpha and basic fibroblast growth factor increase cancer cell invasiveness in a hyaluronan hydrogel. Cell Prolif. 41:348–364.
  • Davoudi Z, Akbarzadeh A, Rahmatiyamchi M, Movassaghpour AA, Alipour M, Nejati-Koshki K, et al. 2014. Molecular target therapy of AKT and NF-kB signaling pathways and multidrug resistance by specific cell penetrating inhibitor peptides in HL-60 cells. Asian Pac J Cancer Prev. 15:4353.
  • Díaz MR, Vivas-Mejia PE. 2013. Nanoparticles as drug delivery systems in cancer medicine: emphasis on RNAi-containing nanoliposomes. Pharmaceuticals. 6:1361–1380.
  • Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, et al. 2014. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 9:1–13.
  • Eatemadi A, Daraee H, Zarghami N, Yar HM, Akbarzadeh A. 2016. Nanofiber: synthesis and biomedical applications. Artif Cells Nanomed Biotechnol. 44:111–121.
  • Ebrahimnezhad Z, Zarghami N, Keyhani M, Amirsaadat S, Akbarzadeh A, Rahmati M, Taheri ZM, Nejati-Koshki K. 2013. Inhibition of hTERT gene expression by silibinin-loaded PLGA-PEG-Fe3O4 in T47D breast cancer cell line. BioImpacts. 3:67–74.
  • Elham A, Abolfazl A, Mohammad K, Morteza M. 2014. Graphene: synthesis, bio-applications, and properties. Artif Cells Nanomed Biotechnol. 1–7.
  • Eommolbanin E, Elham A, Abolfazl A, Amir Ahmad K, Soodabeh D. 2014. Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGA-PEG1000 copolymer. Artif Cells Nanomed Biotechnol. 1–8.
  • Farokhzad OC, Langer R. 2009. Impact of nanotechnology on drug delivery. ACS Nano. 3:16–20.
  • Fekri Aval S, Akbarzadeh A, Yamchi MR, Zarghami F, Nejati-Koshki K, Zarghami N 2016. Gene silencing effect of SiRNA-magnetic modified with biodegradable copolymer nanoparticles on hTERT gene expression in lung cancer cell line. Artif Cells Nanomed Biotechnol. 44:188–193.
  • Ferrari M. 2005. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 5:161–171.
  • Fox ME, Szoka FC, Fréchet JMJ. 2009. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Accounts Chem Res. 42:1141–1151.
  • Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, et al. 2013. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 3:2534.
  • Gerardo-Nava J, Fuhrmann T, Klinkhammer K, Seiler N, Mey J, Klee D, et al. 2009. Human neural cell interactions with orientated electrospun nanofibers in vitro. Nanomedicine (Lond). 4:11–30.
  • Ghasemali S, Nejati-Koshki K, Akbarzadeh A, Tafsiri E, Zarghami N, Rahmati-Yamchi M, et al. 2013. Study of inhibitory effect of β-cyclodextrin-Helenalin complex on HTERT gene expression in T47D breast cancer cell line by real time quantitative PCR (q-PCR). Asian Pac J Cancer Prev. 14:6949–6953.
  • Giese A, Loo MA, Rief MD, Tran N, Berens ME. 1995. Substrates for astrocytoma invasion. Neurosurgery. 37:294–301.
  • Goonoo N, Bhaw-Luximon A, Jhurry D. 2014. Drug loading and release from electrospun biodegradable nanofibers. J Biomed Nanotechnol. 10:2173–2199.
  • Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. 2016. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol. 44:410–422.
  • Hatefi A, Amsden B. 2002. Biodegradable injectable in situ forming drug delivery systems. J Control Release. 80:9–28.
  • He W, et al. 2014. Development of single-side magnet array for super paramagnetic nano-particle targeting. Res J Appl Sci Eng Technol. 7:3022–3029.
  • Ho EA, Soo PL, Allen C, Piquette-Miller M. 2007. Impact of intraperitoneal, sustained delivery of paclitaxel on the expression of P-glycoprotein in ovarian tumors. J Control Release. 117:20–27.
  • Hosseininasab S, Pashaei‐Asl R, Khandaghi AA, Nasrabadi HT, Nejati‐Koshki K, Akbarzadeh A, et al. 2014. Synthesis, characterization, and In vitro studies of PLGA‐PEG nanoparticles for oral Insulin delivery. Chem Biol Drug Des. 84:307–315.
  • Hournkumnuard K, Natenapit M. 2013. Magnetic drug targeting by ferromagnetic microwires implanted within blood vessels. Med Phys. 40: 062302/1-062302/10.
  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. 2003. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 63:2223–2253.
  • Jemal A, Siegel R, Ward E. 2006. i wsp.: Statystyka nowotworów 2006 Onkol Dypl. 3:6–35.
  • Chung JH, Kim YK, Kim KH, Kwon TY, Vaezmomeni SZ, Samiei M, et al. 2016. Synthesis, characterization, biocompatibility of hydroxyapatite -natural polymers nanocomposites for dentistry applications. Artif Cells Nanomed Biotechnol. 44:277–284.
  • Johnson J, Nowicki MO, Lee CH, Chiocca EA, Viapiano MS, Lawler SE, et al. 2009. Quantitative analysis of complex glioma cell migration on electrospun polycaprolactone using time-lapse microscopy. Tissue Eng Part C Methods. 15:531–540.
  • Joshi M, Butola BS, Saha K. 2014. Advances in topical drug delivery system: micro to nanofibrous structures. J Nanosci Nanotechnol. 14:853–867.
  • Jovanov-Milosevic N, Benjak V, Kostovic I. 2006. Transient cellular structures in developing corpus callosum of the human brain. Coll Antropol. 30:375–381.
  • Kawashima T, et al. 2011. “A scalable controlled-release device for transscleral drug delivery to the retina”. Biomaterials 32:1950–1956.
  • Kazunori K, et al. 1993. Block copolymer micelles as vehicles for drug delivery. J Control Release. 24:119–132.
  • Kim JH, Kim JH, Park JA, Lee SW, Kim WJ, Yu YS, et al. 2006. Blood-neural barrier: intercellular communication at glio-vascular interface. J Biochem Mol Biol. 39:339–345.
  • Kim Y‐J,Ebara M, Aoyagi T. 2013. A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis. Adv Funct Mater. 23:5753–5761.
  • Kouhi M, Vahedi A, Akbarzadeh A, Hanifehpour Y, Joo SW. 2014. Investigation of quadratic electro-optic effects and electro absorption process in GaN/AlGaN spherical quantum dot. Nanoscale Res Lett. 9:131–136.
  • Kuang Y, An S, Guo Y, Huang S, Shao K, Liu Y, et al. 2013. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting . Int J Pharm. 454:11–20.
  • Kudgus RA, Szabolcs A, Khan JA, Walden CA, Reid JM, Robertson JD, et al. 2013. Inhibiting the growth of pancreatic adenocarcinoma in vitro and in vivo through targeted treatment with designer gold nanotherapeutics. PLoS One. 8:e57522.
  • Langer R. 1998. Drug delivery and targeting. Nature. 392:5–10.
  • Lei C, Cui Y, Zheng L, Chow PK, Wang CH. 2013. Development of a gene/drug dual delivery system for brain tumor therapy: potent inhibition via RNA interference and synergistic effects. Biomaterials. 34:7483–7494.
  • Letchford K, Burt H. 2007. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 65:259–269.
  • Lin X, Li Y, Chen Z, Zhang C, Luo X, Du X, Huang Y. 2013. Synthesis, characterization and electrospinning of new thermoplastic carboxymethyl cellulose (TCMC). Chem Eng J. 215:709–720.
  • Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang XJ. 2014. pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 32:693–710.
  • Liu J, Zhou G, Liu D, Xie Z, Huang Y, Wang X, Wu W, Jing X. 2013. Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin-loaded electrospun polylactide nanofibers. J Mater Chem. 1:101–109.
  • Liu S, Zhou G, Liu D, Xie Z, Huang Y, Wang X, Wu W, Jing X. 2015. Single peptide ligand-functionalized uniform hollow mesoporoussilica nanoparticles achieving dual-targeting drug delivery to tumor cells and angiogenic blood vessel cells. Int. J. Nanomed. 1855–1867.
  • Louis DN. 2006. Molecular pathology of malignant gliomas. Annu Rev Pathol. 1:97–117.
  • Low PS, Kularatne SA. 2009. Folate-targeted therapeutic and imaging agents for cancer. Curr Opinion Chem Biol. 13:256–262.
  • Lueshen E, et al. 2015. Implant-assisted intrathecal magnetic drug targeting to aid in therapeutic nanoparticle localization for potential treatment of central nervous system disorders. J Biomed Nanotechnol. 11:253–261.
  • Ma PX, Zhang R. 1999. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res. 46:60–72.
  • Machado RM, Palmeira-De-Oliveira A, Martinez-De-Oliveira J, Palmeira-De-Oliveira R. 2013. Vaginal films for drug delivery. J Pharm Sci. 102:2069–2081.
  • Madan M, Bajaj A, Lewis S, Udupa N, Baig JA. 2009. In situ forming polymeric drug delivery systems. Ind J Pharm Sci. 71:242.
  • Malcolm RK, Edwards KL, Kiser P, Romano J, Smith TJ. 2010. Advances in microbicide vaginal rings. Antiviral Res. 88:S30–S39.
  • Matsumura Y, Maeda H. 1986. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46: 6387–6392.
  • Minchinton AI, Tannock IF. 2006. Drug penetration in solid tumours. Nat Rev Cancer. 6:583–592.
  • Mohammad P-M, Nosratollah Z, Afshin M, Mohammad R-Y, Davud G, Abolfazl A, Miguel de l. G, Kazem N-K. 2014. Watercress-based gold nanoparticles: biosynthesis, mechanism of formation and study of their biocompatibility in vitro. IET Digital Library. 4:5.
  • Mollazade M, Nejati-Koshki K, Akbarzadeh A, Hanifehpour Y, Zarghami N, Joo SW. 2013. PAMAM dendrimers arugment inhibitory effect of curcumin on cancer cell proliferation: possible inhibition of telomerase. Asian Pac J Cancer Prev. 14:6925–6928.
  • Mora-Huertas CE, Fessi H, Elaissari A. 2010. Polymer-based nanocapsules for drug delivery. Int J Pharm. 385:113–142.
  • Moses MA, Brem H, Langer R. 2003. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell. 4:337–341.
  • Muthu MS, Leong DT, Mei L, Feng SS. 2014. Nanotheranostics – application and further development of nanomedicine strategies for advanced theranostics. Theranostics. 4:660–677.
  • Nacev A, et al. 2015. Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target. Nano Lett. 15:359–364.
  • Nasrabadi HT, Abbasi E, Davaran S, Kouhi M, Akbarzadeh A. 2016. Bimetallic nanoparticles: preparation, properties, and biomedical applications. Artif Cells Nanomed Biotechnol. 44:376–380.
  • Nejati-Koshki K, Akbarzadeh A, pourhasan-Moghadam M, joo S. w. 2013. Inhibition of leptin and leptin receptor gene expression by silibinin. Curcumin combination. Asian Pac J Cancer Prev. 14:6595–6599.
  • Neves V, Gerondopoulos A, Heister E, Tîlmaciu C, Flahaut E, Soula B, Silva SR, McFadden J, Coley HM. 2012. Cellular localization, accumulation and trafficking of double-walled carbon nanotubes in human prostate cancer cells. Nano Res. 5:223–234.
  • Newland B, Zheng Y, Jin Y, Abu-Rub M, Cao H, Wang W, Pandit A. 2012. Single cyclized molecule versus single branched molecule: a simple and efficient 3D “knot” polymer structure for nonviral gene delivery. J Am Chem Soc. 134:4782–4789.
  • Nicolas J, et al. 2013. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 42:1147–1235.
  • Panyam J, Labhasetwar V. 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 55:329–347.
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. 2007. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2:751–760.
  • Peer D, Karp JM, Hong S, FaroKhzad OC, Margalit R, Langer R. 2007. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2:751–760.
  • Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R. 2010. Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J. 158:353–361.
  • Piccolo J, Kolesar JM. 2014. “Prevention and treatment of chemotherapy-induced peripheral neuropathy”. Am J Health-Syst Pharm. 71:19–25.
  • Postma TJ, Reijneveld JC, Heimans JJ. 2013. Prevention of chemotherapy-induced peripheral neuropathy: a matter of personalized treatment? Ann Oncol. 24:1424–1426.
  • Pourhassan-Moghaddam M, Rahmati-Yamchi M, Akbarzadeh A, Daraee H, Nejati-Koshki K, Hanifehpour Y, Joo SW. 2013. Protein detection through different platforms of immuno-loop-mediated isothermal amplification. Nanoscale Res Lett. 8:485.
  • Prabhakaran MP, Venugopal JR, Ramakrishna S. 2009. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials. 30:4996–5003.
  • Radomski A, Jurasz P, Alonso-Escolano D, et al. 2005. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol. 146:882–893.
  • Ranganath SH, Fu Y, Arifin DY, Kee I, Zheng L, Lee HS, Chow PK, Wang CH. 2010. The use of submicron/nanoscale PLGA implants to deliver paclitaxel with enhanced pharmacokinetics and therapeutic efficacy in intracranial glioblastoma in mice. Biomaterials. 31:5199–5207.
  • Ranganath SH, Wang C-H. 2008. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials. 29:2996–3003.
  • Rao SS, Dejesus J, Sarkar A, Winter JO. Brain mimetic hydrogels for investigating migration of glioblastoma multiformes in 3D. In: Transactions of the 35th Annual Meeting of Society for Biomaterials. XXXIII; 2011. p. 671.
  • Rao SS, Nelson MT, Xue R, DeJesus JK, Viapiano MS, Lannutti JJ, Sarkar A, Winter JO. 2013. Mimicking white matter tract topography using core-shell electrospun nanofibers to examine migration of malignant brain tumors. Biomaterials. 34:5181–5190.
  • Rudzinski WE, Aminabhavi TM. 2010. “Chitosan as a carrier for targeted delivery of small interfering RNA”. International Journal of Pharm. 399:1–11.
  • Sasiadek W. 2014. Predicting radiotherapy-related clinical toxicities in cancer: a literature review. Clin J Oncol Nurs. 18:E37–E44.
  • Saravanabhavan SS, Dharmalingam S. 2013. Fabrication of polysulphone/hydroxyapatite nanofiber composite implant and evaluation of their in vitro bioactivity and biocompatibility towards the post-surgical therapy of gastric cancer. Chem Eng J. 234:380–388.
  • Sarkar A, Chiocca EA. Glioblastoma and malignant astrocytoma. In: Laws Ka, editor. Brain Tumors: An Encyclopedic Approach, 3rd ed. Edinburgh, New York, USA: Churchill Livingstone; 2011.
  • Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, et al. 2007. Guidance of glial cell migration and axonal growth on electrospun nanofibers of polyepsilon caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials. 28:3012–3025.
  • Shevtsov MA, et al. 2014. Tumor targeting using magnetic nanoparticle Hsp70 conjugate in a model of C6 glioma. Neuro-oncology 16:38–49.
  • Shvedova AA, Castranova V, Kisin ER, et al. 2003. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environm Health Part A. 66:1909–1926.
  • Sill TJ, von Recum HA. 2008. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 29:1989–2006.
  • Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ. 2007. Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev. 59:187–206.
  • Szentivanyi A, Chakradeo T, Zernetsch H, Glasmacher B. 2011. Electrospun cellular microenvironments: understanding controlled release and scaffold structure. Adv Drug Deliv Rev. 63:209–220.
  • Tabatabaei Mirakabad FS, Akbarzadeh A, Milani M, Zarghami N, Taheri-Anganeh M, Zeighamian V, Badrzadeh F, Rahmati-Yamchi M. 2016. A Comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artif Cells Nanomed Biotechnol. 44:423–430.
  • Taherkhani S, et al. 2014. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano. 8:5049–5060.
  • Thanou M, Duncan R. 2003. Polymer-protein and polymer-drug conjugates in cancer therapy. Curr Opinion Investigat Drugs. 4:701–709.
  • Tietze R, et al. 2013. Efficient drug-delivery using magnetic nanoparticles-biodistribution and therapeutic effects in tumour bearing rabbits. Nanomedicine. 9:961–971.
  • Tietze R, Zaloga J, Unterweger H, Lyer S, Friedrich RP, Janko C, Pöttler M, Dürr S, Alexiou C. 2015. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun. 468:463–470.
  • Tripisciano C, Kraemer K, Taylor A, Borowiak-Palen E. 2009. Single-wall carbon nanotubes based anticancer drug delivery system. Chem Phys Lett. 478:200–205.
  • Tseng YY, Kao YC, Liao JY, Chen WA, Liu SJ. 2013. Biodegradable drug-eluting poly[lactic-co-glycol acid] nanofibers for the sustainable delivery of vancomycin to brain tissue: in vitro and in vivo studies ACS Chem Neurosci. 4:1314–1321.
  • Valster A, Tran NL, Nakada M, Berens ME, Chan AY, Symons M. 2005. Cell migration and invasion assays. Methods. 37:208–215.
  • Wang C,Wang Z, Zhang X. 2012. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Acc Chem Res. 45:608–618.
  • Wang HB, Mullins ME, Cregg JM, Hurtado A, Oudega M, Trombley MT, et al. 2009. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J Neural Eng. 6:016001.
  • Wang J, Yang G, Guo X, Tang Z, Zhong Z, Zhou S. 2014. Redox-responsive polyanhydride micelles for cancer therapy. Biomaterials. 35:3080–3090.
  • Wen PY, Kesari S. 2008. Malignant gliomas in adults. N Engl J Med. 359:492–507.
  • Wolinsky JB, Colson YL, Grinstaff MW. 2012. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release. 159:14–26.
  • Wu W, Li R, Bian X, Zhu Z, Ding D, Li X, et al. 2009. Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano. 9:2740–2750.
  • Xiao D, et al. 2014. A dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery. Small. 10:591–598.
  • Yang G, et al. 2015. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano. 9:1161–1174.
  • Yang YL, Sun C, Wilhelm ME, Fox LJ, Zhu JL, Kaufman LJ. 2011. Influence of chondroitin sulfate and hyaluronic acid on structure, mechanical properties, and glioma invasion of collagen I gels. Biomaterials. 32:7932–7940.
  • Zamani M, Prabhakaran MP, Ramakrishna S. 2013. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomed. 8:2997.
  • Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X. 2003. Biodegradable electrospun fibers for drug delivery. J Control Release. 92:227–231.
  • Zeng J, Yang L, Liang Q, Zhang X, Guan H, Xu X, et al. 2005. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Control Release. 105:43–51.
  • Zhang B, Sun X, Mei H, Wang Y, Liao Z, Chen J, et al. 2013. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials. 34:9171–9182.
  • Zhang W, Zhang Z, Zhang Y. 2011. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 6:555.
  • Zhang Y, et al. 2014. Prevention of local liver cancer recurrence after surgery using multilayered cisplatin-loaded polylactide electrospun nanofibers. Chinese J Polym Sci. 32:1111–1118.
  • Zhang Z, et al. 2014. Magnetic resonance imaging-visible and pH-sensitive polymeric micelles for tumor targeted drug delivery. J Biomed Nanotechnol. 10:216–226.
  • Zheng F, Wang S, Wen S, Shen M, Shi X. 2013a. Amoxicillin-loaded electrospun nano-hydroxyapatite/poly (lactic-co-glycolic acid) composite nanofibers: Preparation, characterization and antibacterial activity. J Control Release. 1:e30–31.
  • Zheng F, Wang S, Wen S, Shen M, Zhu M, Shi X. 2013b. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly (lactic-co-glycolic acid) composite nanofibers. Biomaterials. 34:1402–1412.
  • Zong S, Wang X, Yang Y, Wu W, Li H, Ma Y, et al. 2015. The use of cisplatin-loaded mucoadhesive nanofibers for local chemotherapy of cervical cancers in mice. Eur J Pharm Biopharm. 93:127–135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.