15,385
Views
133
CrossRef citations to date
0
Altmetric
Reviews

Carbon quantum dots: recent progresses on synthesis, surface modification and applications

, , , , &
Pages 1331-1348 | Received 19 Jul 2017, Accepted 05 Sep 2017, Published online: 21 Sep 2017

References

  • Greiner NR, Phillips D, Johnson J, et al. Diamonds in detonation soot. Nature. 1988;333:440–442.
  • Liu Z, Zhou X, Qian Y. Synthetic methodologies for carbon nanomaterials. Adv Mater Weinheim. 2010;22:1963–1966.
  • Rao CN, Sood AK, Subrahmanyam KS, et al. Graphene: the new two‐dimensional nanomaterial. Angew Chem Int Ed. 2009;48:7752–7777.
  • Yang W, Ratinac KR, Ringer SP, et al. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed. 2010;49:2114–2138.
  • Qu K, Wang J, Ren J, Qu X. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chemistry. 2013;19:7243–7249.
  • Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126:12736–12737.
  • Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49:6726–6744.
  • Li H, Kang Z, Liu Y, et al. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22:24230–24253.
  • Zhang H, Huang H, Ming H, et al. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J Mater Chem. 2012;22:10501–10506.
  • Ray S, Saha A, Jana NR, et al. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C. 2009;113:18546–18551.
  • Li H, He X, Liu Y, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon. 2011;49:605–609.
  • Bourlinos AB, Stassinopoulos A, Anglos D, et al. Surface functionalized carbogenic quantum dots. Small. 2008;4:455–458.
  • da Silva JCE, Gonçalves HM. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal Chem. 2011;30:1327–1336.
  • Cao L, Wang X, Meziani MJ, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc. 2007;129:11318–11319.
  • Yu H, Shi R, Zhao Y, et al. Smart utilization of carbon dots in semiconductor photocatalysis. Adv Mater. 2016;28:9454–9477.
  • Wang Q, Huang X, Long Y, et al. Hollow luminescent carbon dots for drug delivery. Carbon. 2013;59:192–199.
  • Lin X, Yang Y, Nian L, et al. Interfacial modification layers based on carbon dots for efficient inverted polymer solar cells exceeding 10% power conversion efficiency. Nano Energy. 2016;26:216–223.
  • Lu S, Cong R, Zhu S, et al. pH-dependent synthesis of novel structure-controllable polymer-carbon nanodots with high acidophilic luminescence and super carbon dots assembly for white light-emitting diodes. ACS Appl Mater Interfaces. 2016;8:4062–4068.
  • Wang D, Wang Z, Zhan Q, et al. Facile and scalable preparation of fluorescent carbon dots for multifunctional applications. Engineering. 2017;3:402–408.
  • Bao L, Liu C, Zhang ZL, et al. Photoluminescence‐tunable carbon nanodots: surface‐state energy‐gap tuning. Adv Mater. 2015;27:1663–1667.
  • Shen L, Zhang L, Chen M, et al. The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging. Carbon. 2013;55:343–349.
  • Liu R, Wu D, Liu S, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem. 2009;121:4668–4671.
  • Liu Y, Xiao N, Gong N, et al. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon. 2014;68:258–264.
  • Castro HP, Souza VS, Scholten JD, et al. Synthesis and characterisation of fluorescent carbon nanodots produced in ionic liquids by laser ablation. Chem Eur J. 2016;22:138–143.
  • Hu C, Yu C, Li M, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II) detection. Small. 2014;10:4926–4933.
  • Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc. 2007;129:744–745.
  • Zhao Z, Xie Y. Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid. J Power Sources. 2017;337:54–64.
  • Zheng L, Chi Y, Dong Y, et al. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc. 2009;131:4564–4565.
  • Lu J, Yang J-x, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano. 2009;3:2367–2375.
  • Li H, He X, Kang Z, et al. Water‐soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed. 2010;49:4430–4434.
  • Canevari TC, Nakamura M, Cincotto FH, et al. High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochim Acta. 2016;209:464–470.
  • Hou Y, Lu Q, Deng J, et al. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal Chim Acta. 2015;866:69–74.
  • Dong Y, Zhou N, Lin X, et al. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem Mater. 2010;22:5895–5899.
  • Qiao Z-A, Wang Y, Gao Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun. 2010;46:8812–8814.
  • Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater. 2009;21:5563–5565.
  • Bourlinos AB, Stassinopoulos A, Anglos D, et al. Photoluminescent carbogenic dots. Chem Mater. 2008;20:4539–4541.
  • Zong J, Zhu Y, Yang X, et al. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chem Commun. 2011;47:764–766.
  • Edison TNJI, Atchudan R, Sethuraman MG, et al. Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications. J Photochem Photobiol B: Biol. 2016;161:154–161.
  • Wang L, Bi Y, Hou J, et al. Facile, green and clean one-step synthesis of carbon dots from wool: application as a sensor for glyphosate detection based on the inner filter effect. Talanta. 2016;160:268–275.
  • Yang X, Yang X, Li Z, et al. Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells. J Colloid Interface Sci. 2015;456:1–6.
  • Tang L, Ji R, Cao X, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6:5102–5110.
  • Yang S-T, Cao L, Luo PG, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131:11308–11309.
  • Wang X, Cao L, Lu F, et al. Photoinduced electron transfers with carbon dots. Chem Commun. 2009;(25):3774–3776.
  • Gonçalves H, da Silva JCE. Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid. J Fluoresc. 2010;20:1023–1028.
  • Li X, Shimizu H, Pyatenko Y, et al. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun. 2010;47:932–934.
  • Hu S-L, Niu K-Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem. 2009;19:484–488.
  • Guo X, Wang C-F, Yu Z-Y, et al. Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem Commun. 2012;48:2692–2694.
  • Tang Qi CK, Wooley K, Matyjaszewski LK, et al. Well‐defined carbon nanoparticles prepared from water‐soluble shell cross‐linked micelles that contain polyacrylonitrile cores. Angew Chem Int Ed. 2004;43:2783–2787.
  • Wang Y, Dong L, Xiong R, et al. Practical access to bandgap-like N-doped carbon dots with dual emission unzipped from PAN@ PMMA core–shell nanoparticles. J Mater Chem C. 2013;1:7731–7735.
  • Mackay ME, Tuteja A, Duxbury PM, et al. General strategies for nanoparticle dispersion. Science. 2006;311:1740–1743.
  • Zhu B, Sun S, Wang Y, et al. Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. J Mater Chem C. 2013;1:580–586.
  • Xiao Y, Hu A. Bergman cyclization in polymer chemistry and material science. Macromol Rapid Commun. 2011;32:1688–1698.
  • Zhu B, Ma J, Li Z, et al. Formation of polymeric nanoparticles via Bergman cyclization mediated intramolecular chain collapse. J Mater Chem. 2011;21:2679–2683.
  • Li H, Zhang Y, Wang L, et al. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem Commun. 2011;47:961–963.
  • Mao Y, Bao Y, Han D, et al. Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosens Bioelectron. 2012;38:55–60.
  • Wang F, Xie Z, Zhang H, et al. Highly luminescent organosilane‐functionalized carbon dots. Adv Funct Mater. 2011;21:1027–1031.
  • Zhao HX, Liu LQ, De Liu Z, et al. Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. Chem Commun. 2011;47:2604–2606.
  • Dong Y, Wang R, Li H, et al. Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon. 2012;50:2810–2815.
  • Yin J-Y, Liu H-J, Jiang S, et al. Hyperbranched polymer functionalized carbon dots with multistimuli-responsive property. ACS Macro Lett. 2013;2:1033–1037.
  • Liao B, Long P, He B, et al. Reversible fluorescence modulation of spiropyran-functionalized carbon nanoparticles. J Mater Chem C. 2013;1:3716–3721.
  • Zhao Q-L, Zhang Z-L, Huang B-H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun. 2008;(41):5116–5118.
  • Wilson WL, Szajowski P, Brus L. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science. 1993;262:1242.
  • Sun Y-P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128:7756–7757.
  • Tian L, Ghosh D, Chen W, et al. Nanosized carbon particles from natural gas soot. Chem Mater. 2009;21:2803–2809.
  • Li H, Ming H, Liu Y, et al. Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New J Chem. 2011;35:2666–2670.
  • Qi H, Peng Y, Gao Q, et al. Applications of nanomaterials in electrogenerated chemiluminescence biosensors. Sensors. 2009;9:674–695.
  • Ding Z, Quinn BM, Haram SK, et al. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science. 2002;296:1293–1297.
  • Wen X, Yu P, Toh Y-R, et al. On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem Commun (Camb). 2014;50:4703–4706.
  • Wang Y, Bao L, Liu Z, et al. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem. 2011;83:8130–8137.
  • Dong Y, Wang R, Li G, et al. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem. 2012;84:6220–6224.
  • WangAnilkumar Y, Cao PL, Liu J-H, et al. Carbon dots of different composition and surface functionalization: cytotoxicity issues relevant to fluorescence cell imaging. Exp Biol Med. 2011;236:1231–1238.
  • Yang S-T, Wang X, Wang H, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C Nanomater Interfaces. 2009;113:18110–18114.
  • Wang X, Cao L, Yang ST, et al. Bandgap‐like strong fluorescence in functionalized carbon nanoparticles. Angew Chem. 2010;122:5438–5442.
  • Bhunia SK, Saha A, Maity AR, et al. Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep. 2013;3:1473.
  • Bourlinos AB, Bakandritsos A, Kouloumpis A, et al. Gd (III)-doped carbon dots as a dual fluorescent-MRI probe. J Mater Chem. 2012;22:23327–23330.
  • Tao H, Yang K, Ma Z, et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small. 2012;8:281–290.
  • Lee D-E, Koo H, Sun I-C, et al. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev. 2012;41:2656–2672.
  • Srivastava S, Awasthi R, Tripathi D, et al. Magnetic‐nanoparticle‐doped carbogenic nanocomposite: an effective magnetic resonance/fluorescence multimodal imaging probe. Small. 2012;8:1099–1109.
  • Yang Y, Cui J, Zheng M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun. 2012;48:380–382.
  • Turner M, Golovko VB, Vaughan OP, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature. 2008;454:981–983.
  • Li J, Ma W, Chen C, et al. Photodegradation of dye pollutants on one-dimensional TiO2 nanoparticles under UV and visible irradiation. J Mol Catal A: Chem. 2007;261:131–138.
  • ZhangMing H, Lian H, Huang S, et al. Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Trans. 2011;40:10822–10825.
  • Du F, Min Y, Zeng F, et al. A targeted and FRET‐based ratiometric fluorescent nanoprobe for imaging mitochondrial hydrogen peroxide in living cells. Small. 2014;10:964–972.
  • Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1:203–212.
  • Salehi R, Arsalani N, Davaran S, et al. Synthesis and characterization of thermosensitive and pH‐sensitive poly (N‐isopropylacrylamide‐acrylamide‐vinylpyrrolidone) for use in controlled release of naltrexone. J Biomed Mater Res. 2009;89:919–928.
  • Zeighamian V, Darabi M, Akbarzadeh A, et al. PNIPAAm-MAA nanoparticles as delivery vehicles for curcumin against MCF-7 breast cancer cells. Artif Cells Nanomed Biotechnol. 2016;44:735–742.
  • Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, et al. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol. Forthcoming. [cited 2017 Jul 12]. doi: 10.1080/21691401.2017.1349778
  • Rasouli S, Davaran S, Rasouli F, et al. Positively charged functionalized silica nanoparticles as nontoxic carriers for triggered anticancer drug release. Design Monom Polym. 2014;17:227–237.
  • Alidadiyani N, Salehi R, Ghaderi S, et al. Synergistic antiproliferative effects of methotrexate-loaded smart silica nanocomposites in MDA-MB-231 breast cancer cells. Artif Cells Nanomed Biotechnol. 2016;44:603–609.
  • Salehi R, Davaran S, Hamishekar H. Functionalized cationic silica nanoparticles as biocompatible carriers by stimuli-responsive nanovalves as double anticancer drug delivery systems. 1st Tabriz International Life Science Conference and 12th Iran Biophysical Chemistry Conference; 2013.
  • Shabestari Khiabani S, Farshbaf M, Akbarzadeh A, et al. Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif Cells Nanomed Biotechnol. 2017;45:6–17.
  • Panahi Y, Mohammadhosseini M, Nejati-Koshki K, et al. Preparation, surface properties, and therapeutic applications of gold nanoparticles in biomedicine. Drug Res. 2017;67:77–87.
  • Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res. 2010;12:2313–2333.
  • Dulkeith E, Morteani A, Niedereichholz T, et al. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett. 2002;89:203002.
  • Kumar V, Toffoli G, Rizzolio F. Fluorescent carbon nanoparticles in medicine for cancer therapy. ACS Med Chem Lett. 2013;4:1012–1013.
  • Alcindor T, Beauger N. Oxaliplatin: a review in the era of molecularly targeted therapy. Curr Oncol. 2011;18:18–25.
  • Zheng M, Liu S, Li J, et al. Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv Mater. 2014;26:3554–3560.
  • Thakur M, Pandey S, Mewada A, et al. Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. J Drug Deliv. 2014;2014:282193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.