7,993
Views
52
CrossRef citations to date
0
Altmetric
Review

Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine

, , , , , , & show all
Pages 1314-1330 | Received 21 Jun 2017, Accepted 04 Oct 2017, Published online: 18 Oct 2017

References

  • Faraji M, Yamini Y, Rezaee M. Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc. 2010;7:1–37.
  • Mehta RV. Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology. Mater Sci Eng C. 2017;79:901–916.
  • Abdalla AM, Ghosh S, Puri IK. Decorating carbon nanotubes with co-precipitated magnetite nanocrystals. Diam Relat Mater. 2016;66:90–97.
  • Arruebo M, Fernández-Pacheco R, Ibarra MR, et al. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2:22–32.
  • Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nature Nanotech. 2009;4:627–633.
  • Liu Z, Chen K, Davis C, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008;68:6652–6660.
  • Kaur S, Mehra NK, Jain K, et al. Development and evaluation of targeting ligand-anchored CNTs as prospective targeted drug delivery system. Artif Cells Nanomed Biotechnol. 2017;45:242–250.
  • Hong G, Diao S, Antaris AL, et al. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev. 2015;115:10816–10906.
  • Sharma S, Mehra NK, Jain K, et al. Effect of functionalization on drug delivery potential of carbon nanotubes. Artif Cells Nanomed Biotechnol. 2016;44:1851–1860.
  • Lee N, Yoo D, Ling D, et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015;115:10637–10689.
  • Mody VV, Cox A, Shah S, et al. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci. 2014;4:385–392.
  • Yang D, Yang F, Hu J, et al. Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem Commun. 2009;29:4447–4449.
  • Hassanzadeh P, Atyabi F, Dinarvand R. Application of carbon nanotubes for controlled release of growth factors or endocannabinoids: a breakthrough in biomedicine. Biomed Rev. 2017;27:41–50.
  • Cai D, Mataraza JM, Qin Z-H, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Meth. 2005;2:449.
  • Gao C, Li W, Morimoto H, et al. Magnetic carbon nanotubes: synthesis by electrostatic self-assembly approach and application in biomanipulations. J Phys Chem B. 2006;110:7213–7220.
  • Weissker U, Hampel S, Leonhardt A, et al. Carbon nanotubes filled with ferromagnetic materials. Materials (Basel). 2010;3:4387–4427.
  • Ajayan P, Ebbesen T. Nanometre-size tubes of carbon. Rep Prog Phys. 1997;60:1025.
  • Meunier V, Souza Filho AG, Barros EB, et al. Physical properties of low-dimensional s p 2-based carbon nanostructures. Rev Mod Phys. 2016;88:025005.
  • Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603–605.
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56.
  • Grobert N. Carbon nanotubes–becoming clean. Materials Today. 2007;10:28–35.
  • Dresselhaus M, Dresselhaus G, Saito R. Physics of carbon nanotubes. Carbon. 1995;33:883–891.
  • Rastogi V, Yadav P, Bhattacharya SS, et al. Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J Drug Deliv. 2014;2014:1.
  • Moore KE, Cretu O, Mitome M, et al. In situ cyclic telescoping of multi-walled carbon nanotubes in a transmission electron microscope. Carbon. 2016;107:225–232.
  • Park J, An K, Hwang Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004;3:891.
  • Colombo M, Carregal-Romero S, Casula MF, et al. Biological applications of magnetic nanoparticles. Chem Soc Rev. 2012;41:4306–4334.
  • Liu J, Qiao SZ, Hu QH, et al. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small. 2011;7:425–443.
  • Akbarzadeh A, Samiei M, Joo SW, et al. Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line. J Nanobiotechnol. 2012;10:46.
  • Reddy LH, Arias JL, Nicolas J, et al. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 2012;112:5818–5878.
  • Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011;63:789–808.
  • Yadollahpour A, Rashidi S. Magnetic nanoparticles: a review of chemical and physical characteristics important in medical applications. Orient J Chem 2015;31(Special Issue 1):25–30.
  • Kalia S, Kango S, Kumar A, et al. Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci. 2014;292:2025–2052.
  • Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7:144.
  • Korneva G, Ye H, Gogotsi Y, et al. Carbon nanotubes loaded with magnetic particles. Nano Lett. 2005;5:879–884.
  • Xiang R, Luo G, Qian W, et al. Encapsulation, compensation, and substitution of catalyst particles during continuous growth of carbon nanotubes. Adv Mater. 2007;19:2360–2363.
  • Lee J, Jin S, Hwang Y, et al. Simple synthesis of mesoporous carbon with magnetic nanoparticles embedded in carbon rods. Carbon. 2005;43:2536–2543.
  • Liu Q, Chen Z-G, Liu B, et al. Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures. Carbon. 2008;46:1892–1902.
  • Flahaut E, Agnoli F, Sloan J, et al. CCVD synthesis and characterization of cobalt-encapsulated nanoparticles. Chem Mater. 2002;14:2553–2558.
  • Wang ZH, Choi CJ, Kim BK, et al. Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor-condensation process. Carbon. 2003;41:1751–1758.
  • Caiulo N, Yu C H, Yu K M K, et al. Carbon‐Decorated FePt Nanoparticles. Adv Funct Mater. 2007;17:1392–1396.,
  • Xuan S, Hao L, Jiang W, et al. A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites. Nanotechnology. 2007;18:035602.
  • MA C, LUO B, SONG H-h, et al. Preparation of carbon-encapsulated metal magnetic nanoparticles by an instant pyrolysis method. New Carbon Mater. 2010;25:199–204.
  • Paraskevas I, Caps V, Tsang SC. Syntheses of carbon encapsulated magnetic FeNi nanoparticle via decompositions of methane and benzene. Carbon. 2006;44:820–823.
  • Wang Z, Liu R, Zhao F, et al. Facile synthesis of porous Fe7Co3/carbon nanocomposites and their applications as magnetically separable adsorber and catalyst support. Langmuir. 2010;26:10135–10140.
  • Aberoumandi SM, Khalilov R, Davaran S, et al. An update on clinical applications of nanoparticles in brain and retinal disease (CNS): a review. Adv Biol Earth Sci. 2017;2:125–142.
  • Luo N, Li X, Sun Y, et al. Synthesis and characteristic of carbon-encapsulated ferronickel nanoparticles by detonation decomposition of doping with nitrate explosive precursors. J Alloys Compound. 2010;505:352–356.
  • Luo N, Li X, Wang X, et al. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method. Carbon. 2010;48:3858–3863.
  • Qiu J, Li Y, Wang Y, et al. Preparation of carbon-coated magnetic iron nanoparticles from composite rods made from coal and iron powders. Fuel Process Technol. 2004;86:267–274.
  • Sun X, Gutierrez A, Yacaman MJ, et al. Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni. Mater Sci Eng. 2000;286:157–160.
  • Zhu Y, Zhang JC, Zhai J, et al. Multifunctional carbon nanofibers with conductive, magnetic and superhydrophobic properties. Chem Eur J F Chem Phys. 2006;7:336–341.
  • Chen I-H, Wang C-C, Chen C-Y. Fabrication and characterization of magnetic cobalt ferrite/polyacrylonitrile and cobalt ferrite/carbon nanofibers by electrospinning. Carbon. 2010;48:604–611.
  • Pol VG, Motiei M, Gedanken A, et al. Sonochemical deposition of air-stable iron nanoparticles on monodispersed carbon spherules. Chem Mater. 2003;15:1378–1384.
  • Hasanzadeh A, Khalilov R, Abasi E, et al. Development of doxorubicin – adsorbed magnetic nanoparticles modified with biocompatible copolymers for targeted drug delivery in lung cancer. Adv Biol Earth Sci. 2017;2:5–21.
  • Wang L, He F, Wan Y. Facile synthesis and electromagnetic wave absorption properties of magnetic carbon fiber coated with Fe–Co alloy by electroplating. J Alloys Compound. 2011;509:4726–4730.
  • Park KY, et al. Synthesis and characterization of magnetically active carbon nanofiber/iron oxide composites with hierarchical pore structures. Nanotechnology. 2008;19:455612–455618.
  • Park JB, Jeong SH, Jeong MS, et al. Synthesis of carbon-encapsulated magnetic nanoparticles by pulsed laser irradiation of solution. Carbon. 2008;46:1369–1377.
  • Li J, Zhu Y, Wang X, et al. Joint effect of the tube sizes and Fe-filling process on microwave dielectric properties of carbon nanotubes. Carbon. 2017;119:386–393.
  • Boi FS, Hu Y, Wang S, et al. Controlling high coercivities in cm-scale buckypapers with unusual stacking of vertically aligned and randomly entangled Fe-filled carbon nanotubes. RSC Adv. 2016;6:69226–69232.
  • Khalilov RI, Nasibova AN, Aliyeva IM, Gasimov UM, Zeynalova NM. Biosynthesis and biogeneration of metallic iron oxide nanoparticles in pomegranate. News Baku Univ. 2016;1:84–93.
  • Jia X, Li W, Xu X, et al. Numerical characterization of magnetically aligned multiwalled carbon nanotube–Fe3O4 nanoparticle complex. ACS Appl Mater Interfaces. 2015;7:3170–3179.
  • Serrano‐Ruiz D, et al. Hybrid microparticles for drug delivery and magnetic resonance imaging. J Biomed Mater Res B Appl Biomater. 2013;101:498–505.
  • Modugno G, Ménard-Moyon C, Prato M, et al. Carbon nanomaterials combined with metal nanoparticles for theranostic applications. Br J Pharmacol. 2015;172:975–991.
  • Holmberg K, Mathews A. Coatings tribology: a concept, critical aspects and future directions. Thin Solid Films. 1994;253:173–178.
  • Khalilov RI, Nasibova AN. Impact of radioactive pollution on endogenous paramagnetic centers in the leaves and seeds of the plant. News Baku Univ. 2013;3:65–71.
  • Sengupta J, Jana A, Pradeep Singh ND, et al. Site-selective synthesis of in situ Ni-filled multi-walled carbon nanotubes using Ni (salen) as a catalyst source. Nanotechnology. 2010;21:415605.
  • Tian G-L, Huang J-Q, Li J, et al. Enhanced growth of carbon nanotube bundles in a magnetically assisted fluidized bed chemical vapor deposition. Carbon. 2016;108:404–411.
  • Zhang L, Ni Q-Q, Natsuki T, et al. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties. Appl Surface Sci. 2009;255:8676–8681.
  • Zhou H, Zhang C, Li H, et al. Decoration of Fe3O4 nanoparticles on the surface of poly (acrylic acid) functionalized multi‐walled carbon nanotubes by covalent bonding. J Polym Sci A Polym Chem. 2010;48:4697–4703.
  • Alizadeh E, Akbarzadeh A, Zarghami N, et al. Up-regulation of liver enriched transcription factors (HNF4a and HNF6) and liver specific microRNA (miR-122) by inhibition of Let-7b in mesenchymal stem cells. Chem Biol Drug Design. 2014;85:600–608.
  • Lee P-L, Chiu Y-K, Sun Y-C, et al. Synthesis of a hybrid material consisting of magnetic iron-oxide nanoparticles and carbon nanotubes as a gas adsorbent. Carbon. 2010;48:1397–1404.
  • Shen J, Qin C, Hu Y, et al. Facile synthesis of magnetic nanoparticle–coated single‐walled carbon nanotubes and its functional modification in epoxy resin. Polym Compos. 2010;31:2035–2041.
  • Khalilov RI, Nasibova AN, Serezhenkov VA, et al. Accumulation of magnetic nanoparticles in plants grown on soils of Apsheron peninsula. Biophysics. 2011;56:316–322.
  • JinaLee K. Fabrication of polyimide nanotubes and carbon nanotubes containing magnetic iron oxide in confinement. Chem Commun. 2005;30:3847–3849.
  • Brack N, Kappen P, Spencer MJS, et al. Manipulation of carbon nanotube magnetism with metal-rich iron nanoparticles. J Mater Chem C. 2016;4:1215–1227.
  • Bahr JL, Mickelson ET, Bronikowski MJ, et al. Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun. 2001;2:193–194.
  • Abbasi E, Milani M, Aval SF, et al. Silver nanoparticles: synthesis, properties, bio-applications and limitations. Crit Rev Microbiol. 2016;42:173–180.
  • Bahr JL, Tour JM. Covalent chemistry of single-wall carbon nanotubes. J Mater Chem. 2002;12:1952–1958.
  • Hirsch A. Functionalization of single‐walled carbon nanotubes. Angew Chem Int Ed. 2002;41:1853–1859.
  • Sinnott SB. Chemical functionalization of carbon nanotubes. J Nanosci Nanotechnol. 2002;2:113–123.
  • Eatemadi A, Darabi M, Afraidooni L, Zarghami N, Daraee H, Eskandari L, Mellatyar H, Akbarzadeh A. Comparison, synthesis and evaluation of anticancer drug-loaded polymeric nanoparticles on breast cancer cell lines. Artif Cells Nanomed Biotechnol. 2016;44:1008–1017.
  • Spinato C, Perez Ruiz de Garibay A, Kierkowicz M, et al. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy. Nanoscale. 2016;8:12626–12638.
  • Xie X, Xu AM, Leal-Ortiz S, et al. Nanostraw–electroporation system for highly efficient intracellular delivery and transfection. ACS Nano. 2013;7:4351–4358.
  • Ma D, Zhang L-M, Xie X, et al. Tunable supramolecular hydrogel for in situ encapsulation and sustained release of bioactive lysozyme. J Colloid Interface Sci. 2011;359:399–406.
  • Zhang M, Yudasaka M. Potential application of nanocarbons as a drug delivery system. Carbon. 2014;69:642.
  • Karousis N, Suarez-Martinez I, Ewels CP, et al. Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev. 2016;116:4850–4883.
  • Yao M-Z, et al. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin. Int J Nanomed. 2016;11:6181.
  • Xu H, Liu M, Lan M, et al. Mussel-inspired PEGylated carbon nanotubes: biocompatibility evaluation and drug delivery applications. Toxicol Res. 2016;5:1371–1379.
  • Nejati-Koshki K, Mesgari M, Ebrahimi E, et al. Synthesis and invitro study of cisplatin-loaded Fe3O4 nanoparticles modified with PLGA-PEG6000 copolymers in treatment of lung cancer. J Microencapsulation. 2014;8:1–9.
  • Yang F, Jin C, Yang D, et al. Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur J Cancer. 2011;47:1873–1882.
  • Gul-Uludag H, Lu W, Xu P, et al. Efficient and rapid uptake of magnetic carbon nanotubes into human monocytic cells: implications for cell-based cancer gene therapy. Biotechnol Lett. 2012;34:989–993.
  • Xiao D, Dramou P, He H, et al. Magnetic carbon nanotubes: synthesis by a simple solvothermal process and application in magnetic targeted drug delivery system. J Nanopart Res. 2012;14:984.
  • Lu Y-J, Wei K-C, Ma C-CM, et al. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf B Biointerfaces. 2012;89:1–9.
  • Al-Faraj A, Shaik AP, Shaik AS. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int J Nanomed. 2015;10:157.
  • Afroze JD, Abden MJ, Alam MS, et al. Development of functionalized carbon nanotube reinforced hydroxyapatite magnetic nanocomposites. Mater Lett. 2016;169:24–27.
  • Zonghua W, Chengfeng Z, Jianfei X, et al. Fabrication and characterization of CdSe conjugated magnetic carbon nanotubes: a promise of targeted and visualized drug delivery. Comptes Rendus Chimie. 2013;16:296–301.
  • Alizadeh E, Zarghami N, Eslaminejad MReza. B, et al. The effect of dimethyl sulfoxide on hepatic differentiation of mesenchymal stem cells. Artif Cells Nanomed Biotechnol. 2016;44:157–164.
  • Kehayias C, Nicholas K, Jeremy Y, et al. Detection of the odor signature of ovarian cancer using DNA-decorated carbon nanotube field effect transistor arrays. In APS Meeting Abstracts. 2016.
  • Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale. 2011;3:1252–1257.
  • Zhou X, Laroche F, Lamers GE, et al. Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res. 2012;5:703–709.
  • Sajid MI, Jamshaid U, Jamshaid T, et al. Carbon nanotubes from synthesis to in vivo biomedical applications. Int J Pharmaceut. 2016;501:278–299.
  • Zeinali Sehrig F, et al. Magnetic nanoparticles as potential candidates for biomedical and biological applications. Artif Cells Nanomed Biotechnol. 2016;44:918–927.
  • Abbasi E, Akbarzadeh A, Kouhi M, et al. Graphene: synthesis, bio-applications, and properties. Artif Cells Nanomed Biotechnol. 2016;44:150–156.
  • Wang L, Bai J, Li Y, et al. Multifunctional nanoparticles displaying magnetization and near‐IR absorption. Angew Chem Int Ed. 2008;47:2439–2442.
  • Siddiqi KS, Rahman A, Tajuddin and Husen A. Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett. 2016;11:498–510.
  • Bonvin D, et al. Folic acid on iron oxide nanoparticles: platform with high potential for simultaneous targeting, MRI detection and hyperthermia treatment of lymph node metastases of prostate cancer. Dalton Transactions. 2017;46:12692–12704.
  • Bermúdez-García JM, Yáñez-Vilar S, García-Fernández A, et al. A simple in situ synthesis of magnetic M@ CNTs by thermolysis of the hybrid perovskite [TPrA][M (dca) 3]. New J Chem. 2017;41:3124–3133.
  • Klingeler R, Hampel S, Büchner B. Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. Int J Hyperthermia. 2008;24:496–505.
  • Allard WJ. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clinical Cancer Res. 2004;10:6897–6904.
  • Dharmasiri U, Witek MA, Adams AA, et al. Microsystems for the capture of low-abundance cells. Annu Rev Anal Chem (Palo Alto Calif). 2010;3:409–431.
  • Iranmanesh M, Hulliger J. Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry. Chemical Soc Rev. 2017;46:5925–5934.
  • Gul H, Lu W, Xu P, et al. Magnetic carbon nanotube labelling for haematopoietic stem/progenitor cell tracking. Nanotechnology. 2010;21:155101
  • Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 1993;9:541–573.
  • Pensabene V, Vittorio O, Raffa V, et al. Neuroblastoma cells displacement by magnetic carbon nanotubes. IEEE Transon Nanobiosci. 2008;7:105–110.
  • Vittorio O, Raffa V, Riggio C, et al. PC12 Interaction with magnetic nanotubes: effects on viability, cell differentiation and cell translocation induced by a magnetic field. CNANO. 2011;7:337–344.
  • Shen S, Ren J, Zhu X, et al. Monodisperse magnetites anchored onto carbon nanotubes: a platform for cell imaging, magnetic manipulation and enhanced photothermal treatment of tumors. J Mater Chem B. 2013;1:1939–1946.
  • Yaron PN, Holt BD, Short PA, et al. Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. J Nanobiotechnol. 2011;9:45.
  • Hernandez-Rivera M, Wilson LJ. Gadonanotube materials as new intracellular MRI contrast agents for stem cell labeling. Stem Cell Translational Invest. 2016;3:e1390.
  • Sharifi S, Seyednejad H, Laurent S, et al. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol Imag. 2015;10:329–355.
  • Richard C, Doan B-T, Beloeil J-C, et al. Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: toward powerful T1 and T2 MRI contrast agents. Nano Lett. 2008;8:232–236.
  • Chen B, Zhang H, Zhai C, et al. Carbon nanotube-based magnetic-fluorescent nanohybrids as highly efficient contrast agents for multimodal cellular imaging. J Mater Chem. 2010;20:9895–9902.
  • Wu H, Liu G, Zhuang Y, et al. The behavior after intravenous injection in mice of multiwalled carbon nanotube/Fe 3 O 4 hybrid MRI contrast agents. Biomaterials. 2011;32:4867–4876.
  • Maciejewska BM, Warowicka A, Baranowska-Korczyc A, et al. Magnetic and hydrophilic MWCNT/Fe composites as potential T 2-weighted MRI contrast agents. Carbon. 2015;94:1012–1020.
  • Wang H, Wang Z, Ye M, et al. Optically encoded nanoprobes using single walled carbon nanotube as the building scaffold for magnetic field guided cell imaging. Talanta. 2014;119:144–150.
  • Liu Y, Hughes TC, Muir BW, et al. Water-Dispersible magnetic carbon nanotubes as T2-weighted MRI contrast agents . Biomaterials. 2014;35:378–386.
  • Moazzen M, Ahmadkhaniha R, Gorji ME, et al. Magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in grilled meat samples. Talanta. 2013;115:957–965.
  • Homayoon F, Faghihian H, Torki F. Application of a novel magnetic carbon nanotube adsorbent for removal of mercury from aqueous solutions. Environ Sci Pollut Res. 2017;24:11764–11778.
  • Zhang W, Zhang X, Zhang L, et al. Fabrication of carbon nanotube-nickel nanoparticle hybrid paste electrodes for electrochemical sensing of carbohydrates. Sensors Actuators B Chem. 2014;192:459–466.
  • Labulo AH, Martincigh BS, Omondi B, et al. Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon– carbon cross-coupling reactions. J Mater Sci. 2017;52:9225–9248.
  • Dwivedi N, et al. Enhanced characteristics of pulsed DC sputtered ultrathin (<2nm) amorphous carbon overcoats on hard disk magnetic media. Diam Relat Mater. 2015;51:14–23.
  • Wu N, Lv H, Liu J, et al. Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Phys Chem Chem Phys. 2016;18:31542–31550.
  • Gong J-L, Wang B, Zeng G-M, et al. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater. 2009;164:1517–1522.
  • Chen C, Hu J, Shao D, et al. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni (II) and Sr (II). J Hazard Mater. 2009;164:923–928.
  • Qu S, Wang J, Kong J, et al. Magnetic loading of carbon nanotube/nano-Fe(3)O(4) composite for electrochemical sensing. Talanta. 2007;71:1096–1102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.