16,790
Views
192
CrossRef citations to date
0
Altmetric
Review

Role of gold and silver nanoparticles in cancer nano-medicine

, , , , &
Pages 1210-1220 | Received 31 Oct 2017, Accepted 04 Mar 2018, Published online: 13 Mar 2018

References

  • Horikoshi S, Serpone N. Introduction to nanoparticles. Microwaves in nanoparticle synthesis: fundamentals and Applications. Hoboken (NJ): John Wiley & Sons; 2013. p. 1–24.
  • Faraday M. The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond. 1857;147:145–181.
  • Edwards PP, Thomas JM. Gold in a metallic divided state—from faraday to present‐day nanoscience. Angew Chem Int Ed. 2007;46:5480–5486.
  • Feynman RP. There's plenty of room at the bottom. Miniaturization. 1959;282–296.
  • Kreuter J. Nanoparticles-a historical perspective. Int J Pharm. 2007;331:1–10.
  • Singh M, Manikandan S, Kumaraguru A. Nanoparticles: a new technology with wide applications. Res J Nanosci Nanotechnol. 2011;1:1–11.
  • Johnston RL, Wilcoxon JP. Metal nanoparticles and nanoalloys. Amsterdam (Netherlands): Elsevier; 2012.
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3:133.
  • Gaumet M, Vargas A, Gurny R, et al. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69:1–9.
  • Heiligtag FJ, Niederberger M. The fascinating world of nanoparticle research. Mater Today. 2013;16:262–271.
  • Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Natural polymer drug delivery systems. Berlin (Germany): Springer; 2016. p. 33–93.
  • Luo X, Morrin A, Killard AJ, et al. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis. 2006;18:319–326.
  • Sadegh H, Ali GA, Gupta VK, et al. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem. 2017;7:1–14.
  • Chauhan V, Singh V, Tiwari A. Applications of nanotechnology in forensic investigation. Int J Life Sci Scienti Res. 2017;3:1047–1051.
  • Poulose S, Panda T. Synthesis of silver nanoparticles for possible printing applications. Adv Sci Engng Med. 2016;8:954–959.
  • Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2:3.
  • Pacioni NL, Borsarelli CD, Rey V, et al. Synthetic routes for the preparation of silver nanoparticles. Silver nanoparticle applications. Berlin (Germany): Springer; 2015. p. 13–46.
  • El-Nour KMA, Eftaiha AA, Al-Warthan A, et al. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3:135–140.
  • Singh Y, Javier JR, Ehrman SH, et al. Approaches to increasing yield in evaporation/condensation nanoparticle generation. J Aerosol Sci. 2002;33:1309–1325.
  • Panda S, Pratsinis S. Modeling the synthesis of aluminum particles by evaporation-condensation in an aerosol flow reactor. Nanostruct Mater. 1995;5:755–767.
  • Jung JH, Oh HC, Noh HS, et al. Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aerosol Sci. 2006;37:1662–1670.
  • Yang G. Laser ablation in liquids: principles and applications in the preparation of nanomaterials. Boca Raton (FL): CRC Press; 2012.
  • Chen Y-H, Yeh C-S. Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles. Colloids Surf A. 2002;197:133–139.
  • Sylvestre J-P, Poulin S, Kabashin AV, et al. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B. 2004;108:16864–16869.
  • Herizchi R, Abbasi E, Milani M, et al. Current methods for synthesis of gold nanoparticles. Artif Cells Blood Substit Biotechnol. 2016;44:596–602.
  • Babu Kalidindi S, Sanyal U, Jagirdar BR. Chemical synthesis of metal nanoparticles using amine–boranes. ChemSusChem. 2011;4:317–324.
  • Kahani S, Molaei H. Synthesis of nickel metal nanoparticles via a chemical reduction of nickel ammine and alkylamine complexes by hydrazine. J Iran Chem Soc. 2013;10:1263–1270.
  • Mourdikoudis S, Liz-Marzán LM. Oleylamine in nanoparticle synthesis. Chem Mater. 2013;25:1465–1476.
  • Preethi S, Anitha A, Arulmozhi M. A comparative analysis of the properties of zinc oxide (ZnO) nanoparticles synthesized by Hydrothermal and Sol-Gel methods. Indian J Sci Technol. 2016;9.
  • Panigrahi S, Kundu S, Ghosh S, et al. General method of synthesis for metal nanoparticles. J Nanopart Res. 2004;6:411–414.
  • Dobrowolska P, Krajewska A, Gajda-Rączka M, et al. Application of turkevich method for gold nanoparticles synthesis to fabrication of SiO2@ Au and TiO2@ Au core-shell nanostructures. Materials. 2015;8:2849–2862.
  • Moyano DF, Duncan B, Rotello VM. Preparation of 2 nm gold nanoparticles for in vitro and in vivo applications. Methods Mol Biol. 2013;1025:3–8.
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75.
  • Ernest AH, Lynn JE. Experiments in colloid chemistry. New York and London: Mcgraw-Hill Book Company, Inc; 1940.
  • Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241:20–22.
  • Pillai ZS, Kamat PV. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B. 2004;108:945–951.
  • Kettemann F, Birnbaum A, Witte S, et al. Missing piece of the mechanism of the turkevich method: the critical role of citrate protonation. Chem Mater. 2016;28:4072–4081.
  • Kimling J, Maier M, Okenve B, et al. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B. 2006;110:15700–15707.
  • Perala SRK, Kumar S. On the mechanism of metal nanoparticle synthesis in the Brust–Schiffrin method. Langmuir. 2013;29:9863–9873.
  • Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun. 1994;0:801–802.
  • Brust M, Fink J, Bethell D, et al. Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun. 1995;0:1655–1656.
  • Zhu L, Zhang C, Guo C, et al. New insight into intermediate precursors of Brust–Schiffrin gold nanoparticles synthesis. J Phys Chem C. 2013;117:11399–11404.
  • Saif S, Tahir A, Chen Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials. 2016;6:209.
  • Fayaz AM, Balaji K, Girilal M, et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine. 2010;6:103–109.
  • Payne JN, Waghwani HK, Connor MG, et al. Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol. 2016;7:607.
  • Adelere IA, Lateef A. A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnol Rev. 2016;5:567–587.
  • Mishra A, Sardar M. Rapid biosynthesis of silver nanoparticles using sugarcane bagasse—an industrial waste. J Nanoeng Nanomanufact. 2013;3:217–219.
  • El-Shishtawy RM, Asiri AM, Al-Otaibi MM. Synthesis and spectroscopic studies of stable aqueous dispersion of silver nanoparticles. Spectrochim Acta A. 2011;79:1505–1510.
  • Patra JK, Baek K-H. Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater. 2014;2014:219.
  • Shedbalkar U, Singh R, Wadhwani S, et al. Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interface Sci. 2014;209:40–48.
  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, et al. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19:1357–1361.
  • Makarov V, Love A, Sinitsyna O, et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6:35–44.
  • Haumesser P-H. Nucleation and growth of metals: from thin films to nanoparticles. Amsterdam (Netherlands): Elsevier; 2016.
  • Thanh NT, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev. 2014;114:7610–7630.
  • Polte J. Fundamental growth principles of colloidal metal nanoparticles–a new perspective. CrystEngComm. 2015;17:6809–6830.
  • Camargo PH, Rodrigues TS, da Silva AG, et al. Controlled synthesis: nucleation and growth in solution. Metallic nanostructures. Amsterdam (Netherlands): Springer; 2015. p. 49–74.
  • Viswanatha R, Sarma D. Growth of nanocrystals in solution. Nanomaterials chemistry: recent developments and new directions. Weinheim (Germany): Wiley-VCH; 2007. p.139–70.
  • Voorhees PW. The theory of Ostwald ripening. J Stat Phys. 1985;38:231–252.
  • Tadros T. Ostwald ripening. Encyclopedia of colloid and interface science. Amsterdam (Netherlands): Springer; 2013. p. 820.
  • Clark MD, Kumar SK, Owen JS, et al. Focusing nanocrystal size distributions via production control. Nano Lett. 2011;11:1976–1980.
  • Baldan A. Review progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. J Mater Sci. 2002;37:2171–2202.
  • Niethammer B. Effective theories for Ostwald ripening. Analysis and stochastics of growth processes and interface models. Oxford (UK): Oxford University Press; 2008. p. 223.
  • Sokolov SV, Tschulik K, Batchelor-McAuley C, et al. Reversible or not? Distinguishing agglomeration and aggregation at the nanoscale. Anal Chem. 2015;87:10033–10039.
  • Studart AR, Amstad E, Gauckler LJ. Colloidal stabilization of nanoparticles in concentrated suspensions. Langmuir. 2007;23:1081–1090.
  • Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104:3893–3946.
  • Pastoriza-Santos I, Liz-Marzán LM. Formation and stabilization of silver nanoparticles through reduction by N, N-dimethylformamide. Langmuir. 1999;15:948–951.
  • Favier I, Massou S, Teuma E, et al. A new and specific mode of stabilization of metallic nanoparticles. ChemComm. 2008;0:3296–3298.
  • Lin P-C, Lin S, Wang PC, et al. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv. 2014;32:711–726.
  • Jing H, Zhang L, Wang H. Geometrically tunable optical properties of metal nanoparticles. UV–VIS and photoluminescence spectroscopy for nanomaterials characterization. Amsterdam (Netherlands): Springer; 2013. p. 1–74.
  • Joshi M, Bhattacharyya A, Ali SW. Characterization techniques for nanotechnology applications in textiles. Indian J Fibre Text Res. 2008;33:304–317.
  • Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006;22:32–41.
  • Zheng T, Bott S, Huo Q. Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl Mater Interfaces. 2016;8:21585–21594.
  • Chu B, Liu T. Characterization of nanoparticles by scattering techniques. J Nanopart Res. 2000;2:29–41.
  • Bootz A, Vogel V, Schubert D, et al. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 2004;57:369–375.
  • Zhang X-F, Liu Z-G, Shen W, et al. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17:1534.
  • Pal SL, Jana U, Manna P, et al. Nanoparticle: an overview of preparation and characterization (2000–2010). J Appl Pharm Sci. 2011;1:228–234.
  • Greulich C, Diendorf J, Simon T, et al. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomaterialia. 2011;7:347–354.
  • Jeyaraj M, Sathishkumar G, Sivanandhan G, et al. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B Biointerfaces. 2013;106:86–92.
  • Kawata K, Osawa M, Okabe S. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol. 2009;43:6046–6051.
  • Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011;85:743–750.
  • Gurunathan S, Han JW, Eppakayala V, et al. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Int. 2013;2013:535796.
  • Vasanth K, Ilango K, MohanKumar R, et al. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf B Biointerfaces. 2014;117:354–359.
  • Liu F, Mahmood M, Xu Y, et al. Effects of silver nanoparticles on human and rat embryonic neural stem cells. Front Neurosci. 2015;9:115.
  • Zhang X-F, Shen W, Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci. 2016;17:1603.
  • Park E-J, Yi J, Kim Y, et al. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro. 2010;24:872–878.
  • Ahmed KBR, Nagy AM, Brown RP, et al. Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol In Vitro. 2017;38:179–192.
  • Carlson C, Hussain SM, Schrand AM, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112:13608–13619.
  • Gurunathan S, Lee K-J, Kalishwaralal K, et al. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009;30:6341–6350.
  • Asharani P, Hande MP, Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 2009;10:65.
  • Bhattacharyya S, Kudgus RA, Bhattacharya R, et al. Inorganic nanoparticles in cancer therapy. Pharm Res. 2011;28:237–259.
  • Pan Y, Wu Q, Qin L, et al. Gold nanoparticles inhibit VEGF165-induced migration and tube formation of endothelial cells via the Akt pathway. Biomed Res Int. 2014;2014:418624.
  • Kang S, Rho C, Cho W, et al. The anti‐angiogenic effects of gold nanoparticles on experimental choroidal neovascularization in mice. Acta Ophthalmol. 2016;94:6561–6567.
  • Tiloke C, Phulukdaree A, Anand K, et al. Moringa oleifera gold nanoparticles modulate oncogenes, tumor suppressor genes, and caspase-9 splice variants in A549 cells. J Cell Biochem. 2016;117:2302–2314.
  • Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc. 2010;132:1517–1519.
  • Brown SD, Nativo P, Smith J-A, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc. 2010;132:4678–4684.
  • Abel EE, Poonga PRJ, Panicker SG. Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with cassia tora SM leaf extract. Appl Nanosci. 2016;6:121–129.
  • Meyers JD, Cheng Y, Broome AM, et al. Peptide‐targeted gold nanoparticles for photodynamic therapy of brain cancer. Part Part Syst Charact. 2015;32:448–457.
  • Rivas L, Sanchez-Cortes S, Garcia-Ramos J, et al. Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity. Langmuir. 2000;16:9722–9728.
  • Lu L, Wang H, Zhou Y, et al. Seed-mediated growth of large, monodisperse core–shell gold–silver nanoparticles with Ag-like optical properties. ChemComm. 2002;0:144–145.
  • Doria G, Larguinho M, Dias J, et al. Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection. Nanotechnology. 2010;21:255101.
  • Sotiriou GA, Etterlin GD, Spyrogianni A, et al. Plasmonic biocompatible silver-gold alloyed nanoparticles. Chem Commun (Camb). 2014;50:13559–13562.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.