7,880
Views
63
CrossRef citations to date
0
Altmetric
Review

A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities

, , , &
Pages 1132-1148 | Received 20 Oct 2018, Accepted 29 Dec 2018, Published online: 03 Apr 2019

References

  • Kaur Manjal S, Kaur R, Bhatia R, et al. Synthetic and medicinal perspective of thiazolidinones: a review. Bioorg Chem. 2017;75:406–423.
  • Trotsko N, Kosikowska U, Paneth A, et al. Synthesis and antibacterial activity of new (2, 4-dioxothiazolidin-5-yl/ylidene) acetic acid derivatives with thiazolidine-2, 4-dione, rhodanine and 2-thiohydantoin moieties. Saudi Pharmaceutical J. 2018; 26:568–577.
  • Jeong TS, Kim JR, Kim KS, et al. Inhibitory effects of multi-substituted benzylidenethiazolidine-2, 4-diones on LDL oxidation. Bioorg Med Chem. 2004;12:4017–4023.
  • Barros CD, Amato AA, de Oliveira TB, et al. Synthesis and anti-inflammatory activity of new arylidene-thiazolidine-2, 4-diones as PPARγ ligands. Bioorg Med Chem. 2010;18:3805–3811.
  • Koppireddi S, Komsani JR, Avula S, et al. Novel 2-(2,4-dioxo-1,3-thiazolidin-5-yl)acetamides as antioxidant and/or anti-inflammatory compounds. Eur J Med Chem. 2013;66:305–313.
  • Heerding DA, Christmann LT, Clark TJ, et al. New benzylidenethiazolidinediones as antibacterial agents. Bioorganic & Medicinal Chemistry Letters. 2003;13:3771–3773.
  • Bozdağ-Dündar O, Ozgen O, Menteşe A, et al. Synthesis and antimicrobial activity of some new thiazolyl thiazolidine-2, 4-dione derivatives. Bioorg Med Chem. 2007;15:6012–6017.
  • Aneja DK, Lohan P, Arora S, et al. Synthesis of new pyrazolyl-2, 4-thiazolidinediones as antibacterial and antifungal agents. Org Med Chem Lett. 2011;1:15.
  • Ibrahim MA, Abdel-Hamed MA-M, El-Gohary NM. A new approach for the synthesis of bioactive heteroaryl thiazolidine-2, 4-diones. J Braz Chem Soc. 2011;22:1130–1139.
  • Liu X-F, Zheng C-J, Sun L-P, et al. Synthesis of new chalcone derivatives bearing 2, 4-thiazolidinedione and benzoic acid moieties as potential anti-bacterial agents. Euro J Med Chem. 2011;46:3469–3473.
  • Purohit SS, Alman A, Shewale J. Synthesis and antimicrobial activity of a new series of 3, 5-disustitutedthiazolidine-2, 4-diones. Int J Pharm Pharm Sci. 2012;4:273–276.
  • Shaikh FM, Patel NB, Rajani D. Synthesis of new thiazolidine-2, 4-dione derivatives and their antimicrobial and antitubercular activity. Indian J Res Pharma Biotechnol. 2013;1:496.
  • Desai NC, Satodiya HM, Kotadiya GM, et al. Synthesis and antibacterial and cytotoxic activities of new N‐3 substituted thiazolidine‐2, 4‐dione derivatives bearing the pyrazole moiety. Arch Pharm Chem Life Sci. 2014;347:523–532.
  • Desai NC, Satodiya HM, Rajpara KM, et al. Synthesis and evaluation of N-substituted thiazolidine-2, 4-dione containing pyrazole as a potent antimicrobial agents. Aia. 2014;12:85–94.
  • Tuncbilek M, Altanlar N. Synthesis of New 3‐(Substituted Phenacyl)‐5‐[3′‐(4H‐4‐oxo‐1‐benzopyran‐2‐yl)‐benzylidene]‐2, 4‐thiazolidinediones and their Antimicrobial Activity. Arch Pharm Chem Life Sci. 2006;339:213–216.
  • Marc G, Ionuţ I, Pîrnău A, et al. Microwave Assisted Synthesis of 3,5-disubstituted Thiazolidine-2,4-diones with Antifungal Activity. Design, synthesis, virtual and in Vitro Antifungal Screening. FARMACIA. 2017;65:414–422.
  • Liu X, Xie H, Luo C, et al. Discovery and SAR of thiazolidine-2, 4-dione analogues as insulin-like growth factor-1 receptor (IGF-1R) inhibitors via hierarchical virtual screening. J Med Chem. 2010;53:2661–2665.
  • Patil V, Tilekar K, Mehendale-Munj S, et al. Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2, 4-thiazolidinedione derivatives. Euro J Med Chem. 2010;45:4539–4544.
  • Salamone S, Colin C, Grillier-Vuissoz I, et al. Synthesis of new troglitazone derivatives: anti-proliferative activity in breast cancer cell lines and preliminary toxicological study. Euro J Med Chem. 2012;51:206–215.
  • Rostam AB, Peyravi M, Ghorbani M, et al. Antibacterial surface modified of novel nanocomposite sulfonated polyethersulfone/polyrhodanine membrane. Appl Surf Sci. 2018;427:17–28.
  • Hwang J-M, Yeom S-H, Jung K-Y. Synthesis of oxazolidinone phosphonates as antibacterial agents. J Ind and Eng Chem 2007;13:474–479.
  • Bouloussa O, Rondelez F, Semetey V. A new, simple approach to confer permanent antimicrobial properties to hydroxylated surfaces by surface functionalization. Chem Commun. 2008;0:951–953.
  • Guo-Dong F, Fang Y, Zhigang L, et al. Solvent-resistant antibacterial microfibers of self-quaternized block copolymers from atom transfer radical polymerization and electrospinning. J Mater Chem. 2008;18:859–867.
  • Jang J, Kim Y. Fabrication of monodisperse silica–polymer core–shell nanoparticles with excellent antimicrobial efficacy. Chem Commun. 2008;0:4016–4018.
  • Waschinski CJ, Zimmermann J, Salz U, et al. Design of contact‐active antimicrobial acrylate‐based materials using biocidal macromers. Adv Mater. 2008;20:104–108.
  • Inamori Y, Okamoto Y, Takegawa Y, et al. Insecticidal and antifungal activities of aminorhodanine derivatives. Biosci, Biotechnol, and Biochem. 1998;62:1025–1027.
  • Terashima H, Hama K, Yamamoto R, et al. Effects of a new aldose reductase inhibitor on various tissues in vitro. J Pharmacol Exp Ther. 1984;229:226–230.
  • Pardasani R, Pardasani P, Sherry D, et al. Synthetic and antibacterial studies of rhodanine derivatives with indol-2, 3-diones. IJC-B. 2001;40:1275–1278.
  • Kumar G, Parasuraman P, Sharma SK, et al. Discovery of a rhodanine class of compounds as inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. J Med Chem. 2007;50:2665–2675.
  • Silva A, Silva Góes A, Lima W, et al. Antiedematogenic activity of two thiazolidine derivatives: N-tryptophyl-5-(3, 5-di-tert-butyl-4-hydroxybenzylidene) rhodanine (GS26) and N-tryptophyl-5-(3, 5-di-tert-butyl-4-hydroxybenzylidene)-2, 4-thiazolidinedione (GS28). Chem Pharm Bull. 2003;51:1351–1355.
  • Talele TT, Arora P, Kulkarni SS, et al. Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem. 2010;18:4630–4638.
  • Sing WT, Lee CL, Yeo SL, et al. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorg Med Chem Lett. 2001;11:91–94.
  • Zervosen A, Lu W-P, Chen Z, et al. Interactions between penicillin-binding proteins (PBPs) and two novel classes of PBP inhibitors, arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones. Antimicrobial Agents and Chemother. 2004;48:961–969.
  • Dayam R, Sanchez T, Clement O, et al. β-Diketo acid pharmacophore hypothesis. 1. Discovery of a novel class of HIV-1 integrase inhibitors. J Med Chem. 2005;48:111–120.
  • Grant EB, Guiadeen D, Baum EZ, et al. The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitors. Bioorganic & Medicinal Chemistry Letters. 2000;10:2179–2182.
  • Villain-Guillot P, Gualtieri M, Bastide L, et al. Structure − activity relationships of phenyl-furanyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms. J Med Chem. 2007;50:4195–4204.
  • Marydasan B, Nair AK, Ramaiah D. Optimization of triplet excited state and singlet oxygen quantum yields of picolylamine–porphyrin conjugates through zinc insertion. J Phys Chem B. 2013;117:13515–13522.
  • Livermore DM. Has the era of untreatable infections arrived? J Antimicrobial Chemother. 2009;64:i29–i36.
  • Hvistendahl M. China takes aim at rampant antibiotic resistance. PA, USA: American Association for the Advancement of Science; 2012.
  • Yezli S, Li H. Antibiotic resistance amongst healthcare-associated pathogens in China. Int J Antimicrobial Agents 2012;40:389–397.
  • Carrel M, Perencevich EN, David MZ. USA300 methicillin-resistant Staphylococcus aureus, United States, 2000–2013. Emerging Infectious Dis. 2015;21:1973.
  • Bi Y, Liu X-X, Zhang H-Y, et al. Synthesis and antibacterial evaluation of novel 3-substituted ocotillol-type derivatives as leads. Molecules 2017;22:590.
  • Azeredo da Silveira S, Perez A. Liposomes as novel anti-infectives targeting bacterial virulence factors? Expert Rev Anti Infect Ther. 2015;13:531–533.
  • Song B, Wen S. Development of quorum-based anti-virulence therapeutics targeting gram negative pathogens. Int J Mol Sci. 2013;14:16570–16599.
  • Cascioferro S, Cusimano MG, Schillaci D. Antiadhesion agents against Gram-positive pathogens. Future Microbiology. 2014;9:1209–1220.
  • Rademacher J, Welte T. New antibiotics-standstill or progress. Med Klin Intensivmed Notfmed. 2017;112:206–213.
  • Boucher HW, Talbot GH, Benjamin DK, et al. 10×20 progress—development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infectious Dis. 2013;56:1685–1694.
  • Silvestri R, De Martino G, La Regina G, et al. Novel indolyl aryl sulfones active against HIV-1 carrying NNRTI resistance mutations: synthesis and SAR studies. J Med Chem. 2003;46:2482–2493.
  • Che Z, Tian Y, Hu Z, et al. Synthesis and in vitro anti-HIV-1 activity of a series of N-arylsulfonyl-3-propionylindoles. Z Naturforsch, C, J Biosci. 2016;71:105–109.
  • Bhale PS, Chavan HV, Dongare SB, et al. Synthesis of extended conjugated indolyl chalcones as potent anti-breast cancer, anti-inflammatory and antioxidant agents. Bioorg Med Chem Lett. 2017;27:1502–1507.
  • Barbosa VA, Baréa P, Mazia RS, et al. Synthesis and evaluation of novel hybrids β-carboline-4-thiazolidinones as potential antitumor and antiviral agents. Euro J Med Chem. 2016;124:1093–1104.
  • Scuotto M, Abdelnabi R, Collarile S, et al. Discovery of novel multi-target indole-based derivatives as potent and selective inhibitors of chikungunya virus replication. Bioorg Med Chem Lett. 2017;25:327–337.
  • Tan MC, Wong WY, Ng WL, et al. Identification of 5-Methoxy-2-(Diformylmethylidene)-3,3-Dimethylindole as an anti-influenza A virus agent. PLoS One. 2017;12:e0170352.
  • Diao P-C, Li Q, Hu M-J, et al. Synthesis and biological evaluation of novel indole-pyrimidine hybrids bearing morpholine and thiomorpholine moieties. Euro J Med Chem. 2017;134:110–118.
  • Manuel-Manresa P, Korrodi-Gregório L, Hernando E, et al. Novel indole-based tambjamine-analogues induce apoptotic lung cancer cell death through p38 mitogen-activated protein kinase activation. Molecular Cancer Therapeutics, 2017;16:1224–1235.
  • Kumar P, Renjitha J, Ashitha KT, et al. Antibacterial and antitubercular evaluation of dihydronaphthalenone‐indole hybrid analogs. Chem Biol Drug Des. 2017;90:703–708.
  • Patil SA, Patil SA, Patil R. Medicinal applications of (benz) imidazole‐and indole‐based macrocycles. Chem Biol Drug Des. 2017;89:639–649.
  • Fan L-L, Liu W-Q, Xu H, et al. Anti human immunodeficiency virus-1 (HIV-1) agents 3. synthesis and in vitro anti-HIV-1 activity of some N-arylsulfonylindoles. Chem Chem Pharm Bull. 2009;57:797–800.
  • Xu H, Wang Y-Y. Antifungal agents. Part 5: Synthesis and antifungal activities of aminoguanidine derivatives of N-arylsulfonyl-3-acylindoles. Bioorg Med Chem Lett. 2010;20:7274–7277.
  • Vera G, Lagos CF, Almendras S, et al. Extended N-arylsulfonylindoles as 5-HT6 receptor antagonists: design, synthesis & biological evaluation. Molecules 2016;21:1070.
  • Song MX, Li SH, Peng JY, et al. Synthesis and bioactivity evaluation of N-arylsulfonylindole analogs bearing a rhodanine moiety as antibacterial agents. Molecules 2017;22:970.
  • Jin X, Zheng C-J, Song M-X, et al. Synthesis and antimicrobial evaluation of L-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone. Euro J Med Chem. 2012;56:203–209.
  • Song M-X, Zheng C-J, Deng X-Q, et al. Synthesis and bioactivity evaluation of rhodanine derivatives as potential anti-bacterial agents. Euro J Med Chem. 2012;54:403–412.
  • Zheng CJ, Song MX, Sun LP, et al. Synthesis and biological evaluation of 5-aryloxypyrazole derivatives bearing a rhodanine-3-aromatic acid as potential antimicrobial agents. Bioorg Med Chem Lett. 2012;22:7024–7028.
  • Song M-X, Zheng C-J, Deng X-Q, et al. Synthesis and antibacterial evaluation of rhodanine-based 5-aryloxy pyrazoles against selected methicillin resistant and quinolone-resistant Staphylococcus aureus (MRSA and QRSA). Euro J Med Chem. 2013;60:376–385.
  • Song M-X, Zheng C-J, Deng X-Q, et al. The synthesis and anti-bacterial activities of N-carboxymethyl rhodanines. Med Chem. 2014;4:441–448.
  • Song M-X, Deng X-Q, Li Y-R, et al. Synthesis and biological evaluation of (E)-1-(substituted)-3-phenylprop-2-en-1-ones bearing rhodanines as potent anti-microbial agents. J Enz Inhibition and Med Chem. 2014;29:647–653.
  • Sudo K, Matsumoto Y, Matsushima M, et al. Novel hepatitis C virus protease inhibitors: thiazolidine derivatives. Biochem Biophys Res Comm. 1997;238:643–647.
  • Powers JP, Piper DE, Li Y, et al. SAR and mode of action of novel non-nucleoside inhibitors of hepatitis C NS5b RNA polymerase. J Med Chem. 2006;49:1034–1046.
  • Long Y-Q, Jiang X-H, Dayam R, et al. Rational design and synthesis of novel dimeric diketoacid-containing inhibitors of HIV-1 integrase: implication for binding to two metal ions on the active site of integrase. J Med Chem. 2004;47:2561–2573.
  • Katritzky AR, Tala SR, Lu H, et al. Design, synthesis, and structure − activity relationship of a novel series of 2-aryl 5-(4-oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl) furans as HIV-1 entry inhibitors. J Med Chem. 2009;52:7631–7639.
  • He XY, Zou P, Qiu J, et al. Design, synthesis and biological evaluation of 3-substituted 2, 5-dimethyl-N-(3-(1H-tetrazol-5-yl) phenyl) pyrroles as novel potential HIV-1 gp41 inhibitors. Bioorg Med Chem. 2011;19:6726–6734.
  • He XY, Lu L, Qiu J, et al. Small molecule fusion inhibitors: design, synthesis and biological evaluation of (Z)-3-(5-(3-benzyl-4-oxo-2-thioxothiazolidinylidene) methyl)-N-(3-carboxy-4-hydroxy) phenyl-2, 5-dimethylpyrroles and related derivatives targeting HIV-1 gp41. Bioorg Med Chem. 2013;21:7539–7548.
  • Mendgen T, Steuer C, Klein CD. Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. J Med Chem. 2012;55:743–753.
  • Nitsche C, Schreier VN, Behnam MAM, et al. Thiazolidinone–peptide hybrids as dengue virus protease inhibitors with antiviral activity in cell culture. J Med Chem. 2013;56:8389–8403.
  • Bailes E, Gao F, Bibollet-Ruche F, et al. Hybrid origin of SIV in chimpanzees. Science. 2003;300:1713.
  • Damond F, Worobey M, Campa P, et al. Identification of a highly divergent HIV type 2 and proposal for a change in HIV type 2 classification. AIDS Res Hum Retroviruses. 2004;20:666–672.
  • Santiago ML, Range F, Keele BF, et al. Simian immunodeficiency virus infection in free-ranging sooty mangabeys (Cercocebus atys atys) from the Tai Forest, Cote d'Ivoire: implications for the origin of epidemic human immunodeficiency virus type 2. J Virol. 2005;79:12515–12527.
  • Keele BF, Van Heuverswyn F, Li Y, et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science. 2006;313:523–526.
  • Taylor M, Alonso-González M, Gómez B, et al. World health organization global health sector strategy on sexually transmitted infections: an evidence-to-action summary for Colombia. Rev Colomb Obstet Ginecol. 2017;68:193–201.
  • Tintori C, Corradi V, Magnani M, et al. Targets looking for drugs: a multistep computational protocol for the development of structure-based pharmacophores and their applications for hit discovery. J Chem Inf Model. 2008;48:2166–2179.
  • Rinaldi M, Tintori C, Franchi L, et al. A versatile and practical synthesis toward the development of novel HIV‐1 integrase inhibitors. ChemMedChem 2011;6:343–352.
  • Botta L, Maccari G, Calandro P, et al. One drug for two targets: biological evaluation of antiretroviral agents endowed with antiproliferative activity. Bioorg Med Chem Lett. 2017;27:2502–2505.
  • Michaud V, Bar-Magen T, Turgeon J, et al. The dual role of pharmacogenetics in HIV treatment: mutations and polymorphisms regulating antiretroviral drug resistance and disposition. Pharmacol Rev. 2012;64:803–833.
  • Bajaj M, Suraamornkul S, Hardies LJ, et al. Effects of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia 2007;50:1723–1731.
  • Levin B, Lieberman DA, McFarland B, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi‐Society Task Force on Colorectal Cancer, and the American College of Radiology. CA: A Cancer J for Clinicians 2008;58:130–160.
  • Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68:701–787.
  • Smith RA, Cokkinides V, Brawley OW. Cancer screening in the United States, 2009: a review of current American Cancer Society guidelines and issues in cancer screening. CA: A Cancer J for Clinicians 2009;59:27–41.
  • Sawyers C. Targeted cancer therapy. Nature. 2004;432:294.
  • Li Q, Xu W. Novel anticancer targets and drug discovery in post genomic age. Cmcaca. 2005;5:53–63.
  • Shiau C-W, Yang C-C, Kulp SK, et al. Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARγ. Cancer Res. 2005;65:1561–1569.
  • Li W, Lu Y, Wang Z, et al. Synthesis and antiproliferative activity of thiazolidine analogs for melanoma. Bioorg Med Chem Lett. 2007;17:4113–4117.
  • Chandrappa S, Benaka Prasad SB, Vinaya K, et al. Synthesis and in vitro antiproliferative activity against human cancer cell lines of novel 5-(4-methyl-benzylidene)-thiazolidine-2, 4-diones. Invest New Drugs. 2008;26:437.
  • Havrylyuk D, Mosula L, Zimenkovsky B, et al. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Euro J Med Chem. 2010;45:5012–5021.
  • Pandey Y, Sharma PK, Kumar N, et al. Biological activities of thiazolidine-a review. Int J PharmTech Res. 2011;3:980–985.
  • Jain AK, Vaidya A, Ravichandran V, et al. Recent developments and biological activities of thiazolidinone derivatives: a review. Bioorg Med Chem. 2012;20:3378–3395.
  • Alegaon SG, Alagawadi KR. New thiazolidinedione-5-acetic acid amide derivatives: synthesis, characterization and investigation of antimicrobial and cytotoxic properties. Med Chem Res. 2012;21:816–824.
  • Momose Y, Maekawa T, Yamano T, et al. Novel 5-substituted 2, 4-thiazolidinedione and 2, 4-oxazolidinedione derivatives as insulin sensitizers with antidiabetic activities. J Med Chem. 2002;45:1518–1534.
  • Swathi N, Ramu Y, Subrahmanyam CV, et al. Synthesis, quantum mechanical calculation and biological evaluation of 5-(4-substituted aryl/hetero aryl methylidene)-1, 3-thiazolidine-2, 4-diones. Int. J. Pharm. Sci. 2012;4:561–566.
  • Chawla A, Kaur H, Chawla P, et al. A review on chemistry and biological activities of thiazole derivatives. J. Global Trends in Pharma Sci. 2014;5:1641–1648.
  • Gupta A, Singh R, Sonar PK, et al. Novel 4-thiazolidinone derivatives as anti-infective agents: synthesis, characterization, and antimicrobial evaluation. Biochem Res Int. 2016;2016:1.
  • Knight SD, Adams ND, Burgess JL, et al. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med Chem Lett. 2010;1:39–43.
  • Azizmohammadi M, Khoobi M, Ramazani A, et al. 2H-chromene derivatives bearing thiazolidine-2,4-dione, rhodanine or hydantoin moieties as potential anticancer agents. Eur J Med Chem. 2013;59:15–22.
  • Moorthy BT, Ravi S, Srivastava M, et al. Novel rhodanine derivatives induce growth inhibition followed by apoptosis. Bioorg Med Chem Lett. 2010;20:6297–6301.
  • Meunier B. Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res. 2008;41:69–77.
  • Xu L, Vagner J, Josan J, et al. Enhanced targeting with heterobivalent ligands. Mol Canc Therap. 2009;8:1535–7163. MCT-08-1183.
  • Ge X, Wakim B, Sem DS. Chemical proteomics-based drug design: target and antitarget fishing with a catechol − rhodanine privileged scaffold for NAD (P)(H) binding proteins. J Med Chem. 2008;51:4571–4580.
  • Tomasic T, Masic LP. Rhodanine as a privileged scaffold in drug discovery. Cmc. 2009;16:1596–1629.
  • Xu L-L, Zheng C-J, Sun L-P, et al. Synthesis of novel 1, 3-diaryl pyrazole derivatives bearing rhodanine-3-fatty acid moieties as potential antibacterial agents. Euro J Med Chem. 2012;48:174–178.
  • Tejchman W, Korona-Glowniak I, Malm A, et al. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Med Chem Res. 2017;26:1316–1324.
  • Krátký M, Vinšová J, Stolaříková J. Antimicrobial activity of rhodanine-3-acetic acid derivatives. Bioorg Med Chem. 2017;25:1839–1845.
  • Subhedar DD, Shaikh MH, Shingate BB, et al. Quinolidene-rhodanine conjugates: facile synthesis and biological evaluation. Euro J Med Chem. 2017;125:385–399.
  • Tomašič T, Mašič LP. Chemistry and reactivity of rhodanines, Chap. 8.1. In: Bräse S, editor. Privileged scaffolds in medicinal chemistry: design, synthesis, evaluation. Cambridge: Royal Society of Chemistry; 2015. p. 214.
  • Shafii N, Khoobi M, Amini M, et al. Synthesis and biological evaluation of 5-benzylidenerhodanine-3-acetic acid derivatives as AChE and 15-LOX inhibitors. J Enz Inhib Med Chem. 2015;30:389–395.
  • Krátký M, Štěpánková Š, Vorčáková K, et al. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors. Bioorg Chem. 2016;68:23–29.
  • Tanouchi T, Kawamura M, Ajima A, et al., Ono Pharmaceutical Co Ltd, assignee. Rhodanine derivatives, process for their preparation, and aldose reductase inhibitor containing the rhodanine derivatives as active ingredient. Google Patents, 1984.
  • Smith TK, Young BL, Denton H, et al. First small molecular inhibitors of T. brucei dolicholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness. Bioorg Med Chem Lett. 2009;19:1749–1752.
  • Brvar M, Perdih A, Hodnik V, et al. In silico discovery and biophysical evaluation of novel 5-(2-hydroxybenzylidene) rhodanine inhibitors of DNA gyrase B. Bioorg Med Chem. 2012;20:2572–2580.
  • Tomašić T, Zidar N, Kovač A, et al. 5‐Benzylidenethiazolidin‐4‐ones as multitarget inhibitors of bacterial Mur ligases. ChemMedChem 2010;5:286–295.
  • Dolezel J, Hirsova P, Opletalova V, et al. Rhodanineacetic acid derivatives as potential drugs: preparation, hydrophobic properties and antifungal activity of (5-arylalkylidene-4-oxo-2-thioxo-1, 3-thiazolidin-3-yl) acetic acids. Molecules 2009;14:4197–4212.
  • Chen Z-H, Zheng C-J, Sun L-P, et al. Synthesis and in vitro biological evaluation of new polyamine conjugates as potential anticancer drugs. Eur J Med Chem. 2010;45:5739–5743.
  • Miao J, Zheng C-J, Sun L-P, et al. Synthesis and potential antibacterial activity of new rhodanine-3-acetic acid derivatives. Med Chem Res. 2013;22:4125–4132.
  • Alegaon SG, Alagawadi KR, Sonkusare PV, et al. Novel imidazo [2, 1-b][1, 3, 4] thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agents. Bioorg Med Chem Lett. 2012;22:1917–1921.
  • Krátký M, Vinšová J, Volková M, et al. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Euro J Med Chem. 2012;50:433–440.
  • Krátký M, Volková M, Novotná E, et al. Synthesis and biological activity of new salicylanilide N, N-disubstituted carbamates and thiocarbamates. Bioorg Med Chem. 2014;22:4073–4082.
  • Krátký M, Bősze S, Baranyai Z, et al. Synthesis and in vitro biological evaluation of 2-(phenylcarbamoyl)phenyl 4-substituted benzoates. Bioorg Med Chem. 2015;23:868–875.
  • Krátký M, Mandíková J, Trejtnar F, et al. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2 5-triones. Chem Pap. 2015;4:1108–1117.
  • Krátký M, Vinšová J. Salicylanilide N-monosubstituted carbamates: synthesis and in vitro antimicrobial activity. Bioorg Med Chem. 2016;24:1322–1330.
  • Lesyk R, Zimenkovsky B. 4-Thiazolidones: centenarian history, current status and perspectives for modern organic and medicinal chemistry. Coc. 2004;8:1547–1577.
  • Jain VS, Vora DK, Ramaa C. Thiazolidine-2, 4-diones: progress towards multifarious applications. Bioorg Med Chem. 2013;21:1599–1620.
  • Stojanovic M, Dzambaski Z, Bondzic B, et al. 4-Oxothiazolidines with exocyclic C = C double bond (s): synthesis, structure, reactions and biological activity. Coc. 2014;18:1108–1148.
  • Tripathi AC, Gupta SJ, Fatima GN, et al. 4-Thiazolidinones: the advances continue. Eur J Med Chem. 2014;72:52–77.
  • Ayati A, Emami S, Asadipour A, et al. Recent applications of 1, 3-thiazole core structure in the identification of new lead compounds and drug discovery. Euro J Med Chem. 2015;97:699–718.
  • Kaminskyy D, Kryshchyshyn A, Lesyk R. 5-Ene-4-thiazolidinones–An efficient tool in medicinal chemistry. Euro J Med Chem. 2017;140:542–594.
  • Lesyk RB, Zimenkovsky BS, Kaminskyy DV, et al. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group. Biopolym Cell. 2011;27:107–117.
  • Tomašić T, Peterlin Mašič L. Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Exp Op Drug Disc. 2012;7:549–560.
  • Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005;48:6523–6543.
  • Fortin S, Bérubé G. Advances in the development of hybrid anticancer drugs. Expert Opin Drug Discov. 2013;8:1029–1047.
  • Mishra S, Singh P. Hybrid molecules: the privileged scaffolds for various pharmaceuticals. Euro J Med Chem. 2016;124:500–536.
  • Chauhan K, Sharma M, Saxena J, et al. Synthesis and biological evaluation of a new class of 4-aminoquinoline–rhodanine hybrid as potent anti-infective agents. Euro J Med Chem. 2013;62:693–704.
  • Andleeb H, Tehseen Y, Ali Shah SJ, et al. Identification of novel pyrazole–rhodanine hybrid scaffolds as potent inhibitors of aldose reductase: design, synthesis, biological evaluation and molecular docking analysis. RSC Adv. 2016;6:77688–77700.
  • Hughes SJ, Millan DS, Kilty IC, et al. Fragment based discovery of a novel and selective PI3 kinase inhibitor. Bioorg Med Chem Lett. 2011;21:6586–6590.
  • Brown FC. 4-Thiazolidinones. Chem Rev. 1961;61:463–521.
  • Newkome GR, Nayak A. 4-Thiazolidinones. In: Advances in heterocyclic chemistry. Elsevier; 1980. p. 83–112.
  • Singh SP, Parmar SS, Raman K, et al. Chemistry and biological activity of thiazolidinones. Chem Rev. 1981;81:175–203.
  • Hajibabaei K. 2-Thioxothiazolidin-4-one (Rhodanine). Synlett 2014;25:2083–2084.
  • Bulic B, Pickhardt M, Khlistunova I, et al. Rhodanine‐based tau aggregation inhibitors in cell models of tauopathy. Angew Chem. 2007;119:9375–9379.
  • Ono M, Hayashi S, Matsumura K, et al. Rhodanine and thiohydantoin derivatives for detecting tau pathology in Alzheimer’s brains. ACS Chem Neurosci. 2011;2:269–275.
  • Tang SQ, Lee YYI, Packiaraj DS, et al. Systematic evaluation of the metabolism and toxicity of thiazolidinone and imidazolidinone heterocycles. Chem Res Toxicol. 2015;28:2019–2033.
  • Zeiger E, Anderson B, Haworth S, et al. Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals. Environ Mutagen. 1987;9:61–109.
  • Song Y, Connor DT, Sercel AD, et al. Synthesis, structure − activity relationships, and in vivo evaluations of substituted Di-tert-butylphenols as a novel class of potent, selective, and orally active cyclooxygenase-2 inhibitors. 2. 1, 3, 4-and 1, 2, 4-thiadiazole series. J Med Chem. 1999;42:1161–1169.
  • El-Miligy MMM, Hazzaa AA, El-Messmary H, et al. New hybrid molecules combining benzothiophene or benzofuran with rhodanine as dual COX-1/2 and 5-LOX inhibitors: synthesis, biological evaluation and docking study. Bioorg Chem. 2017;72:102–115.
  • Amani AM, Hashemi SA, Mousavi SM, et al., Electric field induced alignment of carbon nanotubes: methodology and outcomes. In: Carbon nanotubes-recent progress. IntechOpen.
  • Mousavi SM, Arjmand O, Hashemi SA, et al. Modification of the epoxy resin mechanical and thermal properties with silicon acrylate and montmorillonite nanoparticles. Polymers from Renewable Res. 2016;7:101–114.
  • Mousavi SM, Hashemi SA, Jahandideh S, et al. Modification of phenol novolac epoxy resin and unsaturated polyester using sasobit and silica nanoparticles. Polymers from Renewable Resources 2017;8:117–132.
  • Hashemi SA, Mousavi SM. Effect of bubble based degradation on the physical properties of single wall carbon nanotube/epoxy resin composite and new approach in bubbles reduction. Comp Part A: Appl Sci Manufacturing. 2016;90:457–469.
  • Hashemi SA, Mousavi SM, Arjmand M, et al. Electrified single‐walled carbon nanotube/epoxy nanocomposite via vacuum shock technique: effect of alignment on electrical conductivity and electromagnetic interference shielding. Polym Compos. 2018;39:E1139–E1148.
  • Goudarzian N, Hashemi SA, Mirjalili M. Unsaturated polyester resins modified with cresol novolac epoxy and silica nanoparticles: processing and mechanical properties. Int J Chem Petrol Sci 2016;5:13–26.
  • Mousavi SM, Hashemi SA, Amani AM, et al. Polyethylene terephthalate/acryl butadiene styrene copolymer incorporated with oak shell, potassium sorbate and egg shell nanoparticles for food packaging applications: control of bacteria growth, physical and mechanical properties. Polym from Renewable Res. 2017;8:177–196.
  • Hashemi SA, Mousavi SM, Faghihi R, et al. Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding. Rad Phys Chem. 2018;146:77–85.
  • Mousavi SM, Aghili A, Hashemi SA, et al. Improved morphology and properties of nanocomposites, linear low density polyethylene, ethylene-co-vinyl acetate and nano clay particles by electron beam. Polym from Renewable Res. 2016;7:135.
  • Chadha N, Bahia MS, Kaur M, et al. Thiazolidine-2, 4-dione derivatives: programmed chemical weapons for key protein targets of various pathological conditions. Bioorg Med Chem. 2015;23:2953–2974.
  • Ozen C, Unlusoy MC, Aliary N, et al. Thiazolidinedione or rhodanine: a study on synthesis and anticancer activity comparison of novel thiazole derivatives. J Pharm Pharm Sci. 2018;20:415–427.
  • Abdel Hafez NA, Elsayed MA, El-Shahawi MM, et al. Synthesis and antimicrobial activity of new thiazolidine‐based heterocycles as rhodanine analogues. J Heterocyclic Chem. 2018;55:685–691.
  • Kong H, Song J, Jang J. One‐step preparation of antimicrobial polyrhodanine nanotubes with silver nanoparticles. Macromol Rapid Commun. 2009;30:1350–1355.
  • Tintori C, Iovenitti G, Ceresola ER, et al. Rhodanine derivatives as potent anti-HIV and anti-HSV microbicides. PLoS One. 2018;13:e0198478.
  • Kong H, Jang J. Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 2008;9:2677–2681.
  • Rico E, Alzate JF, Arias AA, et al. Leishmania infantum expresses a mitochondrial nuclease homologous to EndoG that migrates to the nucleus in response to an apoptotic stimulus. Mol Biochem Parasitol. 2009;163:28–38.
  • Mandal SP, Mithuna M, Garg A, et al. Novel rhodanines with anticancer activity: design, synthesis and CoMSIA study. RSC Adv. 2016;6:58641–58653.
  • Kaminskyy D, Kryshchyshyn A, Lesyk R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin Drug Discov. 2017;12:1233–1252.