2,375
Views
1
CrossRef citations to date
0
Altmetric
Review

The role of artificial cells in the fight against COVID-19: deliver vaccine, hemoperfusion removes toxic cytokines, nanobiotherapeutics lower free radicals and pCO2 and replenish blood supply

Pages 240-251 | Received 30 May 2022, Accepted 12 Sep 2022, Published online: 03 Oct 2022

References

  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062.
  • Chang TMS. Artificial cell evolves into nanomedicine, biotherapeutics, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, cell/stem cell therapy, nanoparticles, liposomes, bioencapsulation, replicating synthetic cells, cell encapsulation/scaffold, biosorbent/immunosorbent haemoperfusion/plasmapheresis, regenerative medicine, encapsulated microbe, nanobiotechnology, nanotechnology, artificial cells. Nanomed Biotechnol. 2019;47(1):997–1013.
  • Chang TMS. Semipermeable microcapsules. Science. 1964;146(3643):524–525.
  • Chang TMS. Artificial cells. Springfield (IL): Charles C. Thomas; 1972. Out of print but available for free online viewing/download at www.artcell.mcgill.ca/1972bookcovercr.pdf.
  • Chang TMS. Therapeutic applications of polymeric artificial cells. Nat Rev Drug Discov. 2005;4(3):221–235.
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–160.
  • Chang TMS. Monograph on “Artificial cells: biotechnology, nanotechnology, blood substitutes, regenerative medicine, bioencapsulation, cell/stem cell therapy”. Singapore: World Scientific Publisher/Imperial College Press; 2007. p. 435. Available for free online viewing at https://www.medicine.mcgill.ca/artcell/2007%20ebook%20artcell%20web.pdf
  • Editorial (2018): focus on the benefits of building life’s systems from scratch. Nature. 2018;563:155. doi:10.1038/d41586-018-07285-1.
  • Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124.
  • Kulkarni JA, Tam YYC, Chen S, et al. Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. Nanoscale. 2017;9(36):13600–13609.
  • Dhiman N, Awasthi R, Sharma B, et al. Lipid nanoparticles as carriers for bioactive delivery. Front Chem. 2021;9:580118.
  • Chang TMS. The one-shot vaccine. In: Heden C-G, editor. Socio-economic and ethical implications of enzyme engineering. Stockholm (Sweden): International Federation of Institutes for Advanced Studies; 1975. p. 17–18.
  • Chang TMS. Biodegradable semipermeable microcapsules containing enzymes, hormones, vaccines, and other biologicals. J Bioeng. 1976;1:25–32.
  • Holtkamp S, Kreiter S, Selmi A, et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. 2006;108(13):4009–4017.
  • Abuchowski A, Kazo GM, Verhoest CR, Jr., et al. Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycol-asparaginase conjugates. Cancer Biochem Biophys. 1984;7(2):175–186.
  • Mueller P, Rudin D. Resting and action potential in experimental bilayer lipid membranes. J Theor. Biol. 1968;18(2):222–258.
  • Bangham AD, Standish MM, Watkins JC, et al. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238–252.
  • Gregoriadis G, editor. Drug carriers in biology and medicine. New York: Academic Press, Inc.; 1976.
  • Deamer DW, Bangham AD. Large-volume liposomes by an ether vaporization method. Biochim Biophys Acta. 1976;443(3):629–634.
  • Kowalski PS, Rudra A, Miao L, et al. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019;27(4):710–728.
  • Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017;2:17056.
  • Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–780.
  • Ronco C, Reis T, De Rosa S. Coronavirus epidemic and extracorporeal therapies in intensive care: si vis pacem para bellum. Blood Purif. 2020;49(3):255–258.
  • Chang TMS. Semipermeable aqueous microcapsules (“artificial cells”): with emphasis on experiments in an extracorporeal shunt system. Trans Am Soc Artif Intern Organs. 1966;12:13–19.
  • Chang TM, Coffey JF, Barré P, et al. Microcapsule artificial kidney: treatment of patients with acute drug intoxication. Can Med Assoc J. 1973;108(4):429–433.,.
  • Chang TMS. Microencapsulated adsorbent hemoperfusion for uremia, intoxication and hepatic failure. Kidney Int. 1975;7:S387–S392.
  • Chang TMS, Endo Y, Nicolaev VG, et al., editors. Hemoperfusion and plasma-perfusion and other clinical uses of general, biospecific, immune and leucocyte adsorbents. Regenerative medicine, artificial cells and nanomedicine. Vol. 4. Singapore: World Scientific Publisher/Imperial College Press; 2017. p. 1004.
  • Chang TMS. First design and clinical use in patients of surface modified sorbent hemoperfusion based on artificial cells for poisoning, kidney failure, liver failure and immunology. Chang TMS, Endo Y, Nicolaev VG, et al., editors. Hemoperfusion and plasma- perfusion and other clinical uses of general, biospecific, immune and leucocyte adsorbents. Regenerative medicine, artificial cells and nanomedicine. Vol. 4. Singapore: World Scientific Publisher/Imperial College Press; 2017. p. 3–77. www.medicine.mcgill.ca/artcell/HPBk_Ch1.pdf
  • Wang YJ, Yu YT. Development of resin adsorbents for blood purification at Nankai University in China. Artif Cell Blood Sub. 2011;39(2):92–97.
  • Chen J, Han W, Su R, et al. Non-ionic macroporous polystyrene adsorbents for removal of serum toxins in liver failure by hemoperfusion. Artif Cells Nanomed Biotechnol. 2017;45(1):174–183.
  • Chavez JR, Danguilan RA, Arakama MI, et al. A case of leptospirosis with acute respiratory failure and acute kidney injury treated with simultaneous extracorporeal membrane oxygenation and haemoperfusion. BMJ Case Rep. 2019;12(5):e229582–6.
  • Arslan B, Kucukbingoz C, Kutuk M, et al. Single-center experience with resin adsorption hemoperfusion combined with continuous veno-venous hemofiltration for septic shock patients. Med Sci. 2019;8(2):390–394.
  • Du Y, Qi Z, Ma J, et al. Case report: a patient with COVID-19 who benefited from hemoadsorption. Front Med. 2020;7:607849.
  • Wang Q, Hu Z. Successful recovery of severe COVID-19 with cytokine stormtreating with extracorporeal blood purification. Int J Infect Dis. 2020;96:618–620.
  • Xu X, Jia C, Luo S, et al. Effect of HA330 resin-directed hemoadsorption on a porcine acute respiratory distress syndrome model ann. Ann Intensive Care. 2017;7(1):84–87.
  • Wang Y-T, Fu J-J, Li X-L, et al. Effects of hemodialysis and hemoperfusion on inflammatory factors and nuclear transcription factors in peripheral blood cell of multiple organ dysfunction syndrome. Eur Rev Med Pharm Sci. 2016;20:745–750.
  • Huang Z, Wang SR, Yang ZL, et al. Effect on extrapulmonary sepsis-induced acute lung injury by hemoperfusion with neutral microporous resin column. Ther Apher Dial. 2013;17(4):454–461.
  • Dastan F, Saffaei A, Mortazavi SM, et al. Continues renal replacement therapy (CRRT) with disposable hemoperfusion cartridge: a promising option for severe COVID-19. J Glob Antimicrob Resist. 2020;21:340–341.
  • Liang Y, et al. Extracorporeal blood purification therapy using hemoadsorption type hemoperfusion improves ICU outcomes in critically ill patients with SAR-CoV-2 infection – a prospective cohort study. Lancet. 2020.
  • Wu J. Tackle the free radicals damage in COVID-19. Nitric Oxide. 2020;102:39–41.
  • Shadyro O, Samovich S, Edimecheva I, et al. Potential role of free-radical processes in biomolecules damage during COVID-19 and ways of their regulation. Free Radical Res. 2021;55(7):665–676.
  • Wenzhong L, Hualan L. COVID-19: captures iron and generates reactive oxygen species to damage the human immune system. Autoimmunity. 2021;54(4):213–224.
  • Sims C, Seigne P, Menconi M, et al. Skeletal muscle acidosis correlates with the severity of blood volume loss during shock and resuscitation. J Trauma. 2001;51:1137–1146.
  • Tronstad C, Pischke SE, Holhjem L, et al. Early detection of cardiac ischemia using a conductometric PCO2 sensor: real-time drift correction and parameterization. Physiol Meas. 2010;31(9):1241–1255.
  • Red Cross declares first-ever blood crisis amid omicron surge. https://www.redcross.org/about-us/news-and-events/press-release/2022/blood-donors-needed-now-as-omicron-intensifies.html.
  • Bian Y, Chang TMS. A novel nanobiotherapeutical poly-[hemoglobin- superoxide dismutase-catalase-carbonic anhydrase] with no cardiac toxicity for the resuscitation of a 90 minutes sustained severe hemorrhagic shock rat model with 2/3 blood volume loss artificial cells. Nanomedicine and Biotechnology. 2015;43(1):1–9.
  • Guo C, Chang TMS. Long term safety and immunological effects of a nanobiotherapeutic, bovine poly-[hemoglobin-catalase-superoxide dismutase- carbonic anhydrase], after four weekly 5% blood volume top-loading followed by a challenge of 30% exchange transfusion. Artif Cells Nanomed Biotechnol. 2018;46(7):1349–1363.
  • Chang TMS. Translational feasibility of soluble nanobiotherapeutics with enhanced red blood cell functions. Artif Cells Nanomed Biotechnol. 2017;45(4):671–676.
  • Chang TMS. Stabilisation of enzymes by microencapsulation with a concentrated protein solution or by microencapsulation followed by cross- linking with glutaraldehyde. Biochem Biophys Res Commun. 1971;44(6):1531–1536.
  • Jahr JS. Hemoglobin-glutamer 250 (bovine) [HBOC-201, Hemopure®] clinical use in South Africa and comprehensive review of cardiac outcomes and risk/benefit in Peer-Reviewed, indexed studies in humans and animal models. In: Chang TMS, Bulow L, Jahr JS, et al., editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.
  • Moore E, Moore FA, Fabian TC, et al. Human polymerized hemoglobin for the treatment of hemorrhagic shock when blood is unavailable: the USA multicenter trial. J Am Coll Surg. 2009;208(1):1–13.
  • D'Agnillo F, Chang TM. Polyhemoglobin-superoxide dismutasecatalase as a blood substitute with antioxidant properties. Nat Biotechnol. 1998;16(7):667–671.
  • Powanda D, C, TMS. Cross-linked polyhemoglobin- superoxide dismutase-catalase supplies oxygen without causing blood brain barrier disruption or brain edema in a rat model of transient global brain ischemia-reperfusion. Artif Cells Blood Substit Immobil Biotechnol. 2002;30:25–42.
  • Razack S, D'Agnillo F, Chang TM. Crosslinked hemoglobin-superoxide dismutase-catalase scavenges free radicals in a rat model of intestinal ischemia-reperfusion injury. Artif Cells Blood Substit Immobil Biotechnol. 1997;25(1–2):181–192.
  • Ma L, Hsia CJC. Polynitroxylated hemoglobin as a multifunctional therapeutic for critical care and transfusion medicine. In: Chang TMS, editor. Selected topics in nanomedicine. Singapore: World Science Publisher/Imperial College Press; 2013.
  • Simoni J, Simoni G, Lox CD, et al. Modified hemoglobin solution with desired pharmacological properties does not activate nuclear transcription factor NF-kappa B in human vascular endothelial cells. Artif Cells Blood Substit Immobil Biotechnol. 1997;25(1–2):193–210.
  • Zal F. 2017. Use of HEMO2life – an innovative oxygen carrier in organ transplantation abstract. 2017 International Symposium on Blood Substitutes. www.artcell.mcgill.ca
  • Jia YP, Alayash AI. Molecular basis of haptoglobin and hemoglobin complex formation and protection against oxidative stress and damage. In: Chang TMS, editor. Selected topics in nanomedicine. Singapore: World Science Publisher/Imperial College Press; 2013.
  • Kettisen K, Bülow L. Cysteine mutations in recombinant fetal hemoglobin influence oxidative side-reactions. In: Chang TMS, Bulow L, Jahr JS, et al., editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.
  • Chan G, Chang TMS. Dual effects include antioxidant and pro- oxidation of ascorbic acid on the redox properties of bovine hemoglobin. In: Chang TMS, Bulow L, Jahr JS, et al., editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021.
  • Liu JX, Yang CM. Development and future of Chinese transfusion medicine and blood substitutes. In: Chang TMS, Bulow L, Jahr JS, et al., editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021. p. 161–168.
  • Guo C, Gynn M, Chang TMS. Extraction of superoxide dismutase, catalase and carbonic anhydrase from stroma-free red blood cell hemolysate for the preparation of the nanobiotechnological complex of polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase. Artif Cells Nanomed Biotechnol. 2015;43(3):157–62162.
  • Chang TMS, BulowL, JahrJS, et al., editors. Nanobiotherapeutic based blood substitutes. Singapore: World Science Publisher; 2021. p. 1140.
  • Chang TMS. 2022. Artificial cells, blood substitutes and nanomedicine website containing reviews and monographs for free online viewing or download www.artcell.mcgill.ca.
  • Bian Y, Guo C, Chang TMS. Temperature stability of poly-[hemoglobin-superoxide dismutase–catalase-carbonic anhydrase] in the form of a solution or in the lyophilized form during storage at -80 °C, 4 °C, 25 °C and 37 °C or pasteurization at 70 °C. Artif Cells Nanomed Biotechnol. 2016;44(1):41–47.