134
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

‘Musical effort’ and ‘musical pleasantness’: a pilot study on the neurophysiological correlates of classical music listening in adults normal hearing and unilateral cochlear implant users

ORCID Icon, ORCID Icon, ORCID Icon, , , , , , , , ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all

References

  • Sacks O. The power of music. Brain. 2006;129(Pt 10):2528–2532.
  • Bruns L, Mürbe D, Hahne A. Understanding music with cochlear implants. Sci Rep. 2016;6(1):1–14.
  • Mitani C, Nakata T, Trehub SE, et al. Music recognition, music listening, and word recognition by deaf children with cochlear implants. Ear Hear. 2007;28(2 Suppl):29S–33S.
  • Shannon RV. Speech and music have different requirements for spectral resolution. Int Rev Neurobiol. 2005;70:121–134.
  • Galvin III, JJ, Fu QJ, Nogaki G. Melodic contour identification by cochlear implant listeners. Ear Hear. 2007;28(3):302–319.
  • Wilson BS, Dorman MF. Cochlear implants: current designs and future possibilities. J Rehabil Res Dev. 2008;45(5):695–730.
  • Boisvert I, Reis M, Au A, et al. Cochlear implantation outcomes in adults: a scoping review. PLoS One. 2020;15(5):e0232421.
  • Moore DR, Shannon RV. Beyond cochlear implants: awakening the deafened brain. Nat Neurosci. 2009;12(6):686–691.
  • Debruyne JA, Janssen AM, Brokx JP. Systematic review on late cochlear implantation in early-deafened adults and adolescents: clinical effectiveness. Ear Hear. 2020;41(6):1417–1430.
  • Looi V, Gfeller K, Driscoll VD. Music appreciation and training for cochlear implant recipients: a review. Semin Hear. 2012;33(4):307–334.
  • Gfeller K, Christ A, Knutson JF, et al. Musical backgrounds, listening habits, and aesthetic enjoyment of adult cochlear implant recipients. J Am Acad Audiol. 2000;11(7):390–406.
  • McDermott HJ. Music perception with cochlear implants: a review. Trends Amplif. 2004;8(2):49–82.
  • Veekmans K, Ressel L, Mueller J, et al. Comparison of music perception in bilateral and unilateral cochlear implant users and normal-hearing subjects. Audiol Neurootol. 2009;14(5):315–326.
  • Moran M, Rousset A, Looi V. Music appreciation and music listening in prelingual and postlingually deaf adult cochlear implant recipients. Int J Audiol. 2016;4:1–7.
  • Donnelly PJ, Limb CJ. Music perception in cochlear implant users. Cochlear Implants: Principles Prac. 2009;2:223.
  • Gfeller K, Olszewski C, Rychener M, et al. Recognition of “real-world” musical excerpts by cochlear implant recipients and normal-hearing adults. Ear Hearing. 2005;26(3):237–250.
  • Ambert-Dahan E, Giraud AL, Sterkers O, et al. Judgment of musical emotions after cochlear implantation in adults with progressive deafness. Front Psychol. 2015;6:181.
  • Faulkner KF, Pisoni DB. Some observations about cochlear implants: challenges and future directions. Neurosci Discov. 2013;1(1):9.
  • Salimpoor VN, Benovoy M, Longo G, et al. The rewarding aspects of music listening are related to degree of emotional arousal. PLoS One. 2009;4(10):e7487.
  • Nummenmaa L, Putkinen V, Sams M. Social pleasures of music. Curr Opin Behav Sci. 2021;39:196–202.
  • Wright R, Uchanski RM. Music perception and appraisal: cochlear implant users and simulated cochlear implant listening. J Am Acad Audiol. 2012;23(5):350–365.
  • Drennan WR, Rubinstein JT. Music perception in cochlear implant users and its relationship with psychophysical capabilities. J Rehabil Res Dev. 2008;45(5):779–789.
  • D'Alessandro HD, Ballantyne D, Portanova G, et al. 2021. Temporal coding and music perception in bimodal listeners. Auris Nasus Larynx. Netherlands.
  • Fujita S, Ito J. Ability of nucleus cochlear implantees to recognize music. Ann Otol Rhinol Laryngol. 1999;108(7 Pt 1):634–640.
  • Schulte E, Kerber M. Music perception with the MED-EL implants. In: Hochmair-Desoyer LJ, Hochmair EC, editors. Advances in cochlear implants. Vienna: Menz; 1994. p. 326–332.
  • Gfeller K, Knutson JF, Woodworth G, et al. Timbral recognition and appraisal by adult cochlear implant users and normal-hearing adults. J Am Acad Audiol. 1998;9(1):1–19.
  • McGarrigle R, Munro KJ, Dawes P, et al. Listening effort and fatigue: what exactly are we measuring? A british society of audiology cognition in hearing special interest group ‘white paper. Int J Audiol. 2014;53(7):433–445.
  • Keller PE. Attentional resource allocation in musical ensemble performance. Psychol. Music. 2001;29(1):20–38.
  • Shenhav A, Musslick S, Falk F, et al. Toward a rational and mechanistic account of mental effort. Annu Rev Neurosci. 2017;40:99–124.
  • Endestad T, Godøy RI, Sneve MH, et al. Mental effort when playing, listening, and imagining music in one pianist’s eyes and brain. Front Hum Neurosci. 2020;14:576888.
  • Gatehouse S. & Noble W. The speech, spatial and qualities of hearing scale (SSQ). Int J Audiol. 2004;43:85–99.
  • Hornsby BW. The effects of hearing-aid use on listening effort and mental fatigue associated with sustained speech processing demands. Ear Hear. 2013;34(5):523–534.
  • Wild CJ, Yusuf A, Wilson DE, et al. Effortful listening: the processing of degraded speech depends critically on attention. J Neurosci. 2012;32(40):14010–14021.
  • Cartocci G, Maglione AG, Rossi D, et al. Alpha and theta EEG variations as indices of listening effort to be implemented in neurofeedback among cochlear implant users. In: International workshop on symbiotic interaction. Cham: Springer; 2017. p. 30–41.
  • Cartocci G, Scorpecci A, Borghini G, et al. EEG rhythms lateralization patterns in children with unilateral hearing loss are different from the patterns of normal hearing controls during speech-in-noise listening. Hear Res. 2019;379:31–42.
  • Kang R, Nimmons GL, Drennan W, et al. Development and validation of the university of Washington clinical assessment of music perception test. Ear Hear. 2009;30(4):411–418.
  • Nimmons GL, Kang RS, Drennan WR, et al. Clinical assessment of music perception in cochlear implant listeners. Otol Neurotol. 2008;29(2):149–155.
  • Schnupp J, Nelken I, King A. 2011. Auditory neuroscience: Making sense of sound. Cambridge (MA): MIT Press.
  • Gevins A. High resolution EEG. Brain Topogr. 1993;5(4):321–325.
  • Im C-H. Computational EEG analysis. Singapore: Springer; 2018.
  • Turrini M, Cutugno F, Maturi P, et al. Bisyllabic words for speech audiometry: a new italian material. Acta Otorhinolaryngol Ital. 1993;13(1):63–77.
  • Peretz I, Gagnon L, Bouchard B. Music and emotion: perceptual determinants, immediacy, and isolation after brain damage. Cognition. 1998;68(2):111–141.
  • Khalfa S, Roy M, Rainville P, et al. Role of tempo entrainment in psychophysiological differentiation of happy and sad music? Int J Psychophysiol. 2008;68(1):17–26.
  • Dalla Bella S, Peretz I, Rousseau L, et al. A developmental study of the affective value of tempo and mode in music. Cognition. 2001;80(3):B1–B10.
  • Gfeller K, Witt S, Mehr MA, et al. Effects of frequency, instrumental family, and cochlear implant type on timbre recognition and appraisal. Ann Otol Rhinol Laryngol. 2002;111(4):349–356.
  • Sorrentino F, Gheller F, Favaretto N, et al. Music perception in adult patients with cochlear implant. Hear Balance Commun. 2020;18(1):3–7.
  • Mancini P, Dincer D’Alessandro H, Portanova G, et al. Bimodal cochlear implantation in elderly patients. Inter J Audiol. 2020;60(6):469–478.
  • Campbell J, Sharma A. Compensatory changes in cortical resource allocation in adults with hearing loss. Front Syst Neurosci. 2013;7:71.
  • Hopyan T, Manno III FA, Papsin BC, Gordon KA. Sad and happy emotion discrimination in music by children with cochlear implants. Child Neuropsychol, 2016;22(3):366–380.
  • Jasper HH. The 10/20 international electrode system, EEG. Clin Neurophysiology. 1985;10:371–375. 
  • Di Flumeri G, Aricò P, Borghini G, et al. A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Presented at the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, 3187–e3190..
  • Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21..
  • Aricò P, Borghini G, Di Flumeri GD, et al. Passive BCI in operational environments: insights, recent advances, and future trends. IEEE Trans Biomed Eng. 2017;64(7):1431–1436..
  • Borghini G, Aricò P, Di Flumeri G, et al. EEG-based cognitive control behaviour assessment: an ecological study with professional air traffic controllers. Sci Rep. 2017;7(1).
  • Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999;29(2-3):169–e195.
  • Maglione A, Borghini G, Aricò P, et al. Evaluation of the workload and drowsiness during car driving by using high resolution EEG activity and neurophysiologic indices. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2014, 6238–6241. IEEE.
  • Cartocci G, Maglione AG, Vecchiato G, et al. Mental workload estimations in unilateral deafened children. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2015, 1654–1657. IEEE.
  • Sciaraffa N, Liu J, Aricò P, et al. Multivariate model for cooperation: bridging social physiological compliance and hyperscanning. Soc Cogn Affect Neurosci. 2021;16(1-2):193–209.
  • Davidson RJ, Ekman P, Saron CD, et al. Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology: I. J Pers Soc Psychol. 1990;58(2):330–341.
  • Davidson JR. What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biol Psychol. 2004;67(1-2):219–234.
  • Cartocci G, Modica E, Rossi D, et al. Antismoking campaigns’ perception and gender differences: a comparison among EEG indices. Comput Intell Neurosci. 2019;2019:7348795.
  • Cartocci G, Modica E, Rossi D, et al. Neurophysiological measures of the perception of antismoking public service announcements among young population. Front Hum Neurosci. 2018;12:231.
  • Modica E, Rossi D, Cartocci G, et al. Neurophysiological profile of antismoking campaigns. Comput Intell Neurosci. 2018;2018:9721561.
  • Inguscio BM, Cartocci G, Modica E, et al. Smoke signals: a study of the neurophysiological reaction of smokers and non-smokers to smoking cues inserted into antismoking public service announcements. Int J Psychophysiol. 2021;167:22–29.
  • Dalton BH, Behm DG. Effects of noise and music on human and task performance: a systematic review. OER. 2008;7(3):143–152.
  • Cockerton T, Moore S, Norman D. Cognitive test performance and background music. Percept Mot Skills. 1997;85(3 Pt 2):1435–1438.
  • Harrison DW, Kelly PL. Age differences in cardiovascular and cognitive performance under noise conditions, perceptual and motor skills. Effects Noise Music Hum Task Perform System Rev. 1989;(16):547–554. Available from: https://www.researchgate.net/publication/234654021_Effects_of_noise_and_music_on_human_and_task_performance_A_systematic_review
  • Söderlund G, Sikström S, Smart A. Listen to the noise: noise is beneficial for cognitive performance in ADHD. J Child Psychol Psychiatry. 2007;48(8):840–847.
  • Zeng FG, Fu QJ, Morse R. Human hearing enhanced by noise. Brain Res. 2000;869(1-2):251–255.
  • Chatterjee M, Robert ME. Noise enhances modulation sensitivity in cochlear implant listeners: stochastic resonance in a prosthetic sensory system? J Assoc Res Otolaryngol. 2001;2(2):159–171.
  • Jiam NT, Caldwell M, Deroche ML, et al. Voice emotion perception and production in cochlear implant users. Hear Res. 2017;352:30–39.
  • Chatterjee M, Zion DJ, Deroche ML, et al. Voice emotion recognition by cochlear-implanted children and their normally-hearing peers. Hear Res. 2015;322:151–162.
  • House D. Perception and production of mood in speech by cochlear implant users. In: Proceedings of the International Conference on Spoken Language Processing. 1994, 2051–2054. Online archive of International Speech Communication Association/
  • Fritz T, Jentschke S, Gosselin N, et al. Universal recognition of three basic emotions in music. Curr Biol. 2009;19(7):573–576.
  • Palmer C, Hutchins S. What is musical prosody? Psychol Learn Motivat. 2006;46:245–278.
  • Winn MB, Nelson PB. 2021. Cochlear implants. In: Oxford research encyclopedia of linguistics. Available from: https://doi.org/https://doi.org/10.1093/acrefore/9780199384655.013.893
  • Limb CJ, Roy AT. Technological, biological, and acoustical constraints to music perception in cochlear implant users. Hear Res. 2014;308:13–26.
  • Kessler DM, Ananthakrishnan S, Smith SB, et al. Frequency following response and speech recognition benefit for combining a cochlear implant and contralateral hearing aid. Trends Hear. 2020;24:2331216520902001.
  • Trehub SE, Vongpaisal T, Nakata T. Music in the lives of deaf children with cochlear implants. Ann N Y Acad Sci. 2009;1169(1):534–542.
  • Kalathottukaren RT, Purdy SC, Ballard E. Prosody perception and musical pitch discrimination in adults using cochlear implants. Int J Audiol. 2015;54(7):444–452.
  • Shirvani S, Jafari Z, Motasaddi Zarandi M, et al. Emotional perception of music in children with bimodal fitting and unilateral cochlear implant. Annals of otology. Ann Otol Rhinol Laryngol. 2016;125(6):470–477.
  • Cartocci G, Maglione AG, Vecchiato G, et al. Frontal brain asymmetries as effective parameters to assess the quality of audiovisual stimuli perception in adult and young cochlear implant users. Acta Otorhinolaryngologica Italica. 2018;38(4):346.
  • Vecchiato G, Maglione AG, Scorpecci A, et al. EEG frontal asymmetry related to pleasantness of music perception in healthy children and cochlear implanted users. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012, 4740–4743. IEEE.
  • Kohlberg G, Spitzer JB, Mancuso D, et al. Does cochlear implantation restore music appreciation? Laryngoscope. 2014;124(3):587–588.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.