2,180
Views
14
CrossRef citations to date
0
Altmetric
Articles

Ezrin is essential for the entry of Japanese encephalitis virus into the human brain microvascular endothelial cells

, , , , &
Pages 1330-1341 | Received 11 Feb 2020, Accepted 14 Apr 2020, Published online: 15 Jun 2020

References

  • Campbell GL, Hills SL, Fischer M, et al. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ. 2011;89(10):766–774. 774a–774e.
  • Kuwata R, Torii S, Shimoda H, et al. Distribution of Japanese encephalitis virus, Japan and Southeast Asia, 2016–2018. Emerg Infect Dis. 2020;26(1):125–128.
  • Banerjee A, Tripathi A. Recent advances in understanding Japanese encephalitis. F1000Res. 2019;8: F1000 Faculty Rev-1915.
  • Barzon L, Palu G. Recent developments in vaccines and biological therapies against Japanese encephalitis virus. Expert Opin Biol Ther. 2018;18(8):851–864.
  • Mustafa YM, Meuren LM, Coelho SVA, et al. Pathways exploited by flaviviruses to counteract the blood-brain barrier and invade the central nervous system. Frontiers Microbiol. 2019;10:525.
  • Pardridge WM. Blood-brain barrier biology and methodology. J Neurovirol. 1999;5(6):556–569.
  • Al-Obaidi MMJ, Bahadoran A, Har LS, et al. Japanese encephalitis virus disrupts blood-brain barrier and modulates apoptosis proteins in THBMEC cells. Virus Res. 2017;233:17–28.
  • Chang CY, Li JR, Chen WY, et al. Disruption of in vitro endothelial barrier integrity by Japanese encephalitis virus-infected astrocytes. Glia. 2015;63(11):1915–1932.
  • Dutta K, Mishra MK, Nazmi A, et al. Minocycline differentially modulates macrophage mediated peripheral immune response following Japanese encephalitis virus infection. Immunobiology. 2010;215(11):884–893.
  • Patabendige A, Michael BD, Craig AG, et al. Brain microvascular endothelial-astrocyte cell responses following Japanese encephalitis virus infection in an in vitro human blood-brain barrier model. Mol Cell Neurosci. 2018;89:60–70.
  • Lai CY, Ou YC, Chang CY, et al. Endothelial Japanese encephalitis virus infection enhances migration and adhesion of leukocytes to brain microvascular endothelia via MEK-dependent expression of ICAM1 and the CINC and RANTES chemokines. J Neurochem. 2012;123(2):250–261.
  • Filgueira L, Lannes N. Review of emerging Japanese encephalitis virus: new aspects and concepts about entry into the brain and inter-cellular spreading. Pathogens. 2019;8(3):E111.
  • Shwetank DO, Date OS, Kim KS, et al. Infection of human endothelial cells by Japanese encephalitis virus: increased expression and release of soluble HLA-E. PloS One. 2013;8(11):e79197.
  • Liou ML, Hsu CY. Japanese encephalitis virus is transported across the cerebral blood vessels by endocytosis in mouse brain. Cell Tissue Res. 1998 Sep;293(3):389–394.
  • Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem. 2010;79:803–833.
  • Yamauchi Y, Helenius A. Virus entry at a glance. J Cell Science. 2013;126(Pt 6):1289–1295.
  • Khasa R, Vaidya A, Vrati S, et al. Membrane trafficking RNA interference screen identifies a crucial role of the clathrin endocytic pathway and ARP2/3 complex for Japanese encephalitis virus infection in HeLa cells. J Gen Virol. 2019;100(2):176–186.
  • Tani H, Shiokawa M, Kaname Y, et al. Involvement of ceramide in the propagation of Japanese encephalitis virus. J Virol. 2010;84(6):2798–2807.
  • Liu CC, Zhang YN, Li ZY, et al. Rab5 and rab11 are required for clathrin-dependent endocytosis of Japanese encephalitis virus in BHK-21 cells. J Virol. 2017;91(19):e01113–17.
  • Zhu YZ, Xu QQ, Wu DG, et al. Japanese encephalitis virus enters rat neuroblastoma cells via a pH-dependent, dynamin and caveola-mediated endocytosis pathway. J Virol. 2012;86(24):13407–13422.
  • Xu QQ, Cao MM, Song HY, et al. Caveolin-1-mediated Japanese encephalitis virus entry requires a two-step regulation of actin reorganization. Future Microbiol. 2016;11:1227–1248.
  • Kalia M, Khasa R, Sharma M, et al. Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virology. 2013;87(1):148–162.
  • Chen SL, Liu YG, Zhou YT, et al. Endophilin-A2-mediated endocytic pathway is critical for enterovirus 71 entry into caco-2 cells. Emerg Microbes Infect. 2019;8(1):773–786.
  • Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4(2):67–73.
  • Heiska L, Carpen O. Src phosphorylates ezrin at tyrosine 477 and induces a phosphospecific association between ezrin and a kelch-repeat protein family member. J Biol Chem. 2005;280(11):10244–10252.
  • Zeidan A, Paylor B, Steinhoff KJ, et al. Actin cytoskeleton dynamics promotes leptin-induced vascular smooth muscle hypertrophy via RhoA/ROCK- and phosphatidylinositol 3-kinase/protein kinase B-dependent pathways. J Pharmacol Exp Ther. 2007;322(3):1110–1116.
  • Fehon RG, McClatchey AI, Bretscher A. Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol. 2010;11(4):276–287.
  • Lau C, Wang X, Song L, et al. Syk associates with clathrin and mediates phosphatidylinositol 3-kinase activation during human rhinovirus internalization. J Immunol. 2008;180(2):870–880.
  • Millet JK, Kien F, Cheung CY, et al. Ezrin interacts with the SARS coronavirus Spike protein and restrains infection at the entry stage. PloS One. 2012;7(11):e49566.
  • Locker JK, Kuehn A, Schleich S, et al. Entry of the two infectious forms of vaccinia virus at the plasma membane is signaling-dependent for the IMV but not the EEV. Mol Biol Cell. 2000;11(7):2497–2511.
  • Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–D452.
  • Chojnacka K, Mruk DD. The Src non-receptor tyrosine kinase paradigm: new insights into mammalian Sertoli cell biology. Mol Cell Endocrinol. 2015;415:133–142.
  • Hu G, Minshall RD. Regulation of transendothelial permeability by Src kinase. Microvasc Res. 2009 Jan;77(1):21–25.
  • Gottlieb-Abraham E, Shvartsman DE, Donaldson JC, et al. Src-mediated caveolin-1 phosphorylation affects the targeting of active Src to specific membrane sites. Mol Biol Cell. 2013;24(24):3881–3895.
  • Pearson MA, Reczek D, Bretscher A, et al. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell. 2000;101(3):259–270.
  • Martin TA, Harrison G, Mansel RE, et al. The role of the CD44/ezrin complex in cancer metastasis. Crit Rev Oncol Hematol. 2003;46(2):165–186.
  • Yun SI, Lee YM. Early events in Japanese encephalitis virus infection: viral entry. Pathogens. 2018;7(3):E68.
  • Brown RC, Morris AP, O'Neil RG. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res. 2007;1130(1):17–30.
  • Das S, Chakraborty S, Basu A. Critical role of lipid rafts in virus entry and activation of phosphoinositide 3’ kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells. J Neurochem. 2010;115(2):537–549.
  • Lajoie P, Nabi IR. Regulation of raft-dependent endocytosis. J Cell Mol Med. 2007;11(4):644–653.
  • Yin LM, Duan TT, Ulloa L, et al. Ezrin Orchestrates signal transduction in Airway cells. Rev Physiol Biochem Pharmacol. 2018;174:1–23.
  • Ruppelt A, Mosenden R, Gronholm M, et al. Inhibition of T cell activation by cyclic adenosine 5'-monophosphate requires lipid raft targeting of protein kinase A type I by the A-kinase anchoring protein ezrin. J Immunol. 2007;179(8):5159–5168.
  • Pidoux G, Gerbaud P, Dompierre J, et al. A PKA-ezrin-Cx43 signaling complex controls gap junction communication and thereby trophoblast cell fusion. J Cell Sci. 2014;127(Pt 19):4172–4185.
  • Joshi B, Strugnell SS, Goetz JG, et al. Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res. 2008 Oct 15;68(20):8210–8220.
  • Chen Z, Bakhshi FR, Shajahan AN, et al. Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Mol Biol Cell. 2012 Apr;23(7):1388–1398.
  • Cao H, Courchesne WE, Mastick CC. A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem. 2002 Mar 15;277(11):8771–8774.
  • Raung SL, Chen SY, Liao SL, et al. Tyrosine kinase inhibitors attenuate Japanese encephalitis virus-induced neurotoxicity. Biochem Biophys Res Commun. 2005;327(2):399–406.