3,630
Views
3
CrossRef citations to date
0
Altmetric
Coronaviruses

A human cell-based SARS-CoV-2 vaccine elicits potent neutralizing antibody responses and protects mice from SARS-CoV-2 challenge

, , , , , , , , , , , , , ORCID Icon, , , , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1555-1573 | Received 09 Apr 2021, Accepted 14 Jul 2021, Published online: 12 Aug 2021

References

  • Wu F. A new coronavirus associated with human respiratory disease in China. Nature. 2020;2020:579.
  • De Wit E, Van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016;14(8):523.
  • Lee WS, Wheatley AK, Kent SJ, et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020 Oct;5(10):1185–1191.
  • Salvatori G, Luberto L, Maffei M, et al. SARS-CoV-2 SPIKE PROTEIN: an optimal immunological target for vaccines. J Transl Med. 2020;18:1–3.
  • Wan J, Xing S, Ding L, et al. Human-IgG-neutralizing monoclonal antibodies block the SARS-CoV-2 infection. Cell Rep. 2020 Jul 21;32(3):107918.
  • Wu Y. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science. 2020;2020:368.
  • Zost SJ. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature. 2020;2020:584.
  • Shi R. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature. 2020;2020:584.
  • Wang C. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun. 2020;2020:11.
  • Rogers TF, Zhao F, Huang D, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020;369(6506):956–963.
  • Tai W, Zhang X, Drelich A, et al. A novel receptor-binding domain (RBD)-based mRNA vaccine against SARS-CoV-2. Cell Res. 2020 Oct;30(10):932–935.
  • Yang J, Wang W, Chen Z, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2020 Oct;586(7830):572–577.
  • Maeda DLNF, Tian D, Yu H, et al. Killed whole-genome reduced-bacteria surface expressed coronavirus fusion peptide vaccines protect against disease in a porcine model. Proc Natl Acad Sci. 2021;118(18):e2025622118.
  • Ingegnere T, Mariotti FR, Pelosi A, et al. Human CAR NK Cells: a new non-viral method allowing high efficient transfection and strong tumor cell killing. Front Immunol 2019;10:957.
  • Klein E, Vánky F, Ben-Bassat H, et al. Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. 1976;18(4):421–431.
  • Ji H, Yan Y, Ding B, et al. Novel decoy cellular vaccine strategy utilizing transgenic antigen-expressing cells as immune presenter and adjuvant in vaccine prototype against SARS-CoV-2 virus. Medicine Drug Discovery. 2020 Mar;5:100026.
  • Robinson TM, Prince GT, Thoburn C, et al. Pilot Trial of K562/GM-CSF whole-cell vaccination in MDS patients. Leuk Lymphoma 2018;59(12):2801–2811.
  • Smith BD, Kasamon YL, Kowalski J, et al. K562/GM-CSF immunotherapy reduces tumor burden in chronic myeloid leukemia patients with residual disease on imatinib mesylate. Clin Cancer Res. 2010 Jan 1;16(1):338–347.
  • Curry WT, Gorrepati R, Piesche M, et al. Vaccination with irradiated autologous tumor cells mixed with irradiated GM-K562 cells stimulates antitumor immunity and T Lymphocyte activation in patients with recurrent malignant glioma. Clin Cancer Res. 2016;22(12):2885–2896.
  • Qiu C, Huang Y, Zhang A, et al. Safe pseudovirus-based assay for neutralization antibodies against influenza A(H7N9) virus. Emerg Infect Dis. 2013 Oct;19(10):1685–1687.
  • IFN-κ suppresses the replication of influenza A viruses through the IFNAR-MAPK-Fos-CHD6 axis.
  • Wang S, Parker C, Taaffe J, et al. Heterologous HA DNA vaccine prime – inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses. Vaccine. 2008;26(29–30):3626–3633.
  • Lu S, Wang S. Grimes-Serrano JMJErov. Current progress of DNA vaccine studies in humans. Expert Rev Vaccines 2008;7(2):175–191.
  • Gupta T, Gupta SK. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int Immunopharmacol. 2020 Sep;86:106717.
  • Erasmus JH, Khandhar AP, O'Connor MA, et al. An alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci Transl Med. 2020 Aug 5;12(555):eabc9396.
  • Steinbuck MP, Seenappa LM, Jakubowski A, et al. A lymph node–targeted amphiphile vaccine induces potent cellular and humoral immunity to SARS-CoV-2. Sci Adv. 2021;7(6):eabe5819.
  • Wang G-L, Wang Z-Y, Duan L-J, et al. Susceptibility of circulating SARS-CoV-2 variants to neutralization. N Engl J Med. 2021;384:2354–2356.
  • Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 Variants B. 1.351 and B. 1.1. 7. Nature. 2021;593:130–135.
  • Huang B, Dai L, Wang H, et al. Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y. V2. Lancet Microb. 2021;2:E285.
  • Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines. 2011;10(4):499–511.
  • Zhang R, Wang C, Guan Y, et al. Manganese salts function as potent adjuvants. Cell Mol Immunol. 2021;18(5):1222–1234.
  • HogenEsch H, O’Hagan DT. Fox CBJnV. Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. npj Vaccines. 2018;3(1):1–11.
  • Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586(7830):516–527.
  • van Doremalen N, Lambe T, Spencer A, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586(7830):578–582.
  • Mercado NB, Zahn R, Wegmann F, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature. 2020;586(7830):583–588.
  • Wu S, Zhong G, Zhang J, et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nat Commun. 2020 Aug 14;11(1):4081.
  • Yahalom-Ronen Y, Tamir H, Melamed S, et al. A single dose of recombinant VSV-G-spike vaccine provides protection against SARS-CoV-2 challenge. Nat Commun. 2020 Dec 16;11(1):6402.
  • Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020 Jul 3;369(6499):77–81.
  • Corbett KS, Edwards DK, Leist SR, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020 Oct;586(7830):567–571.
  • Schmidt F, Weisblum Y, Muecksch F, et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J Exp Med. 2020 Nov 2;217(11):e20201181.
  • Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med. 2020;383(16):1544–1555.
  • Hotez PJ, Corry DB. Bottazzi MEJNRI. COVID-19 Vaccine Design: the Janus Face of Immune Enhancement. Nat Rev Immunol. 2020;20(6):347–348.
  • Ulrich H, Pillat MM. Tárnok AJCPA. Dengue fever, COVID-19 (SARS-CoV-2), and antibody-dependent enhancement (ADE): a perspective. Cytometry Part A. 2020;97(7):662–667.
  • Halstead SB. Katzelnick LJTJoid. COVID-19 vaccines: should we fear ADE?. J Infect Dis 2020;222(12):1946–1950.
  • Tseng C-T, Sbrana E, Iwata-Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS Virus. PloS One. 2012;7(4):e35421.
  • Liu Z, VanBlargan LA, Bloyet L-M, et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe. 2021;29(3):477–488. e4.