43
Views
0
CrossRef citations to date
0
Altmetric
Articles

Chemometrics Assisted QuEChERS Extraction Method for the Residual Analysis of Organophosphate Insecticides: Application to Their Dissipation Kinetics in Open Field Ecosystem

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 798-810 | Received 01 Nov 2020, Accepted 11 Jan 2021, Published online: 28 Jan 2021

References

  • Aktar, W., Sengupta, D., Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2: 1-12. doi: 10.2478/v10102-009-0001-7
  • Sahin, C., Karpuzcu, M.E. (2020). Mitigation of organophosphate pesticide pollution in agricultural watersheds. Sci. Total Environ. 710: 136261. doi: 10.1016/j.scitotenv.2019.136261
  • Delcour, I., Spanoghe, P., Uyttendaele, M. (2015). Literature review: Impact of climate change on pesticide use. Food Research International. 68: 7-15. doi: 10.1016/j.foodres.2014.09.030
  • Ojha, A., Gupta, Y. (2017). Study of commonly used organophosphate pesticides that induced oxidative stress and apoptosis in peripheral blood lymphocytes of rats. Human & Experimental Toxicology. 36: 1158-1168. doi: 10.1177/0960327116680273
  • Abhilash, P., Singh, N. (2009). Pesticide use and application: an Indian scenario. J. Hazard. Mater. 165: 1-12. doi: 10.1016/j.jhazmat.2008.10.061
  • Bertero, A., Chiari, M., Vitale, N., Zanoni, M., Faggionato, E., Biancardi, A., Caloni, F. (2020). Types of pesticides involved in domestic and wild animal poisoning in Italy. Sci. Total Environ. 707: 136129. doi: 10.1016/j.scitotenv.2019.136129
  • Huang, X., Cui, H., Duan, W. (2020). Ecotoxicity of chlorpyrifos to aquatic organisms: A review. Ecotoxicol. Environ. Saf. 200: 110731. doi: 10.1016/j.ecoenv.2020.110731
  • Beseler, C.L., Stallones, L., Hoppin, J.A., Alavanja, M.C., Blair, A., Keefe, T., Kamel, F. (2008). Depression and pesticide exposures among private pesticide applicators enrolled in the Agricultural Health Study. Environmental Health Perspectives. 116: 1713. doi: 10.1289/ehp.11091
  • Montgomery, M., Kamel, F., Saldana, T., Alavanja, M., Sandler, D. (2008). Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1993–2003. Am. J. Epidemiol. 167: 1235-1246. doi: 10.1093/aje/kwn028
  • Slager, R.E., Poole, J.A., LeVan, T.D., Sandler, D.P., Alavanja, M.C., Hoppin, J.A. (2009). Rhinitis associated with pesticide exposure among commercial pesticide applicators in the Agricultural Health Study. Occupational and Environmental Medicine. 66: 718-724. doi: 10.1136/oem.2008.041798
  • Ntzani, E.E., Ntritsos, G., Chondrogiorgi, M., Evangelou, E., Tzoulaki, I. (2013). Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA Supporting Publications. 10. doi: 10.2903/sp.efsa.2013.EN-497
  • Arbuckle, T.E., Sever, L.E. (1998). Pesticide exposures and fetal death: a review of the epidemiologic literature. Crit. Rev. Toxicol. 28: 229-270. doi: 10.1080/10408449891344218
  • Azmi, M.A., Naqvi, S., Azmi, M.A., Aslam, M. (2006). Effect of pesticide residues on health and different enzyme levels in the blood of farm workers from Gadap (rural area) Karachi-Pakistan. Chemosphere. 64: 1739-1744. doi: 10.1016/j.chemosphere.2006.01.016
  • Meftaul, I.M., Venkateswarlu, K., Dharmarajan, R., Annamalai, P., Megharaj, M. (2020). Pesticides in the urban environment: A potential threat that knocks at the door. Sci. Total Environ. 711: 134612. doi: 10.1016/j.scitotenv.2019.134612
  • Zhang, X., Shen, Y., Yu, X.-y., Liu, X.-j. (2012). Dissipation of chlorpyrifos and residue analysis in rice, soil and water under paddy field conditions. Ecotoxicol. Environ. Saf. 78: 276-280. doi: 10.1016/j.ecoenv.2011.11.036
  • Chai, L.K., Mohd Tahir, N., Bruun Hansen, H.C. (2009). Dissipation of acephate, chlorpyrifos, cypermethrin and their metabolites in a humid tropical vegetable production system. Pest Management Science: formerly Pesticide Science. 65: 189-196. doi: 10.1002/ps.1667
  • Kaur, R., Kaur, S., Mandal, K., Singh, B. (2015). Dissipation behavior and risk assessment of acephate in brinjal using GLC with FPD. Environ. Monit. Assess. 187: 36. doi: 10.1007/s10661-015-4279-y
  • Mohapatra, S., Deepa, M., Jagdish, G. (2011). Residue dynamics of tebuconazole and quinalphos in immature onion bulb with leaves, mature onion bulb and soil. Bull. Environ. Contam. Toxicol. 87: 703-707. doi: 10.1007/s00128-011-0403-z
  • Ge, J., Lu, M., Wang, D., Zhang, Z., Liu, X., Yu, X. (2016). Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake. Chemosphere. 144: 201-206. doi: 10.1016/j.chemosphere.2015.08.072
  • Lu, M.-X., Jiang, W.W., Wang, J.-L., Jian, Q., Shen, Y., Liu, X.-J., Yu, X.-Y. (2014). Persistence and dissipation of chlorpyrifos in brassica chinensis, lettuce, celery, asparagus lettuce, eggplant, and pepper in a greenhouse. PLoS One. 9: e100556. doi: 10.1371/journal.pone.0100556
  • Radwan, M., Abu-Elamayem, M., Shiboob, M., Abdel-Aal, A. (2005). Residual behaviour of profenofos on some field-grown vegetables and its removal using various washing solutions and household processing. Food and Chemical Toxicology. 43: 553-557. doi: 10.1016/j.fct.2004.12.009
  • Rahimi, S., Talebi, K., Torabi, E., Naveh, V.H. (2015). The dissipation kinetics of malathion in aqueous extracts of different fruits and vegetables. Environ. Monit. Assess. 187: 693. doi: 10.1007/s10661-015-4865-z
  • Romeh, A.A., Mekky, T.M., Ramadan, R.A., Hendawi, M.Y. (2009). Dissipation of profenofos, imidacloprid and penconazole in tomato fruits and products. Bull. Environ. Contam. Toxicol. 83: 812. doi: 10.1007/s00128-009-9852-z
  • FSSAI. (2011). Food safety and standards (contaminants, toxins and residues) regulations.
  • Climent, M.J., Sánchez-Martín, M.J., Rodríguez-Cruz, M.S., Pedreros, P., Urrutia, R., Herrero-Hernández, E. (2018). Determination of pesticides in river surface waters of Central Chile using SPE-GC-MS multi-residue method. Journal of the Chilean Chemical Society. 63: 4023-4031. doi: 10.4067/s0717-97072018000204023
  • Fernandes, T.S.M., Alcântara, D.B., Barbosa, P.G.A., Paz, M.S.d.O., Zocolo, G.J., Nascimento, R.F.d. (2019). Matrix effect evaluation and method validation of organophosphorus pesticide residues in bell peppers (Capsicum annuum L.) by GC-MS determination. Int. J. Environ. Anal. Chem. 1-16.
  • Ni, Y., Yang, H., Zhang, H., He, Q., Huang, S., Qin, M., Chai, S., Gao, H., Ma, Y. (2018). Analysis of four sulfonylurea herbicides in cereals using modified Quick, Easy, Cheap, Effective, Rugged, and Safe sample preparation method coupled with liquid chromatography-tandem mass spectrometry. Journal of Chromatography A. 1537: 27-34. doi: 10.1016/j.chroma.2018.01.017
  • Narenderan, S.T., Meyyanathan, S.N., Babu, B. (2020). Review of pesticides residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Research International. 133: 109141. doi: 10.1016/j.foodres.2020.109141
  • Narenderan, S.T., Meyyanathan, S.N. (2018). Sample Treatment and Determination of Pesticide Residues in Potato Matrices: a Review. Potato Research. 1-21.
  • Anastassiades, M., Lehotay, S.J., Štajnbaher, D., Schenck, F.J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International. 86: 412-431. doi: 10.1093/jaoac/86.2.412
  • Narenderan, S.T., Meyyanathan, S.N., Karri, V.V.S.R. (2019). Experimental design in pesticide extraction methods: A review. Food Chemistry. 289: 384-395. doi: 10.1016/j.foodchem.2019.03.045
  • Fang, Y., Tian, W., Pei, F., Li, P., Shao, X., Fan, Y., Hu, Q. (2017). Simultaneous determination of pesticide residues and antioxidants in blended oil using a liquid-liquid extraction combined with dispersive solid phase extraction method. Food Chemistry. 229: 347-353. doi: 10.1016/j.foodchem.2017.02.094
  • Farina, Y., Abdullah, M.P., Bibi, N., Khalik, W.M.A.W.M. (2017). Determination of pesticide residues in leafy vegetables at parts per billion levels by a chemometric study using GC-ECD in Cameron Highlands, Malaysia. Food Chemistry. 224: 55-61. doi: 10.1016/j.foodchem.2016.11.113
  • Li, M., Dai, C., Wang, F., Kong, Z., He, Y., Huang, Y.T., Fan, B. (2017). Chemometricassisted QuEChERS extraction method for post-harvest pesticide determination in fruits and vegetables. Scientific Reports. 7: 42489. doi: 10.1038/srep42489
  • Narenderan, S.T., Meyyanathan, S.N., Karri, V.V.S.R., Babu, B., Chintamaneni, P. (2019). Multivariate response surface methodology assisted modified QuEChERS extraction method for the evaluation of organophosphate pesticides in fruits and vegetables cultivated in Nilgiris, South India. Food Chemistry. 300: 125188. doi: 10.1016/j.foodchem.2019.125188
  • DHPC. (2019). Directorate of Horticulture and Plantation Crops Agriculture Department, Government of Tamil Nadu.
  • IMD. (2018). Indian Meteorological Department, Ministry of Earth Science.
  • Pszczoliñska, K., Michel, M. (2016). The QuEChERS approach for the determination of pesticide residues in soil samples: An overview. Journal of AOAC International. 99: 1403-1414. doi: 10.5740/jaoacint.16-0274
  • Lehotay, S.J. (2011). QuEChERS sample preparation approach for mass spectrometric analysis of pesticide residues in foods. Mass spectrometry in food safety. Springer. 65-91. doi: 10.1007/978-1-61779-136-9_4
  • Cappiello, A., Famiglini, G., Palma, P., Pierini, E., Termopoli, V., Trufelli, H. (2008). Overcoming matrix effects in liquid chromatography” mass spectrometry. Analytical Chemistry. 80: 9343-9348. doi: 10.1021/ac8018312
  • Xu, Y., Song, N., Zhang, Q., Liu, J., Chen, G., Shi, L., Wang, J. (2017). A strategy for the evaluation of an analytical approach for selected pesticide residues in complex agricultural product matrices-A case study of leek. Food Chemistry. 221: 205-213. doi: 10.1016/j.foodchem.2016.10.009
  • Maestroni, B., Vazquez, A.R., Avossa, V., Goos, P., Cesio, V., Heinzen, H., Riener, J., Cannavan, A. (2018). Ruggedness testing of an analytical method for pesticide residues in potato. Accredit. Qual. Assur. 23: 303-316. doi: 10.1007/s00769-018-1335-7
  • Alimentarius, C. (2017). Guidelines on performance criteria for methods of analysis for the determination of pesticide residues in food and feed. CAC/GL. 90-2017.
  • de Souza Pinheiro, A., da Rocha, G.O., de Andrade, J.B. (2011). A SDME/GC-MS methodology for determination of organophosphate and pyrethroid pesticides in water. Microchemical Journal. 99: 303-308. doi: 10.1016/j.microc.2011.05.019
  • Srivastava, A.K., Trivedi, P., Srivastava, M., Lohani, M., Srivastava, L.P. (2011). Monitoring of pesticide residues in market basket samples of vegetable from Lucknow City, India: QuEChERS method. Environ. Monit. Assess. 176: 465-472. doi: 10.1007/s10661-010-1597-y
  • Tse, H., Comba, M., Alaee, M. (2004). Method for the determination of organophosphate insecticides in water, sediment and biota. Chemosphere. 54: 41-47. doi: 10.1016/S0045-6535(03)00659-3
  • EU. (2005). European Commission pesticide database.
  • Shen, G., Hu, X., Hu, Y. (2009). Kinetic study of the degradation of the insecticide pymetrozine in a vegetable-field ecosystem. J. Hazard. Mater. 164: 497-501. doi: 10.1016/j.jhazmat.2008.08.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.