13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the synergistic effect of asenapine maleate with fluoxetine on ketamine induced behavioural effects and estimation of brain monoamine in rats

, , &
Pages 158-169 | Received 15 Jan 2024, Accepted 11 Mar 2024, Published online: 11 Apr 2024

References

  • Singh, S.K., Kosuru, R., Dewangan, H.K., Singh, S. (2015). An overview on asenapine maleate: PK-PD, preclinical and clinical update. Pharmasociety. 11: 110-115.
  • Suresh, A., Narayan, R., Nayak, U.Y. (2020). Recent advances in the development of asenapine formulations. Expert Opinion on Drug Delivery. 17(10): 1377-1393. doi: 10.1080/17425247.2020.1792439
  • Plosker, G.L., Deeks, E.D. (2016). Asenapine: a review in schizophrenia. CNS drugs. 30: 655-666. doi: 10.1007/s40263-016-0363-2
  • Alphs, L., Panagides, J., Lancaster, S. (2007). Asenapine in the treatment of negative symptoms of schizophrenia: clinical trial design and rationale. Psychopharmacology Bulletin. 40(2): 41.
  • Al Hemaid, N.A.A., Alsaeed, B.A., Bakhshwaen, S.O.S., Al Thwaimr, Z.A.J., Alshibely, A.Y., Alghamdi, A.G.A., Naif Z.A.N., Al Jabal, A.O., Aljewayed, B.H., Aljibreen, S.A., (2020). An Overview on Schizophrenia Diagnosis and Management Approach. World Journal of Environmental Biosciences. 9(4): 41-44.
  • Lachaine, J., Beauchemin, C., Mathurin, K., Gilbert, D., Beillat, M. (2014). Cost-effectiveness of asenapine in the treatment of schizophrenia in Canada. Journal of Medical Economics. 17(4): 296-304. doi: 10.3111/13696998.2014.897627
  • Frånberg, O., Wiker, C., Marcus, M.M., Konradsson, Å., Jardemark, K., Schilström, B., Shahid, M., Wong, E.H., Svensson, T.H. (2008). Asenapine, a novel psychopharmacologic agent: preclinical evidence for clinical effects in schizophrenia. Psychopharmacology. 196: 417-429. doi: 10.1007/s00213-007-0973-y
  • Supriya, A., Sundaraseelan, J., Murthy, B.R.S., Priya, M.B., (2018). Formulation and evaluation of capsules of asenapine maleate loaded chitosan nanoparticles. Acta Scient Pharm Sci. 2(3): 29-37.
  • Panda, K.C., Reddy, A.V., Habibuddin, Enhancement OfAsenapine With Poloxamer188 By Solvent Evaporation Method. Journal of Pharmacy and Chemistry. 11(1): 8-11.
  • Altamura, A.C., Moro, A.R., Percudani, M. (1994). Clinical pharmacokinetics of fluoxetine. Clinical Pharmacokinetics. 26: 201-214. doi: 10.2165/00003088-199426030-00004
  • Caiaffo, V., Oliveira, B.D., de Sá, F.B., Evêncio Neto, J. (2016). Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine. Pharma-cology Research & Perspectives. 4(3): e00231. doi: 10.1002/prp2.231
  • Du Jardin, K.G., Liebenberg, N., Müller, H.K., Elfving, B., Sanchez, C., Wegener, G. (2016). Differential interaction with the serotonin system by S-ketamine, vortioxetine and fluoxetine in a genetic rat model of depression. Psychopharmacology. 233: 2813-2825. doi: 10.1007/s00213-016-4327-5
  • Ayano, G. (2016). Psychotropic medications metabolized by cytochromes P450 (CYP1A2) enzyme and relevant drug interactions: Review of articles. Austin Journal of Pharmacology and Therapeutics. 4(2): 2-5.
  • Becker, A., Peters, B., Schroeder, H., Mann, T., Huether, G., Grecksch, G. (2003). Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 27(4): 687-700. doi: 10.1016/S0278-5846(03)00080-0
  • Arruda, M.D.O.V., Soares, P.M., Honório, J.E.R., Lima, R.C.D.S., Chaves, E.M.C., Lobato, R.D.F.G., Martin, A.L.D.A.R., Sales, G.T.M., Carvalho, K.D.M., Assreuy, A.M.S., De Brito, E.M. (2008). Activities of the antipsychotic drugs haloperidol and risperidone on behavioural effects induced by ketamine in mice. Scientia Pharmaceutica. 76(4): 673-688. doi: 10.3797/scipharm.0810-11
  • Carola, V., D'Olimpio, F., Brunamonti, E., Mangia, F., Renzi, P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural Brain Research. 134(1-2): 49-57. doi: 10.1016/S0166-4328(01)00452-1
  • Sáenz, J.C.B., Villagra, O.R., Trías, J.F. (2006). Factor analysis of forced swimming test, sucrose preference test and open field test on enriched, social and isolated reared rats. Behavioural Brain Research. 169(1): 57-65. doi: 10.1016/j.bbr.2005.12.001
  • Akotkar, L., Aswar, U., Patil, R., Kumar, D., Aswar, M., Pandey, J. (2022). Modulation of Dopaminergic and Serotonergic Neurotrans-mission. Research Square. 1-26.
  • De Benedetto, G.E., Fico, D., Pennetta, A., Malitesta, C., Nicolardi, G., Lofrumento, D.D., De Nuccio, F., La Pesa, V. (2014). A rapid and simple method for the determination of 3, 4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. Journal Of Pharmaceutical And Biomedical Analysis. 1(98): 266-70. doi: 10.1016/j.jpba.2014.05.039
  • Frye, C.A., Walf, A.A. (2002). Changes in progesterone metabolites in the hippocampus can modulate open field and forced swim test behavior of proestrous rats. Hormones and Behavior. 41(3): 306-315. doi: 10.1006/hbeh.2002.1763
  • Perry, K.W., Fuller, R.W. (1997). Fluoxetine increases norepinephrine release in rat hypothalamus as measured by tissue levels of MHPG-SO 4 and microdialysis in conscious rats. Journal of Neural Transmission. 104: 953-966. doi: 10.1007/BF01285563
  • Kiang, M., Christensen, B.K., Remington, G., Kapur, S. (2003). Apathy in schizophrenia: clinical correlates and association with functional outcome. Schizophrenia Research. 63(1-2): 79-88. doi: 10.1016/S0920-9964(02)00433-4
  • Krystal, J.H., Karper, L.P., Seibyl, J.P., Freeman, G.K., Delaney, R., Bremner, J.D., Heninger, G.R., Bowers Jr, M.B., Charney, D.S. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of General Psychiatry. 51(3): 199-214. doi: 10.1001/archpsyc.1994.03950030035004
  • Lipska, B.K., Weinberger, D.R. (2000). To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsycho-pharmacology. 23(3): 223-239. doi: 10.1016/S0893-133X(00)00137-8
  • Homayoun, H., Moghaddam, B. (2007). NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. Journal of Neuroscience 27(43): 11496-11500. doi: 10.1523/JNEUROSCI.2213-07.2007
  • Krystal, J.H., Perry, E.B., Gueorguieva, R., Belger, A., Madonick, S.H., Abi-Dargham, A., Cooper, T.B., MacDougall, L., Abi-Saab, W., D’Souza, D.C. (2005). Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications General Psychiatry. 62(9): 985-995. doi: 10.1001/archpsyc.62.9.985
  • Stone, J.M., Erlandsson, K., Arstad, E., Squassante, L., Teneggi, V., Bressan, R.A., Krystal, J.H., Ell, P.J., Pilowsky, L.S. (2008). Relationship between ketamine induced psychotic symptoms and NMDA receptor occupancy-a [123 I] CNS-1261 SPET study. Psychopharmacology. 197: 401-408. doi: 10.1007/s00213-007-1047-x
  • Javitt, D.C., Zukin, S.R. (1991). Recent advances in the phencyclidine model of schizophrenia. The American Journal of Psychiatry. 148(10): 1301-1308. doi: 10.1176/ajp.148.10.1301
  • Olney, J.W., Farber, N.B. (1995). Glutamate receptor dysfunction and schizophrenia. Archives Of General Psychiatry. 52(12): 998-1007. doi: 10.1001/archpsyc.1995.03950240016004
  • Deakin, J.W., Lees, J., McKie, S., Hallak, J.E., Williams, S.R., Dursun, S.M. (2008). Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Archives Of General Psychiatry. 65(2): 154-164. doi: 10.1001/archgenpsychiatry.2007.37
  • Doyle, C., Lennox, L., Bell, D. (2013). A systematic review of evidence on the links between patient experience and clinical safety and effectiveness. BMJ open. 3(1): e001570. doi: 10.1136/bmjopen-2012-001570
  • Lidow, M.S., Koh, P.O., Arnsten, A.F. (2003). D1 dopamine receptors in the mouse prefrontal cortex: immunocytochemical and cognitive neuropharmacological analyses. Synapse. 47(2): 101-108. doi: 10.1002/syn.10143
  • Cryan, J.F., Mombereau, C., Vassout, A. (2005). The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neuroscience & Biobehavioral Reviews. 29(4-5): 571-625. doi: 10.1016/j.neubiorev.2005.03.009
  • Browne, C.A., Lucki, I. (2013). Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Frontiers in Pharmacology. 4: 69314. doi: 10.3389/fphar.2013.00161
  • Merikangas, K.R., Avenevoli, S. (2002). Epidemiology of mood and anxiety disorders in children and adolescents. Textbook In Psychiatric Epidemiology. 657-704. doi: 10.1002/0471234311.ch24
  • Geyer, M.A., Markou, A. (1995). Animal models of psychiatric disorders. Psychopharmacology: The Fourth Generation Of Progress. 787: 798.
  • Henry, S.A., Lehmann-Masten, V., Gasparini, F., Geyer, M.A., Markou, A. (2002). The mGluR5 antagonist MPEP, but not the mGluR2/3 prepulse inhibition and locomotor activity. Neuropharmacology. 43(8): 1199-1209. doi: 10.1016/S0028-3908(02)00332-5
  • Welker, W.I. (1957). a”Free” versus “forced” exploration of a novel situation by rats. Psychological Reports. 3(1): 95-108. doi: 10.2466/pr0.1957.3.g.95
  • Belzung, C., Le Pape, G. (1994). Comparison of different behavioral test situations used in psychopharmacology for measurement of anxiety. Physiology & Behavior. 56(3): 623-628. doi: 10.1016/0031-9384(94)90311-5
  • Dulawa, S.C., Grandy, D.K., Low, M.J., Paulus, M.P., Geyer, M.A. (1999). Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli. Journal of Neuroscience. 19(21): 9550-9556. doi: 10.1523/JNEUROSCI.19-21-09550.1999
  • Prut, L., Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal Of Pharmacology. 463(1-3): 3-33. doi: 10.1016/S0014-2999(03)01272-X
  • Ayano, G.J.J.M.D.T. (2016). Dopamine: receptors, functions, synthesis, pathways, locations and mental disorders: review of literatures. J Ment Disord Treat. 2(2): 1000120. doi: 10.4172/2471-271X.1000120

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.