32
Views
0
CrossRef citations to date
0
Altmetric
Articles

Curcumin has Protective Effects on ROS Production and Redox Imbalance in an Experimental Oxidative-Stressed Model of Rat

ORCID Icon, , , &
Pages 484-494 | Received 21 Jun 2020, Accepted 09 Dec 2020, Published online: 03 Jan 2021

References

  • Carvalho, A.N., Firuzi, O., Gama, M.J., Horssen, J.V., Saso, L. (2017). Oxidative Stress and Antioxidants in Neurological Diseases: Is There Still Hope? Curr. Drug Targets. 18(6): 705-718. doi: 10.2174/1389450117666160401120514
  • López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., Kroemer, G. (2013). The hall- marks of aging. Cell. 153(6): 1194-1217. doi: 10.1016/j.cell.2013.05.039
  • Uttara, B., Singh, A.V., Zamboni, P., Mahajan, R.T. (2009). Oxidative stress and neuro- degenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7(1): 65-74. doi: 10.2174/157015909787602823
  • Lund, B.O., Miller, D.M., Woods, J.S. (1993). Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem. Pharmacol. 45(10): 2017-2024. doi: 10.1016/0006-2952(93)90012-L
  • Priyadarsini, K.I., Maity, D.K., Naik, G.H., Kumar, M.S., Unnikrishnan, M.K., Satav, J.G., Mohan, H. (2003). Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med. 35(5): 475-484. doi: 10.1016/S0891-5849(03)00325-3
  • Singh, P., Rizvi, S.I. (2015). Role of Curcumin in Modulating Plasma PON1 Arylesterase Activity and Susceptibility to LDL Oxidation in Oxidatively Challenged Wistar Rats. Lett. Drug Des. Discov. 12(4): 319-323. doi: 10.2174/1570180811666141016000539
  • Jain, A., Jain, P., Parihar, D.K. (2019). Comparative Study of In-vitro Antidiabetic and Anti- bacterial Activity of Non-conventional Curcuma Species. J. Biologically Active Prod. Nat. 9(6): 457-464. doi: 10.1080/22311866.2019.1710253
  • Afzal, A., Oriqat, G., Khan, M.A., Jose, J., Afzal, M. (2013). Chemistry and Biochemistry of Terpenoids from Curcuma and Related Species. J. Biologically Active Prod. Nat. 3(1): 1-55. doi: 10.1080/22311866.2013.782757
  • Menon, L.G., Kuttan, R., Kuttan, G. (1995). Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds. Cancer Lett. 95(1-2): 221-225. doi: 10.1016/0304-3835(95)03887-3
  • Deguchi, A. (2015). Curcumin targets in inflammation and cancer. Endocr. Metab. Immune. Disord. Drug Targets. 15(2): 88-96. doi: 10.2174/1871530315666150316120458
  • Devassy, J.G., Nwachukwu, I.D., Jones, P.J. (2015). Curcumin and cancer: barriers to obtaining a health claim. Nutr. Rev. 73(3): 155-165. doi: 10.1093/nutrit/nuu064
  • Tang, M., Taghibiglou, C. (2017). The Mechanisms of Action of Curcumin in Alzheimer’s Disease. J. Alzheimers Dis. 58(4): 1003-1016. doi: 10.3233/JAD-170188
  • Boujbiha, M.A., Hamden, K., Guermazi, F., Bouslama, A., Omezzine, A., Kammoun, A., Feki, A.E. (2009). Testicular toxicity in mercuric chloride treated rats: association with oxidative stress. Reprod. Toxicol. (Elmsford, N.Y.) 28(1): 81-89. doi: 10.1016/j.reprotox.2009.03.011
  • Brandão, R., Nogueira, C.W. (2011). Inhibition of hepatic ä-aminolevulinate dehydratase activity induced by mercuric chloride is potentiated by N-acetylcysteine in vitro. Food Chem. Toxicol. 49(1): 305-308. doi: 10.1016/j.fct.2010.10.033
  • Kim, S.H., Sharma, R.P. (2005). Mercury alters endotoxin-induced inflammatory cytokine expression in liver: differential roles of p38 and extracellular signal-regulated mitogen-activated protein kinases. Immunopharmacol. Immunotoxicol. 27(1): 123-135. doi: 10.1081/IPH-51757
  • Hussain, S., Rodgers, D.A., Duhart, H.M., Ali, S.F. (1997). Mercuric chloride-induced reactive oxygen species and its effect on antioxidant enzymes in different regions of rat brain. J. Environ. Sci. Health B. 32(3): 395-409. doi: 10.1080/03601239709373094
  • Woods, J.S., Calas, C.A., Aicher, L.D. (1990). Stimulation of porphyrinogen oxidation by mercuric ion. II. Promotion of oxidation from the interaction of mercuric ion, glutathione, and mitochondria-generated hydrogen peroxide. Mol. Pharmacol. 38(2): 261-266.
  • Langeswaran, K., Selvaraj, J., Ponnulakshmi, R., Mathaiyan, M., Vijayaprakash, S. (2018). Protective Effect of Kaempferol on Biochemical and Histopathological Changes in Mercuric Chloride Induced Nephrotoxicity in Experimental Rats. J. Biologically Active Prod. Nat. 8(2): 125-136. doi: 10.1080/22311866.2018.1451386
  • Al-Asmari, A.K., Al-Elaiwi, A.M., Athar, M.T., Tariq, M., Al-Eid, A., Al-Asmary, S.M. (2014). A review of hepatoprotective plants used in saudi traditional medicine. Evid. Based. Complement. Alternat. Med. 2014 (890842): 1-22. doi: 10.1155/2014/890842
  • Marchesi, V.T., Palade, G.E. (1967). The localization of Mg-Na-K-activated adenosine triphos- phatase on red cell ghost membranes. J. Cell Biol. 35(2): 385-404. doi: 10.1083/jcb.35.2.385
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193(1): 265-275.
  • Wang, H., Joseph, J.A. (1999). Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27(5-6): 612-616. doi: 10.1016/S0891-5849(99)00107-0
  • Apak, R., Güçlü, K., Ozyürek, M., Karademir, S.E., Altun, M. (2005). Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free Radic. Res. 39(9): 949-961. doi: 10.1080/10715760500210145
  • Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A. G., Ahn, B.W., Shaltiel, S., Stadtmanet, E.R. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186: 464-478. doi: 10.1016/0076-6879(90)86141-H
  • Kitajima, H., Yamaguchi, T., Kimoto, E. (1990). Hemolysis of human erythrocytes under hydrostatic pressure is suppressed by cross-linking of membrane proteins. J. Biochem. 108(6): 1057-1062. doi: 10.1093/oxfordjournals.jbchem.a123305
  • Mehdi, M.M., Singh, P., Rizvi, S.I. (2012). Erythrocyte sialic acid content during aging in humans: correlation with markers of oxidative stress. Dis. Markers. 32(3): 179-186. doi: 10.1155/2012/293429
  • Mohanty, J.G., Nagababu, E., Rifkind, J.M. (2014). Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 5(84): 1-6.
  • Keston, A.S., Brandt, R. (1965). The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 11: 1-5. doi: 10.1016/0003-2697(65)90034-5
  • Jakubowski, W., Bartosz G. (1997). Estimation of oxidative stress in Saccharomyces cerevisae with fluorescent probes. Int. J. Biochem. Cell Biol. 29(11): 1297-301. doi: 10.1016/S1357-2725(97)00056-3
  • Garg, G., Singh, S., Singh, A.K., Rizvi, S.I. (2017). Metformin Alleviates Altered Erythrocyte Redox Status During Aging in Rats. Rejuvenation Res. 20(1): 15-24. doi: 10.1089/rej.2016.1826
  • Singh, S., Garg, G., Singh, A.K., Bissoyi, A., Rizvi, S.I. (2019). Fisetin, a potential caloric restriction mimetic, attenuates senescence biomarkers in rat erythrocytes. Biochem. Cell Biol. 97(4): 480-487. doi: 10.1139/bcb-2018-0159
  • Dewprashad, B., Hadir, L. (2010). Developing an Invisible Message about Relative Acidities of Alcohols in the Natural Products Henna, Turmeric, Rose Petals, and Vitamin A. J. Chem. Educ. 87(1): 36-39. doi: 10.1021/ed800014k
  • Hawkins, C.L., Morgan, P.E., Davies, M.J. (2009). Quantification of protein modification by oxidants. Free Radic. Biol. Med. 46(8): 965-988. doi: 10.1016/j.freeradbiomed.2009.01.007
  • Donne, I.D., Rossi, R., Giustarini, D., Milzani, A. (2003). Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta. 329(1-2): 23-38. doi: 10.1016/S0009-8981(03)00003-2
  • Stadtman, E.R. (2006). Protein oxidation and aging. Free Radic. Res. 40(12): 1250-1258. doi: 10.1080/10715760600918142
  • Sangeetha, P., Balu, M., Haripriya, D., Panneerselvam, C. (2005). Age associated changes in erythrocyte membrane surface charge: Modulatory role of grape seed proanthocyanidins. Exp. Gerontol. 40(10): 820-828. doi: 10.1016/j.exger.2005.07.008
  • Eylar, E.H., Madoff, M.A., Brody, O.V., Oncley, J.L. (1962). The contribution of sialic acid to the surface charge of the erythrocyte. J. Biol. Chem. 237: 1992-2000.
  • Huang, Y.X., Wu, Z.J., Mehrishi, J., Huang, B.T., Chen, X.Y., Zheng, X.J., Liu, W.J., Luo, M. (2011). Human red blood cell aging: correlative changes in surface charge and cell properties. J. Cell. Mol. Med. 15(12): 2634-2642. doi: 10.1111/j.1582-4934.2011.01310.x
  • Singh, A.K., Singh, S., Garg, G., Rizvi, S.I. (2018). Rapamycin mitigates erythrocyte membrane transport functions and oxidative stress during aging in rats. Arch. Physiol. Biochem. 124(1): 45-53. doi: 10.1080/13813455.2017.1359629
  • Balcerczyk, A., Bartosz, G. (2003). Thiols are main determinants of total antioxidant capacity of cellular homogenates. Free Radic. Res. 37(5): 537-541. doi: 10.1080/1071576031000083189
  • Tsantes, A.E., Bonovas, S., Travlou, A., Sitaras, N.M. (2006). Redox imbalance, macro- cytosis, and RBC homeostasis. Antioxid. Redox Signal. 8(7-8): 1205-1216. doi: 10.1089/ars.2006.8.1205
  • Takenaka, Y., Miki, M., Yasuda, H., Mino, M. (1991). The effect of alpha-tocopherol as an antioxidant on the oxidation of membrane protein thiols induced by free radicals generated in different sites. Arch. Biochem. Biophys. 285(2): 344-350. doi: 10.1016/0003-9861(91)90370-X
  • Garg, G., Singh, S., Singh, A.K., Rizvi, S.I. (2017). Metformin Alleviates Altered Erythrocyte Redox Status During Aging in Rats. Rejuvenation Res. 20(1): 15-24. doi: 10.1089/rej.2016.1826
  • Singh, S., Garg, G., Singh, A.K., Tripathi, S.S., Rizvi, S.I. (2019). Fisetin, a potential caloric restriction mimetic, modulates ionic homeostasis in senescence induced and naturally aged rats. [published online ahead of print, 2019 Sep 9]. Arch. Physiol. Biochem. 1-8. doi: 10.1080/13813455.2019.1662452

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.