1,923
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Larvicidal and pathological effects of green synthesized silver nanoparticles from Artemisia herba-alba against Spodoptera littoralis through feeding and contact application

ORCID Icon, , , , & ORCID Icon
Pages 239-253 | Received 03 Jan 2022, Accepted 04 Apr 2022, Published online: 26 Apr 2022

References

  • Saleh H, Abd El-Rahman S, El-Gably A, et al. Biological and histological effects of certain insecticides on Spodoptera littoralis (bosid). J Plant Protection Pathol. 2021;12(2):111–115. DOI:10.21608/jppp.2021.154391.
  • European and Mediterranean Plant Protection Organization (EPPO). European and Mediterranean Plant Protection Organization. Spodoptera litura Fabricious. EPPO Bulletin. 2008;9:142–146.
  • Yadav SK. Pesticide applications-threat to ecosystems. J Human Ecol. 2010;32(1):37–45.
  • Bulmer MS, Bachelet I, Raman R, et al. Targeting an antimicrobial effector function in insect immunity as a pest control strategy. PNAS. 2009;106(31):12652–12657.
  • Zhang S, Xiao-zhen YE. Impacts of chemical insecticides on extracellular protease and chitinase activities of Metarhizium anisopliae. J Coll For. 2010;4:289–292.
  • Cloyd RA, Bethke JA. Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiors cape environments. Pest Manag Sci. 2011;67(1):3–9.
  • Bhattachayya A, Bhaumik A, Usha Rani P, et al. Nano-particles: a recent approach to insect pest control. Afr J Biotechnol. 2010;9(24):3489–3493.
  • Saxena A, Tripathi RM, Singh RP. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Digest J Nanomater Bio Structures. 2010;5:427–432.
  • Elumalai EK, Prasad TN, Hemachandran J, et al. Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharmacol Sci Res. 2010;2(9):549–554.
  • Scarfato P, Avallone E, Iannelli P, et al. Synthesis and characterization of polyurea microcapsules containing essential oils with antigerminative activity. J Appl Polym Sci. 2007;105(6):3568–3577. DOI:10.1002/app.26420.
  • Debnath N, Das S, Seth D, et al. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci. 2011;84(1):99–105. DOI:10.1007/s10340-010-0332-3.
  • Valentina Y. Optimization of reactant concentration in biosynthesis of silver nanoparticles using pathogenic bacteria isolated from clinical sources and their characterization. Indian J Microbiol Res. 2020;7(1):63–69.
  • Hammer KA, Carson CF, Riley TV, et al. A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food Chem Toxicol. 2006;44(5):616–625. DOI:10.1016/j.fct.2005.09.001.
  • Barik TK, Sahu B, Swain V. Nanosilica from medicine to pest control. Parasitol Res. 2008;103(2):253–258.
  • Raja S, Ramesh V, Thivaharan V. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian J Chem. 2017;10(2):253–261.
  • Shankar SS, Rai A, Ahmad A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275(2):496–502. DOI:10.1016/j.jcis.2004.03.003.
  • Casida JE, Quistad GB. Insecticide targets: learning to keep up with resistance and changing concepts of safety. Agric Chem Biotechnol. 2005;43:185–191.
  • Tavakoli F, Salavati-Niasari M, Badiei A, et al. Green synthesis and characterization of graphene nanosheets. Mater Res Bull. 2015;63:51–57.
  • Mousavi B, Tafvizi F, Bostanabad SZ. Green synthesis of silver nanoparticles using artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artif Cells Nanomed Biotechnol. 2018;46(sup1):499–510.
  • Almasoud N, Alhaik H, Almutairi M, et al. Green nanotechnology synthesized silver nanoparticles: characterization and testing its antibacterial activity. Green Process Synth. 2021;10(1):510–528. DOI:10.1515/gps-2021-0048.
  • Carvalho IS, Cavaco T, Brodelius M. Phenolic composition and antioxidant capacity of six Artemisia species. Ind Crops Prod. 2011;33(2):382–388.
  • Khan M, Mousa AA, Syamasundar KV, et al. Determination of chemical constituents of leaf and stem essential oils of Artemisia monosperma from central Saudi Arabia. Nat Prod Commun. 2012;7(8):1079–1082. DOI:10.1177/1934578X1200700829.
  • Seddiek SA, Ali MM, Khater HF, et al. Anthelmintic activity of the white wormwood, Artemisia herba-alba against heterakis gallinarum infecting Turkey poults. J Med Plant Res. 2011;5:3946–3957.
  • Vijayakumar M, Priya K, Nancy FT, et al. Biosynthesis, characterization and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crops Prod. 2013;41:235–240.
  • Basavegowda N, Idhayadhulla A, Lee YR. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities. Mater Sci Eng. 2014;43:58–64.
  • Aziz AT, Alshehri MA, Panneerselvam C, et al. The desert wormwood (Artemisia herba-alba) – from Arabian folk medicine to a source of green and effective nanoinsecticides against mosquito vectors. J Photochem Photobiol B Biol. 2018;180:225–234.
  • Bamal D, Singh A, Chaudhary G, et al. Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: an updated review. Nanomaterials. 2021;11(8):2086. DOI:10.3390/nano11082086.
  • Athanassiou CG, Kavallieratos NG, Benelli G, et al. Nanoparticles for pest control: current status and future perspectives. J Pest Sci. 2018;91(1):1–15. DOI:10.1007/s10340-017-0898-0.
  • Maroufpour N, Mousavi M, Asgari Lajayer B, Ghorbanpour, M. Biogenic Nanoparticles in the Insect World: Challenges and Constraints . Biogenic Nano-Particles and Their Use in Agro-Ecosystems. 2020;173–185.
  • Manimegalai T, Raguvaran K, Kalpana M, et al. Green synthesis of silver nanoparticle using Leonotis nepetifolia and their toxicity against vector mosquitoes of Aedes aegypti and culex quinquefasciatus and agricultural pests of Spodoptera litura and Helicoverpa armigera. Environ Sci Pollut Res. 2020;27(34):43103–43116. DOI:10.1007/s11356-020-10127-1.
  • El-Rahman AF A, Tahany GM. Green synthesis of silver nanoparticle using eucalyptus globulus leaf extract and its antibacterial activity. J Appl Sci Res. 2013;9(10):6437–6440.
  • Asoro MA, Kovar D, Ferreira PJ. In situ transmission electron microscopy observations of sublimation in silver nanoparticles. ACS Nano. 2013;7(9):7844–7852.
  • Das R, Nath SS, Chakdar D, et al. Preparation of silver nanoparticles and their characterization. J Nanotechnol. 2009;5:1–6.
  • Alamdari S, Ghamsari MS, Lee C, et al. Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Appl Sci. 2020;10(10):3620. DOI:10.3390/app10103620.
  • Hatem A, Azazy A, Abd El-Samad S, et al. Toxicity and bioactivity of feeding cotton leaf worm, Spodoptera littoralis (boisduval) (lepidoptera: noctuidae) larvae on fresh leaves of selected weeds. J Plant Prot Pathol. 2011;2(3):257–273. DOI:10.21608/jppp.2011.86418.
  • WHO. Guidelines for Laboratory and field testing of mosquito larvicides. World Health Organization Document WHO. 2005;13:39. cds /WHO-pes/gcdpp/.
  • Kasmara H, Melanie NDA, Hermawan, W, et al. The toxicity evaluation of prepared lantana camara nano extract against Spodoptera litura (Lepidoptera: Noctuidae).AIP Conference Proceedings, Indonesia. 2018; 1927:1–7.
  • Jafer FS, Annon MR. Larvicidal effect of pure and green-synthesized silver nanoparticles against Tribolium castaneum (herb.) and Callosobruchus maculatus (fab.). J Glob Pharm Technol. 2018;10(3):448–454.
  • Kjanijou M, Jiraungkoo K, Kosai P, et al. Effect of Murraya paniculata leaf extract against Culex quinquefasciatus larva. Asian J Biol Sci. 2012;5(4):201–208. DOI:10.3923/ajbs.2012.201.208.
  • SPSS. Statistical product and service solution, system user’s guide, version 17.0.0.0. (U.S.A: Polar Engineering and Consultin). 2008. http://www.winwrap.com.
  • Finney DF. Probit analysis. J Pharm Sci. 1971;60:1432–1432.
  • Kumar PM, Murugan K, Madhiyazhagan P, et al. Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol Res. 2016;115(2):751–759. DOI:10.1007/s00436-015-4799-y.
  • Kumar D, Kumar G, Agrawal V. Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol Res. 2018;117(2):377–389.
  • Roni M, Murugan K, Panneerselvam C, et al. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf. 2015;121:31–38.
  • Sujitha V, Murugan K, Paulpandi M, et al. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. 2015;114(9):3315–3325. DOI:10.1007/s00436-015-4556-2.
  • Benelli G, Lukehart CM. Special issue: applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Cluster Sci. 2017;28(1):1–2.
  • Rajan R, Chandran K, Harper SL, et al. Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crops Prod. 2015;70:356–373.
  • Benelli G, Pavela R, Maggi F, et al. Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Cluster Sci. 2017;28(1):3–10. DOI:10.1007/s10876-016-1131-7.
  • Govindarajan M, Kadaikunnan S, Alharbi NS, et al. Single-step biological fabrication of colloidal silver nanoparticles using Hugonia mystax: larvicidal potential against zika virus, dengue, and malaria vector mosquitoes. Artif Cells Nanomed Biotechnol. 2017;45(7):1317–1325. DOI:10.1080/21691401.2016.1228664.
  • Azarudeen RMST, Govindarajan M, AlShebly MM, et al. Size-controlled biofabrication of silver nanoparticles using the Merremia emarginata leaf extract: toxicity on Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (diptera: culicidae) and non-target mosquito predators. J Asia-Pacific Entomol. 2017;20(2):359–366. DOI:10.1016/j.aspen.2017.02.007.
  • Mohamed AEHH, El-Sayed MA, Hegazy ME, et al. Chemical constituents and biological activities of Artemisia herba-alba. Rec Nat Prod. 2010;4:1–25.
  • Gao X, Wei L, Yan H, et al. Green synthesis and characteristic of core-shell structure silver/ starch nanoparticles. Mater Lett. 2011;65(19–20):2963–2965. DOI:10.1016/j.matlet.2011.06.020.
  • Hamedi S, Masumeh S, Shojaosadati S, et al. Comparative study on silver nanoparticles properties produced by green methods. Iran J Biotechnol. 2012;10(3):191–197.
  • Ihegwuagu N, Mundi S, Adama F, et al. Rapid synthesis of silver nano particles capped in starch and its anti–mold activity. Int J Innov Sci Res. 2014;9(1):16–25.
  • Deepak P, Sowmiya R, Ramkumar R, et al. Structural characterization and evaluation of mosquito-larvicidal property of silver nanoparticles synthesized from the seaweed, Turbinaria ornata (turner) J. Agardh 1848. Artif Cells Nanomed Biotechnol. 2017;45(5):990–998. DOI:10.1080/21691401.2016.1198365.
  • Ga’al H, Fouad H, Mao G, et al. Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopathological analysis. Artif Cells Nanomed Biotechnol. 2018;46(6):1171–1179. DOI:10.1080/21691401.2017.1365723.
  • Basu S, Maji P, Ganguly J. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis. Appl Nanosci. 2016;6(1):1–5.
  • Akbari B, Pirhadi T, Zandrahimi M. Particle size characterization of nanoparticles a practical approach. Iran. Iran J Mater Sci Eng. 2011;8(2):48–56.
  • Ihegwuagu NE, Sha’Ato R, Tor-Anyiin TA, et al. Facile formulation of starch–silver-nanoparticle encapsulated dichlorvos and chlorpyrifos for enhanced insecticide delivery. New J Chem. 2016;40(2):1777–1784. DOI:10.1039/C5NJ01831E.
  • Thakore S, Rathore PS, Jadeja RN, et al. Sunflower oil mediated biomimetic synthesis and cytotoxicity of monodisperse hexagonal silver nanoparticles. Mater Sci Eng C Mater Biol Appl. 2014;44:209–215.
  • Saifuddin N, Nian CY, Zhan LW, et al. Chitosan-silver nanoparticles composite as point-of-use drinking water filtration system for household to remove pesticides in water. Asian J Biochem. 2011;6(2):142–159. DOI:10.3923/ajb.2011.142.159.
  • Suvith VS, Philip D. Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochimica Acta Part A, Molecular & Biomolecular Spectroscopy. 2014;118:526–532.
  • Jeeva K, Thiyagarajan M, Elangovan V, et al. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Industrial Crops & Products. 2014;52:714–720.
  • Islam NU, Jalil K, Shahid M, et al. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem. 2019;12(8):2914–2925. DOI:10.1016/j.arabjc.2015.06.025.
  • Saraswathi VS, Santhakumar K. Green synthesis of silver nano-particles mediated using lagerstroemia speciosa and photocatalytic activity against Azo dye. Mech Mater Sci Eng J. 2017;9. DOI:10.2412/mmse.72.63.602 .
  • Jemal K, Sandeep BV, Pola S. Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. J Nanomater. 2017;2017:1–11.
  • Armstrong N, Ramamoorthy M, Lyon D, et al. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLOS ONE. 2013;8(1):e53186. DOI:10.1371/journal.pone.0053186.
  • Kalimuthu K, Panneerselvam C, Chou C, et al. Control of dengue and zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Prot. 2017;109:82–96.
  • Sundararajan B, Ranjitha Kumari BD. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector aedes aegypti L. J Trace Elem Med Biol. 2017;43:187–196.
  • Yasur J, Rani PU. Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere. 2015;124:92–102.
  • Ahmed KS, Mikhail WZA, Sobhy HM, et al. Impact of nanosilver- profenofos on cotton leafworm, Spodoptera littoralis (boisd.) larvae. Bull National Res Centre. 2019;43(1):46. DOI:10.1186/s42269-019-0076-z.
  • Hany AF, Hosam MK, Hammam EG, et al. Nanosilica and jasmonic acid as alternative methods for control Tuta absoluta (Meyrick) in tomato crop under field conditions. Arch Phytopathol Plant Prot. 2016;49(13):362–370. DOI:10.1080/03235408.2016.1219446.
  • Tunçsoy BS. Toxicity of nanoparticles on insects: a review. Artibilim Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2018;1(2):49–61.
  • Hazaa M, Alm-Eldin M, Ibrahim AE, et al. Biosynthesis of silver nanoparticles using borago officinslis leaf extract, characterization and larvicidal activity against cotton leaf worm, Spodoptera littoralis (bosid). Int J Trop Insect Sci. 2021;41(1):145–156. DOI:10.1007/s42690-020-00187-8.
  • Zhang Z, Han XM, Wei JH, et al. Compositions and antifungal activities of essential oils from agarwood of Aquilaria sinensis (lour.) gilg induced by lasiodiplodia theobromae (pat.) griffon. and maubl. J Braz Chem Soc. 2014;25:20–26.
  • Rai M, Kon K, Ingle A, et al. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014;98(5):1951–1961. DOI:10.1007/s00253-013-5473-x.
  • Jiang X, Miclăuş T, Wang L, et al. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology. 2015;9(2):181–189. DOI:10.3109/17435390.2014.907457.
  • Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. 2016;115(1):23–34.