2,207
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sodium-glucose transporter (SGLT2) inhibition: A potential target for treatment of type-2 Diabetes Mellitus with Natural and Synthetic compounds

ORCID Icon, &
Pages 69-82 | Received 30 Aug 2022, Accepted 07 Nov 2022, Published online: 28 Nov 2022

References

  • Bommer C, Sagalova V, Heesemann E, et al. Global Economic Burden of Diabetes in Adults: projections From 2015 to 2030. Diabetes Care. 2018;41(5):963–970.
  • Saeedi P, Petersohn I, Salpea P, et al. ‘Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract. 2019; 157:107843.
  • Castaneda-Sceppa C, Castaneda F. Sodium-dependent glucose transporter protein as a potential therapeutic target for improving glycemic control in diabetes. Nutr Rev. 2011;69(12):720–729.
  • Tsushima Y, Lansang MC, Makin V. The role of SGLT-2 inhibitors in managing type 2 diabetes. Cleve Clin J Med. 2021;88(1):47–58.
  • Fisher M, McKay G. Essentials of SGLT2 Inhibitors in Diabetes. Springer International Publishing Switzerland; 2017. 13–35. Doi:10.1007/978-3-319-43296-0
  • Boeder S, Edelman SV. Sodium-glucose co-transporter inhibitors as adjunctive treatment to insulin in type 1 diabetes: a review of randomized controlled trials. Diabetes Obesity Metab. 2019;21(S2):62–77.
  • Chao EC, Henry RR. SGLT2 inhibition-A novel strategy for diabetes treatment. Nat Rev Drug Discov. 2010;9(7):551–559.
  • Fattah H, Vallon V. The Potential Role of SGLT2 Inhibitors in the Treatment of Type 1 Diabetes Mellitus. Drugs. 2018;78(7):717–726.
  • Rieg T, Vallon V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia. 2018;61(10):2079–2086.
  • Haider K, Pathak A, Rohilla A, et al. Synthetic strategy and SAR studies of C-glucoside heteroaryls as SGLT2 inhibitor: a review. Eur J Med Chem. 2019;184:111773.
  • Oku A, Ueta K, Arakawa K, et al. T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes. 1999;48(9):1794–1800.
  • Choi CI. Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors from natural products: discovery of next-generation antihyperglycemic agents. Molecules. 2016;21(9):1–18.
  • Moradi-Marjaneh R, Paseban M, Sahebkar A. Natural products with SGLT2 inhibitory activity: possibilities of application for the treatment of diabetes. Phytother Res. 2019;33(10):2518–2530.
  • Dobbins RL, O’Connor-Semmes R, Kapur A, et al. Remogliflozin etabonate, a selective inhibitor of the sodium-dependent transporter 2 reduces serum glucose in type 2 diabetes mellitus patients. Diabetes Obesity Metab. 2012;14(1):15–22.
  • Markham A. Remogliflozin Etabonate: first Global Approval. Drugs. 2019;79(10):1157–1161.
  • Dobbins R, Hussey KE, Connor-Semmes RO, Andrews S, et al. ‘Assessment of safety and tolerability of remogliflozin etabonate (GSK189075) when administered with total daily dose of 2000 mg of metformin’. BMC Pharmacology and Toxicology. 2021; 22(1): 1–11. DOI:10.1186/s40360-021-00502-0
  • Kosiborod M, Gause-Nilsson I, Xu J, et al. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and concomitant heart failure. J Diabetes Complications. 2017;31(7):1215–1221.
  • Dandona P, Mathieu C, Phillip M, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(11):864–876.
  • Saleem F. Dapagliflozin: cardiovascular Safety and Benefits in Type 2 Diabetes Mellitus. Cureus. 2017;9:10.
  • Dhillon S. Dapagliflozin: a Review in Type 2 Diabetes. Drugs. 2019;79(10):1135–1146.
  • Deeks ED, Scheen AJ. Canagliflozin: a Review in Type 2 Diabetes. Drugs. 2017;77(14):1577–1592.
  • Minami T, Kameda A, Terauchi Y. An evaluation of canagliflozin for the treatment of type 2 diabetes: an update. Expert Opin Pharmacother. 2021;22(16):2087–2094.
  • Frampton JE. Empagliflozin: a Review in Type 2 Diabetes. Drugs. 2018;78(10):1037–1048.
  • Wanner C, Lachin JM, Inzucchi SE, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation. 2018;137(2):119–129.
  • Scott LJ. Empagliflozin: a review of its use in patients with type 2 diabetes mellitus. Drugs. 2014;74(15):1769–1784.
  • Goldman JD. Combination of Empagliflozin and Metformin Therapy: a Consideration of its Place in Type 2 Diabetes Therapy. Clin Med Insights. 2018; 11. doi:10.1177/1179551418786258
  • Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213–225.
  • Marrs JC, Anderson SL. Ertugliflozin in the treatment of type 2 diabetes mellitus. Drugs Context. 2021;9:1–10.
  • Markham A. Ertugliflozin: first Global Approval. Drugs. 2018;78(4):513–519.
  • Hu J, Deng A, Zhao Y. Ertugliflozin as a monotherapy for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2018;19(16):1841–1847.
  • Alkabbani W, Gamble JM. Profile of ipragliflozin, an oral sglt-2 inhibitor for the treatment of type 2 diabetes: the evidence to date. Drug Des Devel Ther. 2021;15:3057–3069.
  • Ohkura T. Ipragliflozin: a novel sodium-glucose cotransporter 2 inhibitor developed in Japan. World J Diabetes. 2015;6(1):136.
  • Kadokura T, Zhang W, Krauwinkel W, et al. Clinical Pharmacokinetics and Pharmacodynamics of the Novel SGLT2 Inhibitor Ipragliflozin. Clin Pharmacokinet. 2014;53(11):975–988.
  • Koshizaka M, Ishikawa K, Ishibashi R, et al. Effects of ipragliflozin versus metformin in combination with sitagliptin on bone and muscle in Japanese patients with type 2 diabetes mellitus: subanalysis of a prospective, randomized, controlled study (PRIME-V study). J Diabetes Investig. 2021;12(2):200–206.
  • Aharon-Hananel G, Raz I. An evaluation of the efficacy and safety of Tofogliflozin for the treatment of type II diabetes. Expert Opin Pharmacother. 2019;20(7):781–790.
  • Pafili K, Maltezos E, Papanas N. Pharmacokinetic and pharmacodynamic drug evaluation of tofogliflozin for the treatment of type 2 diabetes. Expert Opin Drug Metab Toxicol. 2016;12(11):1367–1380.
  • Yabe D, Hamamoto Y, Seino Y, et al. Sodium glucose co-transporter 2 inhibitor luseogliflozin in the management of type 2 diabetes: a drug safety evaluation. Expert Opin Drug Saf. 2017;16(10):1211–1218.
  • Yang J, Yang X, Wang C, et al. Sodium-glucose-linked transporter 2 inhibitors from Sophora flavescens. Med Chem Res. 2015;24(3):1265–1271.
  • Seino Y. Luseogliflozin for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2014;15(18):2741–2749.
  • Samukawa Y, Sata M, Furihata K, et al. Luseogliflozin, an SGLT2 Inhibitor, in Japanese Patients With Mild/Moderate Hepatic Impairment: a Pharmacokinetic Study. Clin Pharmacol Drug Dev. 2017;6(5):439–447.
  • Markham A, Keam SJ. Sotagliflozin: first Global Approval. Drugs. 2019;79(9):1023–1029.
  • Rendell MS. Efficacy and safety of sotagliflozin in treating diabetes type 1. Expert Opin Pharmacother. 2018;19(3):307–315.
  • Chatzopoulos G, Tziomalos K. An up-to-date evaluation of sotagliflozin for the treatment of type 1 diabetes. Expert Opin Pharmacother. 2020;21(15):1799–1803.
  • Mohan V, Mithal A, Joshi SR, et al. Remogliflozin etabonate in the treatment of type 2 diabetes: design, development, and place in therapy. Drug Des Devel Ther. 2020;14:2487–2501.
  • Beitelshees AL, Leslie BR, Taylor SI. Sodium–glucose cotransporter 2 inhibitors: a case study in translational research. Diabetes. 2019;68(6):1109–1120.
  • Han S, Hagan DL, Taylor JR, et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes. 2008;57(6):1723–1729.
  • Kshirsagar RP, Kulkarni AA, Chouthe RS, et al. SGLT inhibitors as antidiabetic agents: a comprehensive review. RSC Adv. 2020;10(3):1733–1756.
  • Devineni D, Polidori D, Curtin C, et al. Single-dose Pharmacokinetics and Pharmacodynamics of Canagliflozin, a Selective Inhibitor of Sodium Glucose Cotransporter 2, in Healthy Indian Participants. Clin Ther. 2016;38(1):89e1–98.e1.
  • Ohgaki R, Wei L, Yamada K, et al. Interaction of the sodium/glucose cotransporter (SGLT) 2 inhibitor canagliflozin with SGLT1 and SGLT2: inhibition kinetics, sidedness of action, and transporter-associated incorporation accounting for its pharmacodynamic and pharmacokinetic featuress. J Pharmacol Exp Ther. 2016;358(1):94–102.
  • Grempler R, Thomas L, Eckhardt M, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors A journal of Pharamacology and Therapeutics . 2012;14(1):83–90 doi:10.1111/j.1463-1326.2011.01517.x.
  • Fediuk DJ, Nucci G, Dawra VK, et al. Overview of the Clinical Pharmacology of Ertugliflozin, a Novel Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor. Clin Pharmacokinet. 2020;59(8):949–965.
  • Tahara A, Kurosaki E, Yokono M, et al. Pharmacological profile of ipragliflozin (ASP1941), a novel selective SGLT2 inhibitor, in vitro and in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol. 2012;385(4):423–436.
  • Faillie JL. Pharmacological aspects of the safety of gliflozins. Pharmacol Res. 2017;118:71–81.
  • Ikeda S, Takano Y, Schwab D, et al. Effect of Renal Impairment on the Pharmacokinetics and Pharmacodynamics of Tofogliflozin (A SELECTIVE SGLT2 Inhibitor) in Patients with Type 2 Diabetes Mellitus. Drug Res (Stuttg). 2019;69(6):314–322.
  • Poole RM, Prossler JE. Tofogliflozin: first global approval. Drugs. 2014;74(8):939–944.
  • Markham A, Elkinson S. Luseogliflozin: first global approval. Drugs. 2014;74(8):945–950.
  • Rosenstock J, Cefalu WT, Lapuerta P, et al. Greater dose-ranging effects on A1C levels than on glucosuria with lx4211, a dual inhibitor of SGLT1 and SGLT2, in patients with type 2 diabetes on metformin monotherapy. Diabetes Care. 2015;38(3):431–438.
  • Zambrowicz B, Freiman J, Brown PM, et al. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a Randomized, placebo-controlled trial. Clin Pharmacol Ther. 2012;92(2):158–169.
  • He X, Fang J, Huang L, et al. Sophora flavescens Ait.: traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol. 2015;172:10–29.
  • Li JJ, Zhang X, Shen X-C, et al. Phytochemistry and biological properties of isoprenoid flavonoids from Sophora flavescens Ait. Fitoterapia. 2020;143:104556.
  • Sato S, Takeo J, Aoyama C, et al. Na+-Glucose cotransporter (SGLT) inhibitory flavonoids from the roots of Sophora flavescens. Bioorg Med Chem. 2007;15(10):3445–3449.
  • Morikawa T, Tao J, Toguchida I, et al. Structures of New Cyclic Diarylheptanoids and Inhibitors of Nitric Oxide Production from Japanese Folk Medicine Acer n ikoense. J Nat Prod. 2003;66(1):86–91.
  • Kurimoto SI, Sasaki YF, Suyama Y, et al. Acylated Triterpene Saponins from the Stem Bark of Acer nikoense (Aceraceae). Chem Pharm Bull. 2016;64(7):924–929.
  • Shimokawa Y, Akao Y, Hirasawa Y, et al. Gneyulins A and B, Stilbene Trimers, and Noidesols A and B, Dihydroflavonol- C -Glucosides, from the Bark of Gnetum gnemonoides. J Nat Prod. 2010;73(4):763–767.
  • Khyade MS, Kasote DM, Vaikos NP. Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. ex G. Don: a comparative review on traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2014;153(1):1–18.
  • Changwichit K, Khorana N, Suwanborirux K, et al. Bisindole alkaloids and secoiridoids from Alstonia macrophylla Wall. ex G. Don. Fitoterapia. 2011;82(6):798–804.
  • Arai H, Hirasawa Y, Rahman A, et al. Alstiphyllanines E-H, picraline and ajmaline-type alkaloids from Alstonia macrophylla inhibiting sodium glucose cotransporter. Bioorg Med Chem. 2010;18(6):2152–2158.
  • Iliya I, Tanaka T, Iinuma M, et al. Stilbene derivatives from two species of Gnetaceae. Chem Pharm Bull. 2002;50(6):796–801.
  • Chan SW. Panax ginsengRhodiola rosea and Schisandra chinensis. Int J Food Sci Nutr. 2012;63(SUPPL.1):75–81.
  • Zhang M, Xu L, Yang H. Schisandra chinensis fructus and its active ingredients as promising resources for the treatment of neurological diseases. Int J Mol Sci. 2018;19(7). DOI:10.3390/ijms19071970
  • Qu Y, Chan JY-W, Wong C-W, et al. Antidiabetic Effect of Schisandrae Chinensis Fructus Involves Inhibition of the Sodium Glucose Cotransporter. Drug Dev Res. 2015;76(1):1–8.
  • Morita H, Deguchi J, Motegi Y, et al. Cyclic diarylheptanoids as Na+-glucose cotransporter (SGLT) inhibitors from Acer nikoense. Bioorganic Med Chem Lett. 2010;20(3):1070–1074.
  • Choi MK, Nam SJ, Ji H-Y, et al. Comparative pharmacokinetics and pharmacodynamics of a novel sodium-glucose cotransporter 2 inhibitor, DWP16001, with dapagliflozin and ipragliflozin. Pharmaceutics. 2020;12(3):1–16.
  • Azzam O, Carnagarin R, Lugo-Gavidia LM, et al. Bexagliflozin for type 2 diabetes: an overview of the data. Expert Opin Pharmacother. 2021;22(16):2095–2103.
  • Weng J, Zeng L, Zhang Y, et al. Henagliflozin as add-on therapy to metformin in patients with type 2 diabetes inadequately controlled with metformin: a multicentre, randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Obesity Metab. 2021;23(8):1754–1764.