2,274
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Neuroprotective effect of quercetin through targeting key genes involved in aluminum chloride induced Alzheimer’s disease in rats

, ORCID Icon, , &
Pages 174-184 | Received 18 Sep 2022, Accepted 24 Dec 2022, Published online: 05 Jan 2023

References

  • Ricci G. Social aspects of dementia prevention from a worldwide to national perspective: a review on the international situation and the example of Italy. Behav Neurol. 2019;2019:8720904.
  • Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7(3):137.
  • Bhattacharjee S, Zhao Y, Hill JM, et al. Aluminum and its potential contribution to Alzheimer’s disease (AD). Front Aging Neurosci. 2014;6:62.
  • Al-Otaibi SS, Arafah MM, Sharma B, et al. Synergistic effect of quercetin and α-lipoic acid on aluminium chloride induced neurotoxicity in rats. J Toxicol. 2018;2018.
  • Wang L, Hu J, Zhao Y, et al. Effects of aluminium on β-amyloid (1–42) and secretases (APP-cleaving enzymes) in rat brain. Neurochem Res. 2014;39(7):1338–1345.
  • Morishima-Kawashima M. Molecular mechanism of the intramembrane cleavage of the β-carboxyl terminal fragment of amyloid precursor protein by γ-secretase. Front Physiol. 2014;5:463.
  • Venugopal C, Demos CM, Jagannatha Rao K, et al. Beta-secretase: structure, function, and evolution. CNS & Neurol Disord Drug Targets. 2008;7(3):278–294.
  • Zhou Y, Suram A, Venugopal C, et al. Geranylgeranyl pyrophosphate stimulates γ-secretase to increase the generation of Aβ and APP-CTFγ. FASEB J. 2008;22(1):47–54.
  • Tang BL. Alzheimer’s disease: channeling APP to non-amyloidogenic processing. Biochem Biophys Res Commun. 2005;331(2):375–378.
  • Ossola B, Kääriäinen TM, Männistö PT. The multiple faces of quercetin in neuroprotection. Expert Opin Drug Saf. 2009;8(4):397–409.
  • Shafabakhsh R, Asemi Z. Quercetin: a natural compound for ovarian cancer treatment. J Ovarian Res. 2019;12(1):1–9.
  • Bischoff SC. Quercetin: potentials in the prevention and therapy of disease. Current Opin Clin Nutr Metab Care. 2008;11(6):733–740.
  • Jajin EA, Esmaeili A, Rahgozar S, et al. Quercetin-conjugated superparamagnetic iron oxide nanoparticles protect AlCl3-induced neurotoxicity in a Rat model of alzheimer’s disease via antioxidant genes, APP Gene, and miRNA-101. Front Neurosci. 2020;14:14.
  • Du G, Zhao Z, Chen Y, et al. Quercetin attenuates neuronal autophagy and apoptosis in rat traumatic brain injury model via activation of PI3K/Akt signaling pathway. Neurol Res. 2016;38(11):1012–1019.
  • Linardaki ZI, Orkoula MG, Kokkosis AG, et al. Investigation of the neuroprotective action of saffron (Crocus sativus L.) in aluminum-exposed adult mice through behavioral and neurobiochemical assessment. Food Chem Toxicol. 2013;52:163–170.
  • Perusini JN, Cajigas SA, Cohensedgh O, et al. Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer’s disease mice. Hippocampus. 2017;27(10):1110–1122.
  • Van der Borght K, Havekes R, Bos T, et al. Exercise improves memory acquisition and retrieval in the Y-maze task: relationship with hippocampal neurogenesis. Behav Neurosci. 2007;121(2):324.
  • Elfiky AM, Mahmoud AA, Elreedy HA, et al. Quercetin stimulates the non-amyloidogenic pathway via activation of ADAM10 and ADAM17 gene expression in aluminum chloride-induced Alzheimer’s disease rat model. Life Sci. 2021 Nov 15;285:119964.
  • Mir RH, Sawhney G, Pottoo FH, et al. Role of environmental pollutants in Alzheimer’s disease: a review. Environ Sci Pollut Res. 2020;27(36):1–19.
  • Thenmozhi AJ, Raja TRW, Janakiraman U, et al. Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer’s disease in Wistar rats. Neurochem Res. 2015;40(4):767–776.
  • Butterfield DA, Mattson MP. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer’s disease. Neurobiol Dis. 2020;138:104795.
  • Van Dyke N, Yenugadhati N, Birkett NJ, et al. Association between aluminum in drinking water and incident Alzheimer’s disease in the Canadian study of health and aging cohort. Neurotoxicology. 2021;83:157–165.
  • Foley MH, Déjean G, Hemsworth GR, et al. A cell-surface GH9 endo-glucanase coordinates with surface glycan-binding proteins to mediate xyloglucan uptake in the gut symbiont Bacteroides ovatus. J Mol Biol. 2019;431(5):981–995.
  • Hanko V, Apple AC, Alpert KI, et al. In vivo hippocampal subfield shape related to TDP-43, amyloid beta, and tau pathologies. Neurobiol Aging. 2019;74:171–181.
  • Taïlé J, Arcambal A, Clerc P, et al. Medicinal plant polyphenols attenuate oxidative stress and improve inflammatory and vasoactive markers in cerebral endothelial cells during hyperglycemic condition. Antioxidants. 2020;9(7):573.
  • Wang D-M, S-Q L, W-L W, et al. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem Res. 2014;39(8):1533–1543.
  • Falode JA, Akinmoladun AC, Olaleye MT, et al. Sausage tree (Kigelia africana) flavonoid extract is neuroprotective in AlCl3-induced experimental Alzheimer’s disease. Pathophysiology. 2017;24(4):251–259.
  • Sharma DR, Wani WY, Sunkaria A, et al. Quercetin protects against chronic aluminum-induced oxidative stress and ensuing biochemical, cholinergic, and neurobehavioral impairments in rats. Neurotox Res. 2013 May;23(4):336–357.
  • Abdel-Aal RA, Assi -A-A-A, Kostandy BB. Rivastigmine reverses aluminum-induced behavioral changes in rats. Eur J Pharmacol. 2011;659(2–3):169–176.
  • AmS H, El-Ela FI A, Abdel-Aziz AM. Investigating the potential protective effects of natural product quercetin against imidacloprid-induced biochemical toxicity and DNA damage in adults rats. Toxicol Rep. 2019 Jan 01;6:727–735.
  • Young-Pearse TL, Chen AC, Chang R, et al. Secreted APP regulates the function of full-length APP in neurite outgrowth through interaction with integrin beta1. Neural Dev. 2008;3(1):1–14.
  • Cam JA, Bu G. Modulation of β-amyloid precursor protein trafficking and processing by the low density lipoprotein receptor family. Mol Neurodegener. 2006;1(1):1–13.
  • Hazarika I, Mukundan GK, Sundari SP, et al. The modulatory effect of Hydrocotyle sibthorpioides in attenuating the aluminium chloride induced neurotoxicity in rat brain. Adv Tradit Med 2021;22(1):1–13.
  • Tamagno E, Guglielmotto M, Aragno M, et al. Oxidative stress activates a positive feedback between the γ‐and β‐secretase cleavages of the β‐amyloid precursor protein. J Neurochem. 2008;104(3):683–695.
  • Ghammraoui B, Badano A, Ran C. Identification of amyloid plaques in the brain using an x-ray photon-counting strip detector. PLoS One. 2020;15(2):e0228720.
  • Jiménez-Aliaga K, Bermejo-Bescós P, Benedí J, et al. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 2011 Dec 19;89(25–26):939–945.
  • Stratman N, Mathews W, Buhl A, et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. (Vol. 286), 1999 Oct.
  • Yan R, Bienkowski M, Shuck M, et al. Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature. 1999;402(6761):533–537.
  • Luo Y, Bolon B, Kahn S, et al. Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci. 2001;4(3):231–232.
  • Naushad M, Durairajan SSK, Bera AK, et al. Natural compounds with Anti-BACE1 activity as promising therapeutic drugs for treating alzheimer’s disease. Planta Med. 2019;85(17):1316–1325.
  • Shimmyo Y, Kihara T, Akaike A, et al. Flavonols and flavones as BACE-1 inhibitors: structure–activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim Biophys Acta. 2008;1780(5):819–825.
  • Lu J, Dm W, Zheng Y, et al. Quercetin activates AMP‐activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol‐induced neurotoxicity. J Pathol. 2010;222(2):199–212.
  • McCarthy AJ, Coleman-Vaughan C, McCarthy JV. Regulated intramembrane proteolysis: emergent role in cell signalling pathways. Biochem Soc Trans. 2017;45(6):1185–1202.
  • Hass MR, Sato C, Kopan R, Zhao G. Presenilin: RIP and beyond. In Seminars in cell & developmental biology. Academic Press. 2009; p. 201–210.
  • Servián-Morilla E, Robles-Lanuza E, Sánchez-Hidalgo AC, et al. Proteolytic processing of neurexins by presenilins sustains synaptic vesicle release. J Neurosci. 2018;38(4):901–917.
  • Lakey-Beitia J, Berrocal R, Rao K, et al. Polyphenols as therapeutic molecules in Alzheimer’s disease through modulating amyloid pathways. Mol Neurobiol. 2015;51(2):466–479.
  • Tippmann F, Hundt J, Schneider A, et al. Up‐regulation of the α‐secretase ADAM10 by retinoic acid receptors and Acitretin. FASEB J. 2009;23(6):1643–1654.
  • Qian M, Shen X, Wang H. The distinct role of ADAM17 in APP proteolysis and microglial activation related to Alzheimer’s disease. Cell Mol Neurobiol. 2016;36(4):471–482.
  • Garton KJ, Gough PJ, Blobel CP, et al. Tumor necrosis factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem. 2001;276(41):37993–38001.