1,887
Views
6
CrossRef citations to date
0
Altmetric
Mini-Review

Transcription factor oscillations in neural stem cells: Implications for accurate control of gene expression

, , & ORCID Icon
Article: e1262934 | Received 05 Oct 2016, Accepted 15 Nov 2016, Published online: 17 Feb 2017

References

  • Nelson DE, See V, Nelson G, White MR. Oscillations in transcription factor dynamics: a new way to control gene expression. Biochem Soc Trans 2004; 32:1090-1092; PMID:15506974; https://doi.org/10.1042/BST0321090
  • Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 1997; 386:855-858; PMID:9126747; https://doi.org/10.1038/386855a0
  • Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 2002; 298:1241-1245; PMID:12424381; https://doi.org/10.1126/science.1071914
  • Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 2004; 36:147-150; PMID:14730303; https://doi.org/10.1038/ng1293
  • Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, et al. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 2004; 306:704-708; PMID:15499023; https://doi.org/10.1126/science.1099962
  • Wang HY, Huang YX, Zheng LH, Bao YL, Sun LG, Wu Y, Yu CL, Song ZB, Sun Y, Wang GN, et al. Modelling coupled oscillations in the Notch, Wnt, and FGF signaling pathways during somitogenesis: a comprehensive mathematical model. Comput Intell Neurosci 2015; 2015:387409; PMID:25866502
  • Shimojo H, Ohtsuka, T, Kageyama R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 2008; 58:52-64; PMID:18400163; https://doi.org/10.1016/j.neuron.2008.02.014
  • Mengel B, Hunziker A, Pedersen L, Trusina A, Jensen MH, Krishna S. Modeling oscillatory control in NF-kappaB, p53 and Wnt signaling. Curr Opin Genet Dev 2010; 20:656-664; PMID:20934871; https://doi.org/10.1016/j.gde.2010.08.008
  • Wee KB, Yio WK, Surana U, Chiam KH. Transcription factor oscillations induce differential gene expressions. Biophys J 2012; 102:2413-2423; PMID:22713556; https://doi.org/10.1016/j.bpj.2012.04.023
  • McMaster A, Jangani M, Sommer P, Han N, Brass A, Beesley S, Lu W, Berry A, Loudon A, Donn R, et al. Ultradian cortisol pulsatility encodes a distinct, biologically important signal. PLoS One 2011; 6:e15766; PMID:21267416; https://doi.org/10.1371/journal.pone.0015766
  • Tiana G, Krishna S, Pigolotti S, Jensen MH, Sneppen K. Oscillations and temporal signalling in cells. Phys Biol 2007; 4:R1-17; PMID:17664651; https://doi.org/10.1088/1478-3975/4/2/R01
  • Lei J. Time-delayed negative feedback. In: Dubitzky W, Wolkenhauer O, Cho K-H, Yokota H, editors. Encyclopedia of Systems Biology. New York: Springer; 2013. p. 2171.
  • Stavreva DA, Wiench M, John S, Conway-Campbell BL, McKenna MA, Pooley JR, Johnson TA, Voss TC, Lightman SL, Hager GL, et al. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat Cell Biol 2009; 11:1093-1102; PMID:19684579; https://doi.org/10.1038/ncb1922
  • Zhang Y, Liu J, Yao S, Li F, Xin L, Lai M, Bracchi-Ricard V, Xu H, Yen W, Meng W, et al. Nuclear factor kappa B signaling initiates early differentiation of neural stem cells. Stem Cells 2012; 30:510-524; PMID:22134901; https://doi.org/10.1002/stem.1006
  • Grilli M, Memo M. Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ 1999; 6:22-27; PMID:10200544; https://doi.org/10.1038/sj.cdd.4400463
  • Li J, Tang Y, Cai D. IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 2012; 14:999-1012; PMID:22940906; https://doi.org/10.1038/ncb2562
  • Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, Sillitoe K, Ryan S, Spiller DG, Unitt JF, Broomhead DS, et al. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science 2009; 324:242-246; PMID:19359585; https://doi.org/10.1126/science.1164860
  • Fatt MP, Cancino GI, Miller FD, Kaplan DR. p63 and p73 coordinate p53 function to determine the balance between survival, cell death, and senescence in adult neural precursor cells. Cell Death Differ 2014; 21:1546-1559; PMID:24809925; https://doi.org/10.1038/cdd.2014.61
  • Meletis K, Wirta V, Hede SM, Nistér M, Lundeberg J, Frisén J. p53 suppresses the self-renewal of adult neural stem cells. Development 2006; 133:363-369; PMID:16368933; https://doi.org/10.1242/dev.02208
  • Hunziker A, Jensen MH, Krishna S. Stress-specific response of the p53-Mdm2 feedback loop. BMC Syst Biol 2010; 4:94; PMID:20624280; https://doi.org/10.1186/1752-0509-4-94
  • Batchelor E, Loewer A, Lahav G. The ups and downs of p53: understanding protein dynamics in single cells. Nat Rev Cancer 2009; 9:371-377; PMID:19360021; https://doi.org/10.1038/nrc2604
  • MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17:9-26; PMID:19619488; https://doi.org/10.1016/j.devcel.2009.06.016
  • Rao TP, Kuhl M. An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 2010; 106:1798-1806; PMID:20576942; https://doi.org/10.1161/CIRCRESAHA.110.219840
  • Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997; 11:3286-3305 (); PMID:9407023; https://doi.org/10.1101/gad.11.24.3286
  • Goldbeter A, Pourquie O. Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways. J Theor Biol 2008; 252:574-585; PMID:18308339; https://doi.org/10.1016/j.jtbi.2008.01.006
  • Dunty WC, Jr, Biris KK, Chalamalasetty RB, Taketo MM, Lewandoski M, Yamaguchi TP. Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 2008; 135:85-94; PMID:18045842; https://doi.org/10.1242/dev.009266
  • Aulehla A, Pourquie O. Oscillating signaling pathways during embryonic development. Curr Opin Cell Biol 2008; 20:632-637; PMID:18845254; https://doi.org/10.1016/j.ceb.2008.09.002
  • Karalay O, Doberauer K, Vadodaria KC, Knobloch M, Berti L, Miquelajauregui A, Schwark M, Jagasia R, Taketo MM, Tarabykin V, et al. Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 2011; 108:5807-5812; PMID:21436036; https://doi.org/10.1073/pnas.1013456108
  • Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, Moore L, Nakashima K, Asashima M, Gage FH. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 2009; 12:1097-1105; PMID:19701198; https://doi.org/10.1038/nn.2360
  • Lie DC, Colamarino SA, Song HJ, Désiré L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005; 437:1370-1375; PMID:16251967; https://doi.org/10.1038/nature04108
  • Ables JL, Decarolis NA, Johnson MA, Rivera PD, Gao Z, Cooper DC, Radtke F, Hsieh J, Eisch AJ. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci 2010; 30:10484-10492; PMID:20685991; https://doi.org/10.1523/JNEUROSCI.4721-09.2010
  • Giachino C, Taylor V. Notching up neural stem cell homogeneity in homeostasis and disease. Front Neurosci 2014; 8:32; PMID:24611040; https://doi.org/10.3389/fnins.2014.00032
  • Basak O, Giachino C, Fiorini E, Macdonald HR, Taylor V. Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent in their active but not quiescent state. J Neurosci 2012; 32:5654-5666; PMID:22514327; https://doi.org/10.1523/JNEUROSCI.0455-12.2012
  • Lieber T, Kidd S, Alcamo E, Corbin V, Young MW. Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev 1993; 7:1949-1965 (); PMID:8406001; https://doi.org/10.1101/gad.7.10.1949
  • Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol 2000; 228:151-165; PMID:11112321; https://doi.org/10.1006/dbio.2000.9960
  • Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, Fujiwara T, Ishidate F, Kageyama R. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 2013; 342:1203-1208; PMID:24179156; https://doi.org/10.1126/science.1242366
  • Baek JH, Hatakeyama J, Sakamoto S, Ohtsuka T, Kageyama R. Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 2006; 133:2467-2476; PMID:16728479; https://doi.org/10.1242/dev.02403
  • Pfeuty B. A computational model for the coordination of neural progenitor self-renewal and differentiation through Hes1 dynamics. Development 2015; 142:477-485; PMID:25605780; https://doi.org/10.1242/dev.112649
  • Harima Y, Imayoshi I, Shimojo H, Kobayashi T, Kageyama R. The roles and mechanism of ultradian oscillatory expression of the mouse Hes genes. Semin Cell Dev Biol 2014; 34:85-90; PMID:24865153; https://doi.org/10.1016/j.semcdb.2014.04.038
  • Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 2002; 298:840-843; PMID:12399594; https://doi.org/10.1126/science.1074560
  • Takebayashi K, Sasai Y, Sakai Y, Watanabe T, Nakanishi S, Kageyama R. Structure, chromosomal locus, and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-1. Negative autoregulation through the multiple N box elements. J Biol Chem 1994; 269:5150-5156 (); PMID:7906273
  • Goodfellow M, Phillips NE, Manning C, Galla T, Papalopulu N. microRNA input into a neural ultradian oscillator controls emergence and timing of alternative cell states. Nat Commun 2014; 5:3399; PMID:24595054; https://doi.org/10.1038/ncomms4399
  • Jing B, Yuan J, Yin Z, Lv C, Lu S, Xiong H, Tang H, Ye G, Shi F. Dynamic properties of the segmentation clock mediated by microRNA. Int J Clin Exp Pathol 2015; 8:196-206 (); PMID:25755706
  • Zhao C, Sun G, Li S, Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 2009; 16:365-371; PMID:19330006; https://doi.org/10.1038/nsmb.1576
  • Eendebak RJ, Lucassen PJ, Fitzsimons CP. Nuclear receptors and microRNAs: Who regulates the regulators in neural stem cells? FEBS Lett 2011; 585:717-722; PMID:21295033; https://doi.org/10.1016/j.febslet.2011.01.039
  • Gould E, Cameron HA, Daniels DC, Woolley CS, McEwen BS. Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci 1992; 12:3642-3650 (); PMID:1527603
  • Cameron HA, Gould E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 1994; 61:203-209 (); PMID:7969902; https://doi.org/10.1016/0306-4522(94)90224-0
  • Sundberg M, Savola S, Hienola A, Korhonen L, Lindholm D. Glucocorticoid hormones decrease proliferation of embryonic neural stem cells through ubiquitin-mediated degradation of cyclin D1. J Neurosci 2006; 26:5402-5410; PMID:16707792; https://doi.org/10.1523/JNEUROSCI.4906-05.2006
  • Oomen CA, Mayer JL, de Kloet ER, Joels M, Lucassen PJ. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress. Eur J Neurosci 2007; 26:3395-3401; PMID:18052970; https://doi.org/10.1111/j.1460-9568.2007.05972.x
  • Bose R, Moors M, Tofighi R, Cascante A, Hermanson O, Ceccatelli S. Glucocorticoids induce long-lasting effects in neural stem cells resulting in senescence-related alterations. Cell Death Dis 2010; 1:e92; PMID:21368868; https://doi.org/10.1038/cddis.2010.60
  • Wong EY, Herbert J. The corticoid environment: a determining factor for neural progenitors' survival in the adult hippocampus. Eur J Neurosci 2004; 20:2491-2498; PMID:15548194; https://doi.org/10.1111/j.1460-9568.2004.03717.x
  • Fitzsimons CP, van Hooijdonk LW, Schouten M, Zalachoras I, Brinks V, Zheng T, Schouten TG, Saaltink DJ, Dijkmans T, Steindler DA, et al. Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Mol Psychiatry 2013; 18:993-1005; PMID:22925833; https://doi.org/10.1038/mp.2012.123
  • Chetty S, Friedman AR, Taravosh-Lahn K, Kirby ED, Mirescu C, Guo F, Krupik D, Nicholas A, Geraghty AC, Krishnamurthy A, et al. Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol Psychiatry 2014; 19:1275-1283; PMID:24514565; https://doi.org/10.1038/mp.2013.190
  • Fitzsimons CP, Herbert J, Schouten M, Meijer OC, Lucassen PJ, Lightman S. Circadian and ultradian glucocorticoid rhythmicity: Implications for the effects of glucocorticoids on neural stem cells and adult hippocampal neurogenesis. Front Neuroendocrinol 2016; 41:44-58; PMID:27234350; https://doi.org/10.1016/j.yfrne.2016.05.001
  • de Kloet ER, Fitzsimons CP, Datson NA, Meijer OC, Vreugdenhil E. Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA. Brain Res 2009; 1293:129-141; PMID:19332027; https://doi.org/10.1016/j.brainres.2009.03.039
  • Picard M, Juster RP, McEwen BS. Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat Rev Endocrinol 2014; 10:303-310; PMID:24663223; https://doi.org/10.1038/nrendo.2014.22
  • Weitzman ED, Fukushima D, Nogeire C, Roffwarg H, Gallagher TF, Hellman L. Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. J Clin Endocrinol Metab 1971; 33:14-22; PMID:4326799; https://doi.org/10.1210/jcem-33-1-14
  • Dallman MF, Engeland WC, Rose JC, Wilkinson CW, Shinsako J, Siedenburg F. Nycthemeral rhythm in adrenal responsiveness to ACTH. Am J Physiol 1978; 235:R210-218 (); PMID:215040
  • Walker JJ, Terry JR, Lightman SL. Origin of ultradian pulsatility in the hypothalamic-pituitary-adrenal axis. Proc Biol Sci 2010; 277:1627-1633; PMID:20129987; https://doi.org/10.1098/rspb.2009.2148
  • Conway-Campbell BL, Sarabdjitsingh RA, McKenna MA, Pooley JR, Kershaw YM, Meijer OC, De Kloet ER, Lightman SL. Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the clock gene period 1 in rat hippocampus. J Neuroendocrinol 2010; 22:1093-1100; PMID:20649850; https://doi.org/10.1111/j.1365-2826.2010.02051.x
  • Sarabdjitsingh RA, Isenia S, Polman A, Mijalkovic J, Lachize S, Datson N, de Kloet ER, Meijer OC. Disrupted corticosterone pulsatile patterns attenuate responsiveness to glucocorticoid signaling in rat brain. Endocrinology 2010; 151:1177-1186; PMID:20080870; https://doi.org/10.1210/en.2009-1119
  • Qian X, Droste SK, Lightman SL, Reul JM, Linthorst AC. Circadian and ultradian rhythms of free glucocorticoid hormone are highly synchronized between the blood, the subcutaneous tissue, and the brain. Endocrinology 2012; 153:4346-4353; PMID:22822164; https://doi.org/10.1210/en.2012-1484
  • Fitzsimons CP, Ahmed S, Wittevrongel CF, Schouten TG, Dijkmans TF, Scheenen WJ, Schaaf MJ, de Kloet ER, Vreugdenhil E. The microtubule-associated protein doublecortin-like regulates the transport of the glucocorticoid receptor in neuronal progenitor cells. Mol Endocrinol 2008; 22:248-262; PMID:17975023; https://doi.org/10.1210/me.2007-0233
  • Stavreva DA, Coulon A, Baek S, Sung MH, John S, Tesikova M, Hakim O, Miranda T, Hawkins M, et al. Dynamics of chromatin accessibility and long-range interactions in response to glucocorticoid pulsing. Genome Res 2015; 25:845-857; PMID:25677181; https://doi.org/10.1101/gr.184168.114
  • Vreugdenhil E, Verissimo CS, Mariman R, Kamphorst JT, Barbosa JS, Zweers T, Champagne DL, Schouten T, Meijer OC, de Kloet ER, et al. MicroRNA 18 and 124a down-regulate the glucocorticoid receptor: implications for glucocorticoid responsiveness in the brain. Endocrinology 2009; 150:2220-2228; PMID:19131573; https://doi.org/10.1210/en.2008-1335
  • Smith SS, Dole NS, Franceschetti T, Hrdlicka HC, Delany AM. microRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression. J Biol Chem 2016; 291(41):21717-21728
  • Dwivedi Y, Roy B, Lugli G, Rizavi H, Zhang H, Smalheiser NR. Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: relevance to depression pathophysiology. Transl Psychiatry 2015; 5:e682; PMID:26575223; https://doi.org/10.1038/tp.2015.175
  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 2014; 111:16219-16224; PMID:25349387; https://doi.org/10.1073/pnas.1408886111
  • Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y, Yoshikawa K, Okamura H, Kageyama R. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc Natl Acad Sci U S A 2006; 103:1313-1318; PMID:16432209; https://doi.org/10.1073/pnas.0508658103
  • Lightman S, Terry JR. The importance of dynamic signalling for endocrine regulation and drug development: relevance for glucocorticoid hormones. Lancet Diabetes Endocrinol 2014; 2:593-599; PMID:24731665; https://doi.org/10.1016/S2213-8587(13)70182-7
  • Koyanagi S, Okazawa S, Kuramoto Y, Ushijima K, Shimeno H, Soeda S, Okamura H, Ohdo S. Chronic treatment with prednisolone represses the circadian oscillation of clock gene expression in mouse peripheral tissues. Mol Endocrinol 2006; 20:573-583; PMID:16269518; https://doi.org/10.1210/me.2005-0165
  • Spulber S, Conti M, DuPont C, Raciti M, Bose R, Onishchenko N, Ceccatelli S. Alterations in circadian entrainment precede the onset of depression-like behavior that does not respond to fluoxetine. Transl Psychiatry 2015; 5:e603; PMID:26171984; https://doi.org/10.1038/tp.2015.94