1,556
Views
32
CrossRef citations to date
0
Altmetric
Articles

Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future

, , , , , , , , , , , , , , , , , & show all
Pages 27-49 | Received 12 Dec 2013, Accepted 16 Dec 2013, Published online: 14 Mar 2014

References

  • Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM. Brain-computer interface technology: A review of the first international meeting. IEEE Trans Rehabil Eng. 2000 8:164–173.
  • Vaughan TM, Heetderks WJ, Trejo LJ, Rymer WZ, Weinrich M, Moore MM, Kubler A, Dobkin BH, Birbaumer N, Donchin E, Wolpaw EW, Wolpaw JR. Brain-computer interface technology: A review of the second international meeting. IEEE Trans Neural Syst Rehabil Eng. 2003;11:94–109.
  • Vaughan TM, Wolpaw JR. The third international meeting on brain-computer interface technology: Making a difference. IEEE Trans Neural Syst Rehabil Eng. 2006;14:126–127.
  • Vaughan TM, Wolpaw JR. Special issue containing contributions from the fourth international brain-computer interface meeting. J Neural Eng. 2011;8:020201, 2560/8/2/020201. Epub 2011 Mar 24.
  • Frye GE, Hauser CK, Townsend G, Sellers EW. Suppressing flashes of items surrounding targets during calibration of a P300-based brain-computer interface improves performance. J Neural Eng. 2011;8:025024.
  • Sellers EW. New horizons in brain-computer interface research. Clin Neurophysiol. 2013;124:2–4.
  • Klobassa DS, Vaughan TM, Brunner P, Schwartz NE, Wolpaw JR, Neuper C, Sellers EW. Toward a high-throughput auditory P300-based brain-computer interface. Clin Neurophysiol. 2009;120:1252–1261.
  • Mak JN, McFarland DJ, Vaughan TM, McCane LM, Tsui PZ, Zeitlin DJ, Sellers EW, Wolpaw JR. EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis. J Neural Eng. 2012;9:026014, 2560/9/2/026014. Epub 2012 Feb 21.
  • Kaufmann T, Schulz SM, Grunzinger C, Kubler A Flashing characters with famous faces improves ERP-based brain-computer interface performance. J Neural Eng. 2011;8: 056016,2560/8/5/056016. Epub 2011 Sep 20.
  • Kaufmann T, Schulz SM, Köblitz A, Renner G, Wessig C, Kübler A. Face stimuli effectively prevent brain-computer interface inefficiency in patients with neurodegenerative disease. Clin Neurophysiol. 2013;124:893–900.
  • Townsend G, Shanahan J, Ryan DB, Sellers EW. A general P300 brain-computer interface presentation paradigm based on performance guided constraints. Neurosci Lett. 2012;531:63–68.
  • Kübler A, Mattia D, Rupp R, Tangermann M. Facing the challenge: Bringing brain-computer interfaces to end-users. Artif Intell Med. 2013;59:55–60.
  • Zickler C, Riccio A, Leotta F, Hillian-Tress S, Halder S, Holz E, Staiger-Salzer P, Hoogerwerf EJ, Desideri L, Mattia D, Kubler A. A brain-computer interface as input channel for a standard assistive technology software. Clin EEG Neurosci. 2011;42:236–244.
  • Vaughan T, Sellers E, and Wolpaw JR Clinical Evaluation of BCIs In: Wolpaw JR, Winter-Wolpaw E, editors. Brain-Computer Interfaces: Principles and Practice. New York: Oxford University Press; 2012. p. 325–336.
  • Sellers EW, Vaughan TM, Wolpaw JR. A brain-computer interface for long-term independent home use. Amyotrophic Lateral Sclerosis. 2010;11:449–455.
  • Neumann N, Kubler A. Training locked-in patients: A challenge for the use of brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2003;11:169–172.
  • Zickler C, Halder S, Kleih SC, Herbert C, Kübler A. Brain painting: Usability testing according to the user-centered design in end users with severe motor paralysis. Artif Intell Med. 2013;59:99–110.
  • Kübler A, Holz E, Kaufmann T, Zickler C. (2013). A User Centred Approach for Bringing BCI Controlled Applications to End-Users. In: Reza Fazel-Rezai, editors. Brain-Computer Interface Systems - Recent Progress and Future Prospects. doi: 10.5772/55802. Available from: http://www.intechopen.com/books/brain-computer-interface-systems-recent-progress-and-future-prospects/a-user-centred-approach-for-bringing-bci-controlled-applications-to-end-users.
  • Holz EM, Höhne J, Staiger-Sälzer P, Tangermann M, Kübler A. Brain-computer interface controlled gaming: Evaluation of usability by severely motor restricted end-users. Artif Intell Med. 2013;59:111–120.
  • Riccio A, Leotta F, Bianchi L, Aloise F, Zickler C, Hoogerwerf EJ, Kübler A, Mattia D, Cincotti F. Workload measurement in a communication application operated through a P300-based brain-computer interface. J Neural Eng. 2011;8:025028.
  • Holz EM, Kaufmann T, Desideri L, Malavasi M, Hoogerwerf E-, Kübler A. User centred design in BCI development. In: Allison BZ, Dunne S, Leeb R, Millán JDR, Nijholt A, editors. Towards Practical Brain-Computer Interfaces. Berlin: Springer; 2013. p. 155–172.
  • Kaufmann T, Holz EM, Kubler A. Comparison of tactile, auditory, and visual modality for brain-computer interface use: A case study with a patient in the locked-in state. Front Neurosci. 2013;7:129.
  • Holz, EM, Botrel, L, Kaufmann, T, Kübler, A Independent BCI home-use improves quality of life of a patient in the locked-in state (ALS): A long-term study. Arch Phys Med Rehab. 2014 Special Issue on the 5th International BCI Meeting.
  • Holz, EM, Botrel, L, Kaufmann, T, Kübler, A Long-Term Independent BCI Home-Use by a Locked-In End-User: An Evaluation Study. In: Proceedings of the 5th International Brain-Computer Interface Meeting; 2013; Pacific Grove, California, United States. 2013.
  • Alles ist möglich Mein Hirn brennt [Internet]. Available from: http://www.startnext.de/mein-hirn-brennt
  • Kübler A, Holz E, Sellers EW, Vaughan TM. Toward independent home use of BCI: A decision algorithm for selection of potential end-users. Arch Phys Med Rehab. 2014; Special Issue on the Fifth International BCI Meeting.
  • Beukelman DR, Mirenda P. Augmentative and Alternative Communication. BaltimoreMD: Paul Brookes Publishing; 2013.
  • Lloyd LL, Fuller DR, Arvidson H. Augmentative and Alternative Communication: A handbook of principles and practices. Needham, MA: Allyn & Bacon; 1997.
  • Fager S, Beukelman DR, Fried-Oken M, Jakobs T, Baker J. Access interface strategies. Assist Technol. 2011;24:25–33.
  • Millan JD, Rupp R, Muller-Putz GR, Murray-Smith R, Giugliemma C, Tangermann M, Vidaurre C, Cincotti F, Kubler A, Leeb R, Neuper C, Muller KR, Mattia D. Combining brain-computer interfaces and assistive technologies: State-of-the-art and challenges. Front Neurosci. 2010;4. 10.3389/fnins.2010.00161.
  • Scherer MJ. Assistive technology: matching device and consumer for successful rehabilition. 1st ed. Washington, DC: American Psychological Association; 2002 . 325 p.
  • Light J. Interaction involving individuals using augmentative and alternative communication systems: State of the art and future directions. Augmentative and Alternative Communication. 1988;4:66–82.
  • White GW, Suchowierska M, Campbell M. Developing and systematically implementing participatory action research. Arch Phys Med Rehabil. 2004;85:3–12.
  • Huggins JE, Wren PA, Gruis KL. What would brain-computer interface users want? opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2011 May 2; 12:318–324.
  • Bieker G, Noethe G, Fried-Oken M. Locked-in and reaching new heights. Speak Up, publication of the United States Society for Augmentative and Alternative Communication. 2011 December; 3–6.
  • Peters B, Bieker G, Fried-Oken M, Hartman S, Huggins JE, Wolf C, Zeitlin D. BCI users speak up: Feedback on brain-computer interface systems for people with disabilities. Archives of Physical Medicine & Rehabilitation. 2014; In review.
  • Brunner, C, Andreoni, G, Bianchi, L, Blankertz, B, Breitwieser, C, Kanoh, S, Kothe, CA, Lécuyer, A, Makeig, S, Mellinger, J, Perego, P, Renard, Y, Schalk, G Susila, IP, Venthur, B, Müller-Putz, GR. BCI Software Platforms. In: Allison, BZ, Dunne, S, Leeb, R, Millán, JdR, Nijholt, A, editors. Toward Practical BCIs: Bridging the Gap from Research to Real-World Applications. New York: Springer; 2013; p. 303–331.
  • Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004;51:1034–1043.
  • Renard Y, Lotte F, Gibert G, Congedo M, Maby E, Delannoy V, Bertrand O, Lécuyer A. OpenViBE: An open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments. Presence. 2010;19:35–53.
  • Kothe CA, Makeig S. BCILAB: A platform for brain-computer interface development. J Neural Eng. 2013;10 056014,2560/10/5/056014. Epub 2013 Aug 28.
  • Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869.
  • Muller-Putz GR, Breitwieser C, Cincotti F, Leeb R, Schreuder M, Leotta F, Tavella M, Bianchi L, Kreilinger A, Ramsay A, Rohm M, Sagebaum M, Tonin L, Neuper C, Millan Jdel R. Tools for brain-computer interaction: A general concept for a hybrid BCI. Front Neuroinform. 2011;5:30. doi: 10.3389/fninf.2011.00030
  • Ramoser H, Wolpaw JR, Pfurtscheller G. EEG-based communication: Evaluation of alternative signal prediction methods. Biomed Tech (Berl). 1997;42:226–233.
  • Bianchi L, Quitadamo LR, Garreffa G, Cardarilli GC, Marciani MG. Performances evaluation and optimization of brain computer interface systems in a copy spelling task. IEEE Trans Neural Syst Rehabil Eng. 2007;15:207–216.
  • Dal Seno B, Matteucci M, Mainardi LT. The utility metric: A novel method to assess the overall performance of discrete Brain–Computer interfaces. Neural Systems and Rehabilitation Engineering. IEEE Transactions. 2010;18:20–28.
  • Rehman Laghari KUR, Connelly K. Toward total quality of experience: A QoE model in a communication ecosystem. IEEE. 2012;50:58–65.
  • Yuan P, Gao X, Allison B, Wang Y, Bin G, Gao S. A study of the existing problems of estimating the information transfer rate in online brain-computer interfaces. J Neural Eng. 2013: 026014,2560/10/2/026014. Epub 2013 Feb 28.
  • Quitadamo LR, Abbafati M, Cardarilli GC, Mattia D, Cincotti F, Babiloni F, Marciani MG, Bianchi L. Evaluation of the performances of different P300 based brain-computer interfaces by means of the efficiency metric. J Neurosci Methods. 2012;203:361–368.
  • Nijboer F, Clausen J, Allison BZ, Haselager P. The asilomar survey: Stakeholders’ opinions on ethical issues related to brain-computer interfacing. Neuroethics. 2013;6:541–578.
  • Billinger M, Daly I, Kaiser V, Jin J, Allison BZ, Müller-Putz GR, Brunner C. Is it significant? Guidelines for reporting BCI performance. In: Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A, editors. Towards Practical BCIs: Bridging the Gap from Research to Real-World Applications. Berlin: Springer-Verlag; 2013. p. 333–354.
  • Nijboer F, Clausen J, Allison BZ, Haselager P. Researchers’ opinions about ethically sound dissemination of BCI research to the public media. International Journal of Bioelectromagnetism. 2011;13:108–109.
  • Schalk G, Leuthardt EC. Brain-computer interfaces using electrocorticographic signals. IEEE Rev Biomed Eng. 2011;4:140–154.
  • Miller KJ, Leuthardt EC, Schalk G, Rao RP, Anderson NR, Moran DW, Miller JW, Ojemann JG. Spectral changes in cortical surface potentials during motor movement. J Neurosci. 2007;27:2424–2432.
  • Wang W, Collinger JL, Degenhart AD, Tyler-Kabara EC, Schwartz AB, Moran DW, Weber DJ, Wodlinger B, Vinjamuri RK, Ashmore RC, Kelly JW, Boninger ML. An electrocorticographic brain interface in an individual with tetraplegia. PLoS One. 2013;8:e55344.
  • Kennedy P, Andreasen D, Ehirim P, King B, Kirby T, Mao H, Moore M. Using human extra-cortical local field potentials to control a switch. J Neural Eng. 2004;1:72–77.
  • Yanagisawa T, Hirata M, Saitoh Y, Kishima H, Matsushita K, Goto T, Fukuma R, Yokoi H, Kamitani Y, Yoshimine T. Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann Neurol. 2012;71:353–361.
  • Chao ZC, Nagasaka Y, Fujii N. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. Front Neuroeng. 2010;3:3.
  • Hamer HM, Morris HH, Mascha EJ, Karafa MT, Bingaman WE, Bej MD, Burgess RC, Dinner DS, Foldvary NR, Hahn JF, Kotagal P, Najm I, Wyllie E, Luders HO. Complications of invasive video-EEG monitoring with subdural grid electrodes. Neurology. 2002;58:97–103.
  • Fountas KN, Smith JR. Subdural electrode-associated complications: A 20-year experience. Stereotact Funct Neurosurg. 2007;85:264–272.
  • Van Gompel JJ, Worrell GA, Bell ML, Patrick TA, Cascino GD, Raffel C, Marsh WR, Meyer FB. Intracranial electroencephalography with subdural grid electrodes: Techniques, complications, and outcomes. Neurosurgery. 2008;63:498-505–505-506.
  • Morrell MJ. RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77:1295–1304.
  • Speer, J, Kuhn, R FDA Advisory Panel Recommends Approval of the NeuroPace RNS® System for Medically Refractory Epilepsy [Internet]. 2013. Available from: http://www.neuropace.com/about/news/20130225.html
  • Torres Valderrama A, Oostenveld R, Vansteensel MJ, Huiskamp GM, Ramsey NF. Gain of the human dura in vivo and its effects on invasive brain signal feature detection. J Neurosci Methods. 2010;187:270–279.
  • Voytek B, Secundo L, Bidet-Caulet A, Scabini D, Stiver SI, Gean AD, Manley GT, Knight RT. Hemicraniectomy: A new model for human electrophysiology with high spatio-temporal resolution. J Cogn Neurosci. 2010;22:2491–2502.
  • Flint RD, Wright ZA, Scheid MR, Slutzky MW. Long term, stable brain machine interface performance using local field potentials and multiunit spikes. J Neural Eng. 2013;10 056005,2560/10/5/056005. Epub 2013 Aug 5.
  • Rouse AG, Williams JJ, Wheeler JJ, Moran DW. Cortical adaptation to a chronic micro-electrocorticographic brain computer interface. J Neurosci. 2013;33:1326–1330.
  • Markowitz DA, Wong YT, Gray CM, Pesaran B. Optimizing the decoding of movement goals from local field potentials in macaque cortex. J Neurosci. 2011;31:18412–18422.
  • Bouchard KE, Mesgarani N, Johnson K, Chang EF. Functional organization of human sensorimotor cortex for speech articulation. Nature. 2013;495:327–332.
  • Chang EF, Rieger JW, Johnson K, Berger MS, Barbaro NM, Knight RT. Categorical speech representation in human superior temporal gyrus. Nat Neurosci. 2010;13:1428–1432.
  • Flinker A, Chang EF, Barbaro NM, Berger MS, Knight RT. Sub-centimeter language organization in the human temporal lobe. Brain Lang. 2011;117:103–109.
  • Slutzky MW, Jordan LR, Krieg T, Chen M, Mogul DJ, Miller LE. Optimal spacing of surface electrode arrays for brain-machine interface applications. J Neural Eng. 2010; 7:26004,2560/7/2/026004. Epub 2010 Mar 2.
  • Treder MS, Schmidt NM, Blankertz B. Gaze-independent brain-computer interfaces based on covert attention and feature attention. J Neural Eng. 2011; 8:066003,2560/8/6/066003. Epub 2011 Oct 6.
  • Tonin L, Leeb R, Del R, Millan J. Time-dependent approach for single trial classification of covert visuospatial attention. J Neural Eng. 2012 045011,2560/9/4/045011. Epub 2012 Jul 25.
  • Sajda P, Pohlmeyer E, Jun Wang LC, Parra LC, Christoforou C, Dmochowski J, Hanna B, Bahlmann C, Singh MK, Shih-Fu Chang. In a blink of an eye and a switch of a transistor: Cortically coupled computer vision. Proceedings of the IEEE. 2010;98:462–478.
  • Kohlmorgen J, Dornhege, G, Braun, ML, Blankertz B, Müller KR, Curio G, Hagemann K, Bruns A Schrauf M, Kincses W Improving human performance in a real operating environment through real-time mental workload detection In: Dornhege G, Millán JdR, Hinterberger T, McFarland D, Müller KR, editors. Toward Brain-Computer Interfacing. Cambridge, MA: MIT press; 2007; p. 409–422
  • Gopher D, Donchin E. Workload: An Examination of the Concept. In: Boff KR, Kaufman L, Thomas JP, editors. Handbook of Perception and Human Performance, Vol II, Cognitive Processes and Performance. New York: Wiley & Sons; 1986.
  • Dennett D Consciousness Explained. Little Brown & Company, Boston, MA: 1991.
  • Sirevaag EJ, Kramer AF, Coles MG, Donchin E. Resource reciprocity: An event-related brain potentials analysis. Acta Psychol (Amst). 1989;70:77–97.
  • Farwell LA, Donchin E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70:510–523.
  • Libet B, Gleason CA, Wright EW, Pearl DK. Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). the unconscious initiation of a freely voluntary act. Brain. 1983;106:623–642.
  • Lew E, Chavarriaga R, Silvoni S, Jdel R Millan. Detection of self-paced reaching movement intention from EEG signals. Detection of self-paced reaching. Front Neuroeng. 2012;5: 13.
  • Bai O, Rathi V, Lin P, Huang D, Battapady H, Fei DY, Schneider L, Houdayer E, Chen X, Hallett M. Prediction of human voluntary movement before it occurs. Clin Neurophysiol. 2011;122:364–372.
  • Haggard P. Human volition: Towards a neuroscience of will. Nat Rev Neurosci. 2008;9:934–946.
  • Muralidharan A, Chae J, Taylor DM. Extracting attempted hand movements from EEGs in people with complete hand paralysis following stroke. Front Neurosci. 2011;5:39.
  • Khaliliardali Z, Chavarriaga R. Andrei Gheorghe L, Millan Jdel R. Detection of anticipatory brain potentials during car driving. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3829–3832.
  • Chavarriaga R. Learning from EEG error-related potentials in noninvasive brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2010;18:381–388.
  • Llera A, van Gerven MA, Gómez V, Jensen O, Kappen HJ. On the use of interaction error potentials for adaptive brain computer interfaces. Neural Netw. 2011;24:1120–1127.
  • Milekovic T, Ball T, Schulze-Bonhage A, Aertsen A, Mehring C. Error-related electrocorticographic activity in humans during continuous movements. J Neural Eng. 2012;9: 026007,2560/9/2/026007. Epub 2012 Feb 13.
  • Iturrate I, Chavarriaga R, Montesano L, Minguez J. Millan Jdel R. Latency correction of error potentials between different experiments reduces calibration time for single-trial classification. Conf Proc IEEE Eng Med Biol Soc. 2012;3288–3291.
  • Chavarriaga R, Perrin X, Siegwart R. Millan Jdel R. Anticipation- and error-related EEG signals during realistic human-machine interaction: A study on visual and tactile feedback. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6723–6726.
  • Ferrez PW. Millan Jd. Simultaneous real-time detection of motor imagery and error-related potentials for improved BCI accuracy. Proceedings 4th Internat BCI. Workshop. 2008;1. 197-202.
  • Spüler M, Bensch M, Kleih S, Rosenstiel W, Bogdan M, Kübler A. Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCI. Clin Neurophysiol. 2012;123:1328–1337.
  • Mahmoudi B, Sanchez JC. A symbiotic brain-machine interface through value-based decision making. PLoS One. 2011;6:e14760.
  • Roset SA, Gonzalez HF, Sanchez JC. Development of an EEG based reinforcement learning brain-computer interface system for rehabilitation. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:1563–1566.
  • Makeig S, Gramann K, Jung TP, Sejnowski TJ, Poizner H. Linking brain, mind and behavior. Int J Psychophysiol. 2009;73:95–100.
  • Pfurtscheller G, Allison BZ, Brunner C, Bauernfeind G, Solis-Escalante T, Scherer R, Zander TO, Mueller-Putz G, Neuper C, Birbaumer N. The hybrid BCI. Front Neurosci. 2010:430.
  • Zhang H, Chavarriaga R. Goel MK, Gheorghe L, Millan Jdel R. Improved recognition of error related potentials through the use of brain connectivity features. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6740–6743.
  • Mullen T, Kothe C, Chi YM, Ojeda A, Kerth T, Makeig S, Cauwenberghs G, Jung TP. Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2184–2187.
  • Evans N, Blanke O. Shared electrophysiology mechanisms of body ownership and motor imagery. Neuroimage. 2013;64:216–228.
  • Wolpaw J, Wolpaw EW. Brain-computer interfaces: principles and practice. New York: Oxford University Press; 2012.
  • Friedrich EV, Neuper C, Scherer R. Whatever works: A systematic user-centered training protocol to optimize brain-computer interfacing individually. PLoS One. 2013;8:e76214.
  • Faller J, Vidaurre C, Solis-Escalante T, Neuper C, Scherer R. Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI. IEEE Trans Neural Syst Rehabil Eng. 2012;20:313–319.
  • Fruitet J, Carpentier A, Munos R, Clerc M. Automatic motor task selection via a bandit algorithm for a brain-controlled button. J Neural Eng. 2013;10: 016012,2560/10/1/016012. Epub 2013 Jan 21
  • Lecuyer A, George L, Marchal M. Toward adaptive VR simulators combining visual, haptic, and brain-computer interfaces. IEEE. 2013;33:18–23.
  • Velasco-Álvarez F, Ron-Angevin R, da Silva-Sauer L, Sancha-Ros S. Audio-Cued Motor Imagery-Based Brain–Computer Interface: Navigation through Virtual and Real Environments. Neurocomputing. 2013; 121:89–98.
  • Scherer R, Proll M, Allison B, Muller-Putz GR. New input modalities for modern game design and virtual embodiment. In: Virtual Reality Short Papers and Posters (VRW) IEEE 2012. 2012;5:163–164.
  • Grosse-Wentrup M, Scholkopf B. High gamma-power predicts performance in sensorimotor-rhythm brain-computer interfaces. J Neural Eng. 2012;9: 046001,2560/9/4/046001. Epub 2012 Jun 19.
  • Wander JD, Blakely T, Miller KJ, Weaver KE, Johnson LA, Olson JD, Fetz EE, Rao RP, Ojemann JG. Distributed cortical adaptation during learning of a brain-computer interface task. Proc Natl Acad Sci USA. 2013;110:10818–10823.
  • Lotte F, Larrue F, Muhl C. Flaws in current human training protocols for spontaneous brain-computer interfaces: Lessons learned from instructional design. Front Hum Neurosci. 2013;17:568.
  • Rupp R, Müller-Putz G BCI-Controlled Grasp Neuroprosthesis in High Spinal Cord Injury In: Converging Clinical and Engineering Research in Neurorehabilitation. 2012; p. 1255-9.
  • Rupp R, Kreilinger A, Rohm M, Kaiser V, Muller-Putz GR. Development of a non-invasive, multifunctional grasp neuroprosthesis and its evaluation in an individual with a high spinal cord injury. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1835–1838.
  • Kreilinger A, Kaiser V, Breitwieser C, Williamson J, Neuper C, Muller-Putz GR. Switching between manual control and brain-computer interface using long term and short term quality measures. Front Neurosci. 2011;5:147.
  • Muller-Putz GR, Scherer R, Pfurtscheller G, Rupp R. EEG-based neuroprosthesis control: A step towards clinical practice. Neurosci Lett. 2005;382:169–174.
  • Pfurtscheller G, Muller GR, Pfurtscheller J, Gerner HJ, Rupp R. ‘Thought’–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett. 2003;351:33–36.
  • Rohm M, Schneiders M, Muller C, Kreilinger A, Kaiser V, Muller-Putz GR, Rupp R. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif Intell Med. 2013;59:133–142.
  • Muller-Putz GR, Scherer R, Pfurtscheller G, Rupp R. Brain-computer interfaces for control of neuroprostheses: From synchronous to asynchronous mode of operation. Biomed Tech (Berl). 2006;51:57–63.
  • Kreilinger A, Kaiser V, Rohm M, Leeb R, Rupp R, Müller-Putz G. Neuroprosthesis Control via Non-invasive Hybrid Brain-Computer Interface. 2013.
  • Rohm M, Rupp R, Schneiders M, Kreilinger A, Müller-Putz GR. Hybrid brain-computer interfaces for control of neuroprosthetic systems for restoration of upper limb functions in high spinal cord injured individuals. Proceedings IFESS. 2013.
  • Hill NJ, Scholkopf B. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli. J Neural Eng. 2012;9: 026011,2560/9/2/026011. Epub 2012 Feb 15.
  • Hohne J, Schreuder M, Blankertz B, Tangermann M. A novel 9-class auditory ERP paradigm driving a predictive text entry system. Front Neurosci. 2011;5:99.
  • Kubler A, Furdea A, Halder S, Hammer EM, Nijboer F, Kotchoubey B. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients. Ann N Y Acad Sci. 2009;1157:90–100.
  • Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kubler A. An auditory brain-computer interface (BCI). J Neurosci Methods. 2008;167:43–50.
  • Riccio A, Mattia D, Simione L, Olivetti M, Cincotti F. Eye-gaze independent EEG-based brain-computer interfaces for communication. J Neural Eng. 2012;9: 045001,2560/9/4/045001. Epub 2012 Jul 25.
  • Schreuder M, Rost T, Tangermann M. Listen, you are writing! speeding up online spelling with a dynamic auditory BCI. Front Neurosci. 2011;5:112.
  • Fallani De Vico, Pichiorri F, Morone G, Molinari M, Babiloni F, Cincotti F, Mattia D. Multiscale topological properties of functional brain networks during motor imagery after stroke. Neuroimage. 2013;83:438–449.
  • Soekadar SR, Witkowski M, Cossio EG, Birbaumer N, Robinson SE, Cohen LG. In vivo assessment of human brain oscillations during application of transcranial electric currents. Nat Commun. 2013;4:2032.
  • Ramos-Murguialday A, Broetz D, Rea M, Laer L, Yilmaz O, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG, Birbaumer N. Brain-machine interface in chronic stroke rehabilitation: A controlled study. Ann Neurol. 2013;74:100–108.
  • Cho W, Vidaurre C, Hoffmann U, Birbaumer N, Ramos-Murguialday A. Afferent and efferent activity control in the design of brain computer interfaces for motor rehabilitation. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:7310–7315.
  • Hashimoto Y, Ushiba J, Kimura A, Liu M, Tomita Y. Change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy. BMC Neurosci. 2010;11:117.
  • Kasahara T, Terasaki K, Ogawa Y, Ushiba J, Aramaki H, Masakado Y. The correlation between motor impairments and event-related desynchronization during motor imagery in ALS patients. BMC Neurosci. 2012;13:13–66.
  • Kasashima Y, Fujiwara T, Matsushika Y, Tsuji T, Hase K, Ushiyama J, Ushiba J, Liu M. Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation (tDCS) in patients with chronic hemiparetic stroke. Exp Brain Res. 2012;221:263–268.
  • Matsumoto J, Fujiwara T, Takahashi O, Liu M, Kimura A, Ushiba J. Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation. J Neuroeng Rehabil. 2010;27:7–27.
  • Ono T, Kimura A, Ushiba J. Daily training with realistic visual feedback improves reproducibility of event-related desynchronisation following hand motor imagery. Clin Neurophysiol. 2013;124:1779–1786.
  • Ortner R, Irimia DC, Scharinger J, Guger C. A motor imagery based brain-computer interface for stroke rehabilitation. Stud Health Technol Inform. 2012;181:319–323.
  • Shindo K, Kawashima K, Ushiba J, Ota N, Ito M, Ota T, Kimura A, Liu M. Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: A preliminary case series study. J Rehabil Med. 2011;43:951–957.
  • Takemi M, Masakado Y, Liu M, Ushiba J. Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex. J Neurophysiol. 2013;110:1158–1166.
  • Tohyama T, Fujiwara T, Matsumoto J, Honaga K, Ushiba J, Tsuji T, Hase K, Liu M. Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation in a patient with severe hemiparetic stroke: A case report. Keio J Med. 2011;60:114–118.
  • Yamamoto T, Katayama Y, Ushiba J, Yoshino H, Obuchi T, Kobayashi K, Oshima H, Fukaya C. On-demand control system for deep brain stimulation for treatment of intention tremor. Neuromodulation. 2013;16:230–235.
  • Hashimoto Y, Ushiba J. EEG-based classification of imaginary left and right foot movements using beta rebound. Clin Neurophysiol. 2013;124:2153–2160.
  • Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol. 1995;73:820–835.
  • Monzee J, Lamarre Y, Smith AM. The effects of digital anesthesia on force control using a precision grip. J Neurophysiol. 2003;89:672–683.
  • Weber DJ, London BM, Hokanson JA, Ayers CA, Gaunt RA, Torres RR, Zaaimi B, Miller LE. Limb-state information encoded by peripheral and central somatosensory neurons: Implications for an afferent interface. IEEE Trans Neural Syst Rehabil Eng. 2011;19:501–513.
  • Weber DJ, Friesen R, Miller LE. Interfacing the somatosensory system to restore touch and proprioception: Essential considerations. J Mot Behav. 2012;44:403–418.
  • Koivuniemi AS, Otto KJ. The depth, waveform and pulse rate for electrical microstimulation of the auditory cortex. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2489–2492.
  • Schiefer MA, Tan DW, Anderson R, Keith M, Schmitt M, Tyler J, Tyler DJ. Restoring sensation in amputees with nerve cuff electrodes. In: BMES Annual Conference. 2013.
  • O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MA. Active tactile exploration using a brain-machine-brain interface. Nature. 2011;479:228–231.
  • Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, Bensmaia SJ. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci USA. 2013;110:18279–18284.
  • Tomlinson T, Ruiz-torres R, Miller LE. Multi-electrode stimulation in somatosensory area 2 induces a natural sensation of limb movement. In: Annual meeting, Society for Neuroscience; 2013. p. 835.03
  • Dadarlat MC, O’Doherty JE, Sabes PN. Multisensory integration of vision and intracortical microstimulation for sensory substitution and augmentation. In: Annual meeting, Society for Neuroscience; 2012. p. 292–212
  • Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485:372–375.
  • Kwok R. Neuroprosthetics: Once more, with feeling. Nature. 2013;497:176–178.
  • Raspopovic S, Capogrosso M, Badia J, Navarro X, Micera S. Experimental validation of a hybrid computational model for selective stimulation using transverse intrafascicular multichannel electrodes. IEEE Trans Neural Syst Rehabil Eng. 2012;20:395–404.
  • Berg JA, Dammann JF, 3rd, Tenore FV, Tabot GA, Boback JL, Manfredi LR, Peterson, MLKatyal KD, Johannes MS, Makhlin A, Wilcox R, Franklin RK, Vogelstein RJ, Hatsopoulos NG, Bensmaia SJ. Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng. 2013;21:500–507.
  • Chavarriaga, R, Biasiucci, A, Molina, A, RLeeb, Soto León, V, Campolo, M, Oliviero, A, Millán, JdR. tDCS Modulates Motor Imagery-Related BCI FeaturesIn: Pons, JL, Torricelli, D, Pajaro, M, editors. Converging Clinical and Engineering Research on Neurorehabilitation. Berlin Heidelberg: Springer, 2013; p. 647–651
  • Ang KK, Guan C, Phua KS, Wang C, Teh I, Chen CW, Chew E. Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4128–4131.
  • Ortner, R, Rodriguez, J, Guger, C A tactile P300 brain-computer interface, Technical Report 3. Austria: g.tec Medical Engineering GmbH; 2012 December 2012.
  • Mori, H, Matsumoto, Y, Makino, S, Kryssanov, V, Rutkowski, TM. Vibrotactile Stimulus Frequency Optimization for the Haptic BCI Prototype. In: Proceedings of The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligent Systems; 2012; Kobe, Japan. 2012. p. 2150-3
  • Mori H, Matsumoto Y, Kryssanov V, Cooper E, Ogawa H, Makino S, Struzik Z, Rutkowski TM. Multi-command tactile brain computer interface: A feasibility study. In: Oakley I, Brewster S, editors. Haptic and Audio Interaction Design 2013 (HAID 2013) vol. 7989 of Lecture Notes in Computer Science. Berlin Heidelberg: Springer Verlag; 2013. p. 50–59.
  • Mori, H, Matsumoto, Y, Struzik, ZR, Mori, K, Makino, S, Mandic, D, Rutkowski, TM. Multi-command tactile and auditory brain computer interface based on head position stimulation. In: Proceedings of the Fifth International Brain-Computer Interface Meeting. 2013; Asilomar Conference Center, Pacific Grove, California, USA. 2013.
  • Rutkowski, TM, Mori, H, Makino, S, Mori, K Novel spatial tactile and bone-conduction auditory brain computer interface. In: Neuroscience 2013 Abstracts; 2013; San Diego, CA, USA. 2013. p. abstract #12179,no. 79.03/VV1 in Brain-Machine Interface I.
  • Guger G, Sorger B, Noirhomme Q, Naci L, Monti MM, Real R, Pokorny C, Veser S, Lugo Z, Quitadamo L, Lesenfants D, Risetti M, Formisano R, Toppi J, Astolfi L, Emmerling T, Heine L, Erlbeck H, Horki P, Kotchoubey B, Bianchi L, Mattia D, Goebel R, Owen AM, Pellas F, Müller-Putz G, Laureys S, Kübler A. Brain-computer interfaces for assessment and communication in disorders of consciousness. In: Naik, Ganesh R, editors. Emerging Theory and Practice in Neuroprosthetics. IGIGLOBAL, Hershey, PA: 2014 in press.
  • Naci L, Monti MM, Cruse D, Kubler A, Sorger B, Goebel R, Kotchoubey B, Owen AM. Brain-computer interfaces for communication with nonresponsive patients. Ann Neurol. 2012;72:312–323.
  • Kubler A, Kotchoubey B. Brain-computer interfaces in the continuum of consciousness. Curr Opin Neurol. 2007;20:643–649.
  • Pokorny C, Klobassa D, Pichler G, Erlbeck H, Real R, Kübler A, Lesenfants D, Habbal D, Noirhomme Q, Risetti M, Mattia D, Müller-Putz G. The auditory P300-based single-switch brain-computer interface: Paradigm transition from healthy subjects to minimally conscious patients. Artificial intelligence in medicine. 2013; 59:2;81–90.
  • Müller-Putz G, Pokorny C, Klobassa D, Horki P. A single switch BCI based on passive and imagined movements: Towards restoring communication in minimally conscious patients. International journal of neural systems. 2013;23: 2.
  • Coyle, D, Carroll, A, Stow, J, McCann, A, Ally, A, McElligott, J Enabling Control in the Minimally Conscious State in a Single Session with a Three Channel BCI. In: 1st International Decoder Workshop; 2012. p. 1–4.
  • Coyle, D, Carroll, Á, Stow, J, McCreadie, K, McElligott, J Visual and Stereo Audio Sensorimotor Rhythm Feedback in the Minimally Conscious State. In: Proceedings of the Fifth International Brain-Computer Interface Meeting; 2013. p. 38–39
  • Risetti M, Formisano R, Toppi J, Quitadamo LR, Bianchi L, Astolfi L, Mattia D. On ERPs detection in disorders of consciousness rehabilitation. Frontiers in Human Neuroscience. 2013 7:775, 1–10.
  • Lesenfants, D, Partoune, N, Soddu, A, Lehembre, R, Muller-Putz, G, Laureys, S, Noirhome, Q Design of a novel covert SSVEP-based BCI. In: Proceedings of the 5th International Brain-Computer Interface Conference. 2011;Graz, Austria. 2011.
  • Lesenfants D, Habbal D, Lugo Z, Lebeau P, Horki P, Amico E, Pokorny C, Gomez F, Soddu A, Muller-Putz G, Muller-Putz G, Laureys S, Noirhomme Q. Independent SSVEP-based brain-computer interface in locked-in patients. Journal of Neural Engineering. 2014.
  • Centers for Disease Control. Prevalence of Autism Spectrum Disorders -- Autism and Developmental Disabilities Monitoring Network, United States, 2008. 2012; 61:SS03:1–19. Available from http://www.cdc.gov/mmwr/preview/mmwrhtml/ss6103a1.htm
  • Lovaas OI. Behavioral treatment and normal educational and intellectual functioning in young autistic children. J Consult Clin Psychol. 1987;55:3–9.
  • McEachin JJ, Smith T, Lovaas OI. Long-term outcome for children with autism who received early intensive behavioral treatment. Am J Ment Retard. 1993;97:373–391.
  • Oberman LM, Ramachandran VS, Pineda JA. Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis. Neuropsychologia. 2008 ;46:1558–1565.
  • Pineda JA, Juavinett A, Datko M. Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism. Med Hypotheses. 2012;79:790–798.
  • Townsend J, Westerfield M, Leaver E, Makeig S, Jung T, Pierce K, Courchesne E. Event-related brain response abnormalities in autism: Evidence for impaired cerebello-frontal spatial attention networks. Brain Res Cogn Brain Res. 2001;11:127–145.
  • Pineda JA, Brang D, Hecht E, Edwards L, Carey S, Bacon M, Futagaki C, Suk D, Tom J, Birnbaum C, Rork A. Positive behavioral and electrophysiological changes following neurofeedback training in children with autism. Research in Autism Spectrum Disorders. 2008;2:557–581.
  • Liao, LD, Lin, CT, McDowell, K, Wickenden, AE, Gramann, K, Jung,. TP, Ko, LW, Chang, JY. Biosensor technologies for augmented Brain–Computer interfaces in the next decades. Proceedings of the IEEE. 2012;100:1553–1566.
  • Rapela J, Lin TY, Westerfield M, Jung TP, Townsend J. Assisting autistic children with wireless EOG technology. Conf Proc IEEE Eng Med Biol Soc. 2012;3504–3506.
  • Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol. 2000;2012:111:1745–1758.
  • Gwin JT, Gramann K, Makeig S, Ferris DP. Removal of movement artifact from high-density EEG recorded during walking and running. J Neurophysiol. 2010;103:3526–3534.
  • Chi YM, Wang YT, Wang Y, Maier C, Jung TP, Cauwenberghs G. Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2012;20:228–235.
  • Matthews R, McDonald NJ, Anumula H, Woodward J, Turner PJ, Steindorf MA, Chang K, Pendleton JM. Novel hybrid bioelectrodes for ambulatory zero-prep EEG measurements using multi-channel wireless EEG system. Foundations of Augmented Cognition Lecture Notes in Computer Science. 2007;4565:137–146.
  • Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors (Basel). 2011;11:5819–5834.
  • Guger C, Krausz G, Allison BZ, Edlinger G. Comparison of dry and gel based electrodes for p300 brain-computer interfaces. Front Neurosci. 2012;6:60.
  • Ryynanen OR, Hyttinen JA, Laarne PH, Malmivuo JA. Effect of electrode density and measurement noise on the spatial resolution of cortical potential distribution. IEEE Trans Biomed Eng. 2004;51:1547–1554.
  • Coffey, EBJ, Brouwer, A-, Wilschut, ES, van Erp, JBF. Brain-machine interfaces in space: Using spontaneous rather than intentionally generated brain signals. Acta Astronautica. 2010;67:1–11
  • Zander, T, Kothe, C, Welke, S, Roetting, M. Enhancing Human-Machine systems with secondary input from passive Brain-Computer interfaces. In: Proceedings from the 4th International BCI Workshop and Training Course; 2008; Graz, Austria. 2008
  • Zander TO, Kothe C. Towards passive brain-computer interfaces: Applying brain-computer interface technology to human-machine systems in general. J Neural Eng. 2011;8: 025005,2560/8/2/025005. Epub 2011 Mar 24.
  • Brouwer, A-, van Erp, JBF, Heylen, D, Jensen, O, Poel, M Effortless Passive BCIs for Healthy Users In: Stephanidis, C, Antona, M, editors. UAHCI/HCII 2013, Part I, LNCS 8009. Las VegasNV: Springer Berlin Heidelberg; 2013; p. 615–622.
  • Hancock PA, Meshkati N, Robertson MM. Physiological reflections of mental workload. Aviat Space Environ Med. 1985;56:1110–1114.
  • Keeler L. A method for detecting deception. American Journal of Police Science. 1930;1:38–51.
  • Kindermans, P-, Schrauwen, B Dynamic Stopping in a Calibration-less P300 Speller. In: Proceedings of the Fifth International Brain Computer Interface Meeting 2013; 20132013. p. DOI:10.3217/978-3-85125-260-6-75.
  • Brouwer A-, Zander TO, Van Erp Jan BF Using neurophysiological signals that reflect cognitive or affective state [Internet]. Available from: http://www.frontiersin.org/neuroprosthetics/researchtopics/using_neurophysiological_signa/1528.
  • Vuckovic A, Pineda JA, LaMarca K, Gupta D, Guger C. Frontiers in Neuroengineering: Interaction of BCI with the underlying neurological conditions in patients: pros and cons [Internet]. Available from: http://www.frontiersin.org/neuroengineering/researchtopics/interaction_of_bci_with_the_un/2020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.