1,169
Views
0
CrossRef citations to date
0
Altmetric
STEM EDUCATION

Motivation, conceptual understanding, and critical thinking as correlates and predictors of metacognition in introductory physics

, &
Article: 2290114 | Received 19 May 2023, Accepted 27 Nov 2023, Published online: 03 Dec 2023

References

  • Abrami, P. C., Bernard, R. M., Borokhovski, E., Wade, A., Surkes, M. A., Tamim, R., & Zhang, D. (2008). Instructional interventions affecting critical thinking skills and dispositions: A stage 1 meta-analysis. Review of Educational Research, 78(4), 1102–11. https://doi.org/10.3102/0034654308326084
  • Ackerman, P. L., & Heggestad, E. D. (1997). Intelligence, personality, and interests: Evidence for overlapping traits. Psychological Bulletin, 121(2), 219–245. https://doi.org/10.1037/0033-2909.121.2.219
  • Arslan, S. (2018). Investigating predictive role of critical thinking on metacognition with structural equation modeling. MOJES: Malaysian Online Journal of Educational Sciences, 3(2), 1–10.
  • Avargil, S., Lavi, R., & Dori, Y. J. (2018). Students’ metacognition and metacognitive strategies in science education. In Cognition, metacognition, and culture in STEM education: Learning, teaching and assessment (pp. 33–64). https://doi.org/10.1007/978-3-319-66659-4_3
  • Carpendale, J., & Cooper, R. (2021). Conceptual understanding procedure to elicit metacognition with pre-service physics teachers. Physics Education, 56(2), 025008. https://doi.org/10.1088/1361-6552/abc8fd
  • Chabay, R., & Sherwood, B. (2006). Restructuring the introductory electricity and magnetism course. American Journal of Physics, 74(4), 329–336. https://doi.org/10.1119/1.2165249
  • Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
  • Dori, Y. J., Avargil, S., Kohen, Z., Saar, L., & Dori, Y. J. (2018). Context-based learning and metacognitive prompts for enhancing scientific text comprehension. International Journal of Science Education, 1–23. https://doi.org/10.1080/09500693.2018.1470351
  • Džinović, V., Đević, R., & Đerić, I. (2019). The role of self-control, self-efficacy, metacognition, and motivation in predicting school achievement. Psihologija, 52(1), 35–52. https://doi.org/10.2298/PSI180202027D
  • Efklides, A., & Efklides, A. (2011). Interactions of metacognition with motivation and affect in self-regulated learning: The MASRL model interactions of metacognition with motivation and affect in self-regulated learning: The MASRL model. October, 2014, 37–41. https://doi.org/10.1080/00461520.2011.538645
  • Ennis, R. H. (1993). Critical thinking assessment. Theory into Practice, 32(3), 179–186. https://doi.org/10.1080/00405849309543594
  • Fleur, D. S., Bredeweg, B., & van den Bos, W. (2021). Metacognition: Ideas and insights from neuro- and educational sciences. Science of Learning, 6(1). https://doi.org/10.1038/s41539-021-00089-5
  • Ford, C. L., & Yore, L. D. (2012). Toward convergence of critical thinking, metacognition, and reflection: Illustrations from natural and social sciences, teacher education, and classroom practice. Contemporary Trends and Issues in Science Education, 40, 251–271. https://doi.org/10.1007/978-94-007-2132-6_11
  • Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science motivation questionnaire II: Validation with Science majors and nonscience majors. Journal of Research in Science Teaching, 48(10), 1159–1176. https://doi.org/10.1002/tea.20442
  • Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2009). Science motivation questionnaire: Construct validation with nonscience majors. Journal of Research in Science Teaching, 46(2), 127–146. https://doi.org/10.1002/tea.20267
  • Gurcay, D., & Ferah, H. O. (2018). High school students ’ critical thinking related to their metacognitive self-regulation and physics self-efficacy beliefs. Journal of Education and Training Studies, 6(4), 125–130. https://doi.org/10.11114/jets.v6i4.2980
  • Haeruddin, P. Z. K., Supahar Sesa, E., Lembah, G., Sesa, E., & Lembah, G. (2020). Psychometric and structural evaluation of the physics metacognition inventory instrument. European Journal of Educational Research, 9(1), 215–225. https://doi.org/10.12973/eu-jer.9.1.215
  • Halpern, D. F. (1997). Teaching critical thinking for transfer across domains. The American Psychologist, 53(4), 449–455. https://doi.org/10.1037/0003-066X.53.4.449
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
  • Kuhn, D., & Dean, D. (2004). Metacognition: A bridge between cognitive psychology and educational practice. Theory into Practice, 43(4), 268–273. https://doi.org/10.1207/s15430421tip4304_4
  • Magno, C. (2010). The role of metacognitive skills in developing critical thinking. Metacognition and Learning, 5(2), 137–156. https://doi.org/10.1007/s11409-010-9054-4
  • McColgan, M. W., Finn, R. A., Broder, D. L., & Hassel, G. E. (2017). Assessing students’ conceptual knowledge of electricity and magnetism. Physical Review Physics Education Research, 13(2), 1–19. https://doi.org/10.1103/PhysRevPhysEducRes.13.020121
  • Mcdermott, L. C., & Mcdermott, L. C. (1984). Research on conceptual understanding in mechanics. Research on Conceptual Understanding in Mechanics, 37(7), 24–32. https://doi.org/10.1063/1.2916318
  • McDowell, L. D. (2019). The roles of motivation and metacognition in producing self-regulated learners of college physical science: A review of empirical studies. International Journal of Science Education, 41(17), 2524–2541. https://doi.org/10.1080/09500693.2019.1689584
  • Mills, S. (2016). Conceptual understanding: A concept analysis. The Qualitative Report, 21(3), 546–557. https://doi.org/10.46743/2160-3715/2016.2308
  • Morphew, J. W. (2021). Changes in metacognitive monitoring accuracy in an introductory physics course. Metacognition and Learning, 16(1), 89–111. https://doi.org/10.1007/s11409-020-09239-3
  • Nunnally, J. C. (1978). Psychometric Theory 2nd ed. Mcgraw hill book company.
  • Pintrich, P. R., & Schunk, D. H. (2002). Motivation in education: Theory, research, and applications. Prentice Hall.
  • Ryan, R. M. (2017). Self-determination Theory: Basic psychological needs in motivation, development, and wellness. The Guilford Press A Division of Guilford Publications, Inc.
  • Salta, K., & Koulougliotis, D. (2020). Domain specificity of motivation: Chemistry and physics learning among undergraduate students of three academic majors. International Journal of Science Education, 42(2), 253–270. https://doi.org/10.1080/09500693.2019.1708511
  • Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19(4), 460–475. https://doi.org/10.1006/ceps.1994.1033
  • Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351–371. https://doi.org/10.1007/BF02212307
  • Stanton, J. D., Sebesta, A. J., Dunlosky, J., Dori, Y. J., Kuhn, D., Dean, D., Hussain, D., Bogdanović, I. Z., Rodić, D. D., Rončević, T. N., Stanisavljević, J. D., Zouhor, Z. A. M., Fleur, D. S., Bredeweg, B., & van den Bos, W. (2022). Metacognition: Ideas and insights from neuro- and educational sciences. Science of Learning, 20(2), 268–273. https://doi.org/10.5964/psyct.v8i2.139
  • Sundstrom, M., Shaffer, P., and White Brahmia, S., & the University of Washington Physics Education Group. (2018). Tracing metacognitive self-regulation in an introductory physics course. https://archive.int.washington.edu/REU/2018/Sundstrom_Paper.pdf
  • Taasoobshirazi, G., Bailey, M. L., & Farley, J. (2015). Physics metacognition inventory part II: Confirmatory factor analysis and Rasch analysis. International Journal of Science Education, 37(17), 2769–2786. https://doi.org/10.1080/09500693.2015.1104425
  • Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2013). Using multivariate statistics (Vol. 6). Pearson Education.
  • Tang, Y., Wang, X., Fang, Y., & Li, J. (2021). The antecedents and consequences of metacognitive knowledge in mathematics learning: A self-determination perspective. Frontiers in Psychology, 12(December), 1–9. https://doi.org/10.3389/fpsyg.2021.754370
  • Thomas, G. P. (2013). Changing the metacognitive orientation of a classroom environment to stimulate metacognitive reflection regarding the nature of physics learning. International Journal of Science Education, 35(7), 1183–1207. https://doi.org/10.1080/09500693.2013.778438
  • Tiruneh, D. T., De Cock, M., Weldeslassie, A. G., Elen, J., & Janssen, R. (2017). Measuring critical thinking in physics: Development and validation of a critical thinking test in electricity and magnetism. International Journal of Science and Mathematics Education, 15(4), 663–682. https://doi.org/10.1007/s10763-016-9723-0
  • Tuan, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students’ motivation towards science learning. International Journal of Science Education, 27(6), 639–654. https://doi.org/10.1080/0950069042000323737
  • van den Bos, W. (2021). How to teach a Teacher. Challenges and Opportunities in Physics Teacher Education in Germany and the USA, 55–81. https://doi.org/10.1007/978-3-030-87391-2_3
  • Veenman, M. V. J. (2012). Metacognition in science education: Defi nitions, constituents, and their intricate relation with cognition. Contemporary Trends and Issues in Science Education, 40, 21–36. https://doi.org/10.1007/978-94-007-2132-6_2
  • Zohar, A., & Barzilai, S. (2013). A review of research on metacognition in science education: Current and future directions. Studies in Science Education, 49(2), 121–169. https://doi.org/10.1080/03057267.2013.847261
  • Zohar, A., & Dori, Y. J. (2003). Lesson plans and situated learning-and-Teaching (Suchman book review). Journal of the Learning Sciences, 12(2), 145–181. https://doi.org/10.1207/S15327809JLS1202_1