5,699
Views
40
CrossRef citations to date
0
Altmetric
Review Article

Extracellular vesicles-based drug delivery system for cancer treatment

& | (Reviewing editor)
Article: 1635806 | Received 15 Apr 2019, Accepted 26 May 2019, Published online: 05 Jul 2019

References

  • Abrahams, V. M., Straszewski, S. L., Kamsteeg, M., Hanczaruk, B., Schwartz, P. E., Rutherford, T. J., & Mor, G. (2003). Epithelial ovarian cancer cells secrete functional fas ligand. Cancer Research, 63(17), 5573.
  • Admyre, C., Johansson, S. M., Qazi, K. R., Filen, J. J., Lahesmaa, R., Norman, M., … Gabrielsson, S. (2007). Exosomes with immune modulatory features are present in human breast milk. Journal of Immunology, 179(3), 1969–23. doi:10.4049/jimmunol.179.3.1969
  • Al Faraj, A., Gazeau, F., Fau - Wilhelm, C., Wilhelm, C., Fau - Devue, C., Devue, C., … Rautou, P. E. (2012). Endothelial cell-derived microparticles loaded with iron oxide nanoparticles: Feasibility of MR imaging monitoring in mice. (1527-1315 (Electronic)). doi:10.1094/PDIS-11-11-0999-PDN
  • Allenson, K., Castillo, J., San Lucas, F. A., Scelo, G., Kim, D. U., Bernard, V., … Alvarez, H. (2017). High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Annals of Oncology : Official Journal of the European Society for Medical Oncology / ESMO, 28(4), 741–747. doi:10.1093/annonc/mdx004
  • Alsaweed, M., Lai, C. T., Hartmann, P. E., Geddes, D. T., & Kakulas, F. (2016). Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Scientific Reports, 6, 20680. doi:10.1038/srep20680
  • Andriola Silva, A. K., Di Corato, R., Pellegrino, T., Chat, S., Pugliese, G., Luciani, N., … Wilhelm, C. (2013). Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. Nanoscale, 5(23), 11374–11384. doi:10.1039/C3NR01541F
  • Antes, T. J., Middleton, R. C., Luther, K. M., Ijichi, T., Peck, K. A., Liu, W. J., … Marban, E. (2018). Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. Journal of Nanobiotechnology, 16(1), 61. doi:10.1186/s12951-018-0388-4
  • Armstrong, J. P., Holme, M. N., & Stevens, M. M. (2017). Re-Engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano, 11, 69–83. doi:10.1021/acsnano.6b07607
  • Baietti, M. F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., … David, G. (2012). Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nature Cell Biology, 14(7), 677–685. doi:10.1038/ncb2502
  • Barile, L., & Vassalli, G. (2017). Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacology & Therapeutics, 174, 63–78. doi:10.1016/j.pharmthera.2017.02.020
  • Barteneva, N. S., Fasler-Kan, E., Bernimoulin, M., Stern, J. N. H., Ponomarev, E. D., Duckett, L., & Vorobjev, I. A. (2013). Circulating microparticles: Square the circle. BMC Cell Biology, 14(1), 23. doi:10.1186/1471-2121-14-23
  • Becker, A., Thakur, B. K., Weiss, J. M., Kim, H. S., Peinado, H., & Lyden, D. (2016). Extracellular vesicles in cancer: Cell-to-Cell mediators of metastasis. Cancer Cell, 30(6), 836–848. doi:10.1016/j.ccell.2016.10.009
  • Besse, B., Charrier, M., Lapierre, V., Dansin, E., Lantz, O., Planchard, D., … Chaput, N. (2016). Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology, 5(4), e1071008. doi:10.1080/2162402x.2015.1071008
  • Biller, S. J., Schubotz, F., Roggensack, S. E., Thompson, A. W., Summons, R. E., & Chisholm, S. W. (2014). Bacterial vesicles in marine ecosystems. Science, 343(6167), 183–186. doi:10.1126/science.1243457
  • Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2016). Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33(10), 2373–2387. doi:10.1007/s11095-016-1958-5
  • Bobrie, A., Colombo, M., Krumeich, S., Raposo, G., & Thery, C. (2012). Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. Journal of Extracell Vesicles, 1, 18397. doi:10.3402/jev.v1i0.18397
  • Brown, L., Wolf, J. M., Prados-Rosales, R., & Casadevall, A. (2015). Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nature Reviews Microbiology, 13(10), 620–630. doi:10.1038/nrmicro3480
  • Bruno, S., Collino, F., Deregibus, M. C., Grange, C., Tetta, C., & Camussi, G. (2013). Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells and Development, 22(5), 758–771. doi:10.1089/scd.2012.0304
  • Bruno, S., Grange, C., Deregibus, M. C., Calogero, R. A., Saviozzi, S., Collino, F., … Camussi, G. (2009). Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Journal of the American Society of Nephrology : JASN, 20(5), 1053–1067. doi:10.1681/ASN.2008070798
  • Bruno, S., Tapparo, M., Collino, F., Chiabotto, G., Deregibus, M. C., Soares Lindoso, R., … Camussi, G. (2017). Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells. Tissue Engineering Part A, 23(21–22), 1262–1273. doi:10.1089/ten.TEA.2017.0069
  • Chang, M., Hsiao, J. K., Yao, M., Chien, L. Y., Hsu, S. C., Ko, B. S., … Huang, D. M. (2010). Homologous RBC-derived vesicles as ultrasmall carriers of iron oxide for magnetic resonance imaging of stem cells. Nanotechnology, 21(23), 235103. doi:10.1088/0957-4484/21/23/235103
  • Chaput, N., Taieb, J., Schartz, N. E., Andre, F., Angevin, E., & Zitvogel, L. (2004). Exosome-based immunotherapy. Cancer Immunology, Immunotherapy : CII, 53(3), 234–239. doi:10.1007/s00262-003-0472-x
  • Charoenviriyakul, C., Takahashi, Y., Morishita, M., Matsumoto, A., Nishikawa, M., & Takakura, Y. (2017). Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics. European Journal of Pharmaceutical Sciences, 96, 316–322. doi:http://dx.doi.org/10.1016/j.ejps.2016.10.009
  • Chen, D. J., Osterrieder, N., Metzger, S. M., Buckles, E., Doody, A. M., DeLisa, M. P., & Putnam, D. (2010). Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 3099–3104. doi:10.1073/pnas.0805532107
  • Chen, T., Guo, J., Yang, M., Zhu, X., & Cao, X. (2011). Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. Journal of Immunology, 186(4), 2219–2228. doi:10.4049/jimmunol.1002991
  • Choi, D. S., Kim, D. K., Kim, Y. K., & Gho, Y. S. (2013). Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics, 13(10–11), 1554–1571. doi:10.1002/pmic.201200329
  • Choi, D. S., Kim, D. K., Kim, Y. K., & Gho, Y. S. (2015). Proteomics of extracellular vesicles: Exosomes and ectosomes. Mass Spectrometry Reviews, 34(4), 474–490. doi:10.1002/mas.21420
  • Choi, H., & Lee, D. S. (2016). Illuminating the physiology of extracellular vesicles. Stem Cell Research & Therapy, 7, 55. doi:10.1186/s13287-016-0316-1
  • Deatherage, B. L., & Cookson, B. T. (2012). Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life. Infection and Immunity, 80(6), 1948–1957. doi:10.1128/iai.06014-11
  • Del Fattore, A., Luciano, R., Saracino, R., Battafarano, G., Rizzo, C., Pascucci, L., … Muraca, M. (2015). Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opinion on Biological Therapy, 15(4), 495–504. doi:10.1517/14712598.2015.997706
  • Denzer, K., Kleijmeer, M. J., Heijnen, H. F., Stoorvogel, W., & Geuze, H. J. (2000). Exosome: From internal vesicle of the multivesicular body to intercellular signaling device. Journal of Cell Science, 113(Pt 19), 3365–3374.
  • Di Vizio, D., Morello, M., Dudley, A. C., Schow, P. W., Adam, R. M., Morley, S., … Freeman, M. R. (2012). Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. The American Journal of Pathology, 181(5), 1573–1584. doi:10.1016/j.ajpath.2012.07.030
  • Ding, C., Tong, L., Feng, J., & Fu, J. (2016). Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment. Molecules, 21(12), 1715. doi:10.3390/molecules21121715
  • Eirin, A., Zhu, X. Y., Jonnada, S., Lerman, A., van Wijnen, A. J., & Lerman, L. O. (2018). Mesenchymal stem cell-derived extracellular vesicles improve the renal microvasculature in metabolic renovascular disease in Swine. Cell Transplantation, 27(7), 1080–1095. doi:10.1177/0963689718780942
  • Ensign, L. M., Cone, R., & Hanes, J. (2012). Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Advanced Drug Delivery Reviews, 64(6), 557–570. doi:10.1016/j.addr.2011.12.009
  • Escudier, B., Dorval, T., Chaput, N., Andre, F., Caby, M. P., Novault, S., … Zitvogel, L. (2005). Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of thefirst phase I clinical trial. Journal of Translational Medicine, 3(1), 10. doi:10.1186/1479-5876-3-10
  • Fuhrmann, G., Serio, A., Mazo, M., Nair, R., & Stevens, M. M. (2015). Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. Journal of Controlled Release : Official Journal of the Controlled Release Society, 205, 35–44. doi:10.1016/j.jconrel.2014.11.029
  • Gardiner, C., Di Vizio, D., Sahoo, S., Thery, C., Witwer, K. W., Wauben, M., & Hill, A. F. (2016). Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. Journal of Extracellular Vesicles, 5, 32945. doi:10.3402/jev.v5.32945
  • Gong, J., Jaiswal, R., Mathys, J. M., Combes, V., Grau, G. E., & Bebawy, M. (2012). Microparticles and their emerging role in cancer multidrug resistance. Cancer Treatment Reviews, 38(3), 226–234. doi:10.1016/j.ctrv.2011.06.005
  • Gruenberg, J., & Stenmark, H. (2004). The biogenesis of multivesicular endosomes. Nature Reviews Molecular Cell Biology, 5(4), 317–323. doi:10.1038/nrm1360
  • Gujrati, V., Kim, S., Kim, S. H., Min, J. J., Choy, H. E., Kim, S. C., & Jon, S. (2014). Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano, 8(2), 1525–1537. doi:10.1021/nn405724x
  • Gyorgy, B., Hung, M. E., Breakefield, X. O., & Leonard, J. N. (2015). Therapeutic applications of extracellular vesicles: Clinical promise and open questions. Annual Review of Pharmacology and Toxicology, 55, 439–464. doi:10.1146/annurev-pharmtox-010814-124630
  • Gyorgy, B., Sage, C., Indzhykulian, A. A., Scheffer, D. I., Brisson, A. R., Tan, S., … Maguire, C. A. (2017). Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV. Molecular Therapy : the Journal of the American Society of Gene Therapy, 25(2), 379–391. doi:10.1016/j.ymthe.2016.12.010
  • Ha, D., Yang, N., & Nadithe, V. (2016). Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharmaceutica Sinica B, 6(4), 287–296. doi:10.1016/j.apsb.2016.02.001
  • Haney, M. J., Klyachko, N. L., Zhao, Y., Gupta, R., Plotnikova, E. G., He, Z., … Batrakova, E. V. (2015). Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release, 207, 18–30. doi:http://dx.doi.org/10.1016/j.jconrel.2015.03.033
  • Hartjes, T. A., & Mytnyk, S. (2019). Extracellular vesicle quantification and characterization: Common methods and emerging approaches. Bioengineering (Basel), 6(1). doi:10.3390/bioengineering6010007
  • Hood, J. L., Scott, M. J., & Wickline, S. A. (2014). Maximizing exosome colloidal stability following electroporation. Analytical Biochemistry, 448, 41–49. doi:10.1016/j.ab.2013.12.001
  • Huang, C., Neoh, K. G., Xu, L., Kang, E. T., & Chiong, E. (2012). Polymeric nanoparticles with encapsulated superparamagnetic iron oxide and conjugated cisplatin for potential bladder cancer therapy. Biomacromolecules, 13(8), 2513–2520. doi:10.1021/bm300739w
  • Hurley, J. H., & Odorizzi, G. (2012). Get on the exosome bus with ALIX. Nature Cell Biology, 14(7), 654–655. doi:10.1038/ncb2530
  • Hwang Do, W., Choi, H., Jang, S. C., Yoo, M. Y., Park, J. Y., Choi, N. E., … Lee, D. S. (2015). Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using (99m)Tc-HMPAO. Scientific Reports, 5, 15636. doi:10.1038/srep15636
  • Imai, T., Takahashi, Y., Nishikawa, M., Kato, K., Morishita, M., Yamashita, T., … Takakura, Y. (2015). Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. Journal of Extracellular Vesicles, 4, 26238. doi:10.3402/jev.v4.26238
  • Jain, R. K., & Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature Reviews. Clinical Oncology, 7(11), 653–664. doi:10.1038/nrclinonc.2010.139
  • Jarockyte, G., Daugelaite, E., Stasys, M., Statkute, U., Poderys, V., Tseng, T. C., & Rotomskis, R. (2016). Accumulation and toxicity of superparamagnetic iron oxide nanoparticles in cells and experimental animals. International Journal of Molecular Sciences, 17(8), 1193. doi:10.3390/ijms17081193
  • Johnsen, K. B., Gudbergsson, J. M., Skov, M. N., Pilgaard, L., Moos, T., & Duroux, M. (2014). A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochimica Et Biophysica Acta, 1846(1), 75–87. doi:10.1016/j.bbcan.2014.04.005
  • Ju, S., Mu, J., Dokland, T., Zhuang, X., Wang, Q., Jiang, H., … Zhang, H. G. (2013). Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Molecular Therapy : The Journal of the American Society of Gene Therapy, 21(7), 1345–1357. doi:10.1038/mt.2013.64
  • Kalimuthu, S., Gangadaran, P., Li, X. J., Oh, J. M., Lee, H. W., Jeong, S. Y., … Ahn, B. C. (2016). In vivo therapeutic potential of mesenchymal stem cell-derived extracellular vesicles with optical imaging reporter in tumor mice model. Scientific Reports, 6, 30418. doi:10.1038/srep30418
  • Katsuda, T., & Ochiya, T. (2015). Molecular signatures of mesenchymal stem cell-derived extracellular vesicle-mediated tissue repair. Stem Cell Research & Therapy, 6, 212. doi:10.1186/s13287-015-0214-y
  • King, H. W., Michael, M. Z., & Gleadle, J. M. (2012). Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer, 12(1), 421. doi:10.1186/1471-2407-12-421
  • Kitai, Y., Kawasaki, T., Sueyoshi, T., Kobiyama, K., Ishii, K. J., Zou, J., & Kawai, T. (2017). DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. Journal of Immunology, 198, 1649–1659. doi:10.4049/jimmunol.1601694
  • Lai, C. P., Kim, E. Y., Badr, C. E., Weissleder, R., Mempel, T. R., Tannous, B. A., & Breakefield, X. O. (2015). Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nature Communications, 6, 7029. doi:10.1038/ncomms8029
  • Lai, C. P., Mardini, O., Ericsson, M., Prabhakar, S., Maguire, C. A., Chen, J. W., … Breakefield, X. O. (2014). Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano, 8(1), 483–494. doi:10.1021/nn404945r
  • Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S., Choo, A., Chen, T. S., … Lim, S. K. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–222. doi:10.1016/j.scr.2009.12.003
  • Lamparski, H. G., Metha-Damani, A., Yao, J. Y., Patel, S., Hsu, D. H., Ruegg, C., & Le Pecq, J. B. (2002). Production and characterization of clinical grade exosomes derived from dendritic cells. Journal of Immunological Methods, 270(2), 211–226.
  • Lavialle, F., Deshayes, S., Gonnet, F., Larquet, E., Kruglik, S. G., Boisset, N., … Tatischeff, I. (2009). Nanovesicles released by Dictyostelium cells: A potential carrier for drug delivery. International Journal of Pharmaceutics, 380(1–2), 206–215. doi:10.1016/j.ijpharm.2009.06.039
  • Lener, T., Gimona, M., Aigner, L., Borger, V., Buzas, E., Camussi, G., … Giebel, B. (2015). Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. Journal of Extracellular Vesicles, 4, 30087. doi:10.3402/jev.v4.30087
  • Li, J., Chen, Y., Guo, X., Zhou, L., Jia, Z., Peng, Z., … Ren, C. (2017). GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. Journal of Cellular and Molecular Medicine, 21(5), 838–847. doi:10.1111/jcmm.12941
  • Li, J., Lee, Y., Johansson, H. J., Mager, I., Vader, P., Nordin, J. Z., … Andaloussi, S. E. (2015). Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. Journal of Extracellular Vesicles, 4, 26883. doi:10.3402/jev.v4.26883
  • Lima, L. G., Chammas, R., Monteiro, R. Q., Moreira, M. E., & Barcinski, M. A. (2009). Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Letters, 283(2), 168–175. doi:10.1016/j.canlet.2009.03.041
  • Lotvall, J., Hill, A. F., Hochberg, F., Buzas, E. I., Di Vizio, D., Gardiner, C., … Thery, C. (2014). Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International society for extracellular vesicles. Journal of Extracellular Vesicles, 3, 26913. doi:10.3402/jev.v3.26913
  • Lu, M., Xing, H., Xun, Z., Yang, T., Zhao, X., Cai, C., … Ding, P. (2018). Functionalized extracellular vesicles as advanced therapeutic nanodelivery systems. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 121, 34–46. doi:10.1016/j.ejps.2018.05.001
  • Maji, S., Yan, I. K., Parasramka, M., Mohankumar, S., Matsuda, A., & Patel, T. (2017). In vitro toxicology studies of extracellular vesicles. Journal of Applied Toxicology : JAT, 37(3), 310–318. doi:10.1002/jat.3362
  • Manca, S., Giraud, D., & Zempleni, J. (2016). Bioavailability and biodistribution of fluorophore-labeled exosomes from cow’s milk after intravenous and oral administration in C57Bl/6J Mice. The FASEB Journal, 30(1 Supplement), 690–698.
  • Matsumoto, A., Takahashi, Y., Nishikawa, M., Sano, K., Morishita, M., Charoenviriyakul, C., … Takakura, Y. (2017). Role of phosphatidylserine-derived negative surface charges in the recognition and uptake of intravenously injected B16BL6-derived exosomes by macrophages. Journal of Pharmaceutical Sciences, 106(1), 168–175. doi:10.1016/j.xphs.2016.07.022
  • McKiernan, J., Donovan, M. J., O’Neill, V., Bentink, S., Noerholm, M., Belzer, S., … Carroll, P. (2016). A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncology, 2(7), 882–889. doi:10.1001/jamaoncol.2016.0097
  • Melnik, B. C., & Schmitz, G. (2019). Exosomes of pasteurized milk: Potential pathogens of Western diseases. Journal of Translational Medicine, 17(3), 1–33. doi:10.1186/s12967-018-1760-8
  • Minciacchi, V. R., You, S., Spinelli, C., Morley, S., Zandian, M., Aspuria, P. J., … Di Vizio, D. (2015). Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget, 6(13), 11327–11341. doi:10.18632/oncotarget.3598
  • Moon, P. G., Lee, J. E., Cho, Y. E., Lee, S. J., Jung, J. H., Chae, Y. S., … Baek, M. C. (2016). Identification of developmental endothelial locus-1 on circulating extracellular vesicles as a novel biomarker for early breast cancer detection. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 22(7), 1757–1766. doi:10.1158/1078-0432.ccr-15-0654
  • Morales-Kastresana, A., Telford, B., Musich, T. A., McKinnon, K., Clayborne, C., Braig, Z., … Watson, D. C. (2017). Labeling extracellular vesicles for nanoscale flow cytometry. Scientific Reports,7(1), 1878. doi:10.1038/s41598-017-01731-2
  • Morishita, M., Takahashi, Y., Nishikawa, M., Sano, K., Kato, K., Yamashita, T., … Takakura, Y. (2015). Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. Journal of Pharmaceutical Sciences, 104(2), 705–713. doi:10.1002/jps.24251
  • Morse, M. A., Garst, J., Osada, T., Khan, S., Hobeika, A., Clay, T. M., … Lyerly, H. K. (2005). A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. Journal of Translational Medicine, 3(1), 9. doi:10.1186/1479-5876-3-9
  • Mulcahy, L. A., Pink, R. C., & Carter, D. R. F. (2014). Routes and mechanisms of extracellular vesicle uptake. Journal of Extracellular Vesicles, 3. doi:10.3402/jev.v3403.24641
  • Munagala, R., Aqil, F., Jeyabalan, J., & Gupta, R. C. (2016). Bovine milk-derived exosomes for drug delivery. Cancer Letters, 371(1), 48–61. doi:10.1016/j.canlet.2015.10.020
  • Muralidharan-Chari, V., Clancy, J., Plou, C., Romao, M., Chavrier, P., Raposo, G., & D’Souza-Schorey, C. (2009). ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Current Biology: CB, 19(22), 1875–1885. doi:10.1016/j.cub.2009.09.059
  • Muralidharan-Chari, V., Clancy, J. W., Sedgwick, A., & D’Souza-Schorey, C. (2010). Microvesicles: Mediators of extracellular communication during cancer progression. Journal of Cell Science, 123(Pt 10), 1603–1611. doi:10.1242/jcs.064386
  • Nelson, A. G., Zhang, X., Ganapathi, U., Szekely, Z., Flexner, C. W., Owen, A., & Sinko, P. J. (2015). Drug delivery strategies and systems for HIV/AIDS pre-exposure prophylaxis and treatment. Journal of Controlled Release : Official Journal of the Controlled Release Society, 219, 669–680. doi:10.1016/j.jconrel.2015.08.042
  • Nordin, J. Z., Lee, Y., Vader, P., Mäger, I., Johansson, H. J., Heusermann, W., … Andaloussi, S. E. L. (2015). Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine: Nanotechnology, Biology and Medicine, 11(4), 879–883. doi:10.1016/j.nano.2015.01.003
  • Nunez, R., Sancho-Martinez, S. M., Novoa, J. M., & Lopez-Hernandez, F. J. (2010). Apoptotic volume decrease as a geometric determinant for cell dismantling into apoptotic bodies. Cell Death and Differentiation, 17(11), 1665–1671. doi:10.1038/cdd.2010.96
  • Ohno, S. I., Takanashi, M., Sudo, K., Ueda, S., Ishikawa, A., Matsuyama, N., … Kuroda, M. (2013). Systemically injected exosomes targeted to EGFR deliver antitumor MicroRNA to breast cancer cells. Molecular Therapy, 21(1), 185–191. doi:10.1038/mt.2012.180
  • Olaya-Abril, A., Prados-Rosales, R., McConnell, M. J., Martín-Peña, R., González-Reyes, J. A., Jiménez-Munguía, I., … Rodríguez-Ortega, M. J. (2014). Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. Journal of Proteomics, 106, 46–60. doi:10.1016/j.jprot.2014.04.023
  • Osti, D., Del Bene, M., Rappa, G., Santos, M., Matafora, V., Richichi, C., … DiMeco, F. (2019). Clinical significance of extracellular vesicles in plasma from glioblastoma patients. Clinical Cancer Research, 25(1), 266–276. doi:10.1158/1078-0432.ccr-18-1941
  • Ostrowski, M., Carmo, N. B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., … Thery, C. (2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology, 12(1), sup pp 11–13, 19–30. doi:10.1038/ncb2000
  • Otranto, M., Sarrazy, V., Bonte, F., Hinz, B., Gabbiani, G., & Desmouliere, A. (2012). The role of the myofibroblast in tumor stroma remodeling. Cell Adhesion & Migration, 6(3), 203–219. doi:10.4161/cam.20377
  • Parish, C. R. (1999). Fluorescent dyes for lymphocyte migration and proliferation studies. Immunology and Cell Biology, 77(6), 499–508. doi:10.1046/j.1440-1711.1999.00877.x
  • Pascucci, L., Cocce, V., Bonomi, A., Ami, D., Ceccarelli, P., Ciusani, E., … Pessina, A. (2014). Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. Journal of Controlled Release : Official Journal of the Controlled Release Society, 192, 262–270. doi:10.1016/j.jconrel.2014.07.042
  • Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., & Rodriguez-Torres, M. D. P. (2018). Nano based drug delivery systems: Recent developments and future prospects. 16, (1), 71. doi:10.1186/s12951-018-0392-8
  • Pattni, B. S., Chupin, V. V., & Torchilin, V. P. (2015). New developments in liposomal drug delivery. Chemical Reviews, 115(19), 10938–10966. doi:10.1021/acs.chemrev.5b00046
  • Perez-Bermudez, P., Blesa, J., Soriano, J. M., & Marcilla, A. (2016). Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences. doi:10.1016/j.ejps.2016.09.022
  • Pieters, B. C., Arntz, O. J., Bennink, M. B., Broeren, M. G., van Caam, A. P., Koenders, M. I., … van de Loo, F. A. (2015). Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-beta. PloS One, 10(3), e0121123. doi:10.1371/journal.pone.0121123
  • Piffoux, M., Silva, A. K. A., & Wilhelm, C. (2018). Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems. ACS Nano, 12(7), 6830–6842. doi:10.1021/acsnano.8b02053
  • Pitt, J. M., Andre, F., Amigorena, S., Soria, J. C., Eggermont, A., Kroemer, G., & Zitvogel, L. (2016). Dendritic cell-derived exosomes for cancer therapy. The Journal of Clinical Investigation, 126(4), 1224–1232. doi:10.1172/jci81137
  • Pospichalova, V., Svoboda, J., Dave, Z., Kotrbova, A., Kaiser, K., Klemova, D., & Bryja, V. (2015). Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. Journal of Extracellular Vesicles; Vol 4 (2015) Incl Supplements, 25530. doi:10.3402/jev.v4.25530
  • Quah, B. J. C., & Parish, C. R. (2010). The Use of Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) to monitor lymphocyte proliferation. Journal of Visualized Experiments, 44, e2259. doi:10.3791/2259
  • Ramirez, M. I., Amorim, M. G., Gadelha, C., & Milic, I. (2018). Technical challenges of working with extracellular vesicles. Nanoscale, 10(3), 881–906. doi:10.1039/c7nr08360b
  • Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. The Journal of Cell Biology, 200(4), 373–383. doi:10.1083/jcb.201211138
  • Rivera, J., Cordero, R. J. B., Nakouzi, A. S., Frases, S., Nicola, A., & Casadevall, A. (2010). Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proceedings of the National Academy of Sciences, 107(44), 19002–19007. doi:10.1073/pnas.1008843107
  • Robbins, P. D., & Morelli, A. E. (2014). Regulation of immune responses by extracellular vesicles. Nature Reviews Immunology, 14(3), 195–208. doi:10.1038/nri3622
  • Roccaro, A. M., Sacco, A., Maiso, P., Azab, A. K., Tai, Y. T., Reagan, M., … Ghobrial, I. M. (2013). BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. The Journal of Clinical Investigation, 123(4), 1542–1555. doi:10.1172/JCI66517
  • Saari, H., Lázaro-Ibáñez, E., Viitala, T., Vuorimaa-Laukkanen, E., Siljander, P., & Yliperttula, M. (2015). Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. Journal of Controlled Release, 220(Part B), 727–737. doi:10.1016/j.jconrel.2015.09.031
  • Safaei, R., Larson, B. J., Cheng, T. C., Gibson, M. A., Otani, S., Naerdemann, W., & Howell, S. B. (2005). Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Molecular Cancer Therapeutics, 4(10), 1595–1604. doi:10.1158/1535-7163.mct-05-0102
  • Santhosh, P. B., & Ulrih, N. P. (2013). Multifunctional superparamagnetic iron oxide nanoparticles: Promising tools in cancer theranostics. Cancer Letters, 336(1), 8–17. doi:10.1016/j.canlet.2013.04.032
  • Schmidt, O., & Teis, D. (2012). The ESCRT machinery. Current Biology: CB, 22(4), R116–120. doi:10.1016/j.cub.2012.01.028
  • Sebaihi, N., Boeck, B. D., Yuana, Y., Nieuwland, R., & Pétry, J. (2017). Dimensional characterization of extracellular vesicles using atomic force microscopy. Measurement Science and Technology, 28(3), 034006. doi:10.1088/1361-6501/28/3/034006
  • Shelke, G. V., Lässer, C., Gho, Y. S., & Lötvall, J. (2014). Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. Journal of Extracellular Vesicles, 3. doi:10.3402/jev.v3403.24783
  • Smyth, T., Kullberg, M., Malik, N., Smith-Jones, P., Graner, M. W., & Anchordoquy, T. J. (2015). Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. Journal of Controlled Release, 199, 145–155. doi:http://dx.doi.org/10.1016/j.jconrel.2014.12.013
  • Soekmadji, C., & Nelson, C. C. (2015). The emerging role of extracellular vesicle-mediated drug resistance in cancers: Implications in advanced prostate cancer. BioMed Research International, 454837. doi:10.1155/2015/454837
  • Soekmadji, C., Riches, J. D., Russell, P. J., Ruelcke, J. E., McPherson, S., Wang, C., … Nelson, C. C. (2016). Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. Oncotarget. doi:10.18632/oncotarget.11111
  • Soekmadji, C., Rockstroh, A., Ramm, G. A., Nelson, C. C., & Russell, P. J. (2017). Extracellular vesicles in the adaptive process of prostate cancer during inhibition of androgen receptor signaling by enzalutamide. Proteomics,17, 23–24. doi:10.1002/pmic.201600427
  • Soekmadji, C., Russell, P. J., & Nelson, C. C. (2013). Exosomes in prostate cancer: Putting together the pieces of a puzzle. Cancers, 5(4), 1522–1544. doi:10.3390/cancers5041522
  • Somiya, M., Yoshioka, Y., & Ochiya, T. (2018). Biocompatibility of highly purified bovine milk-derived extracellular vesicles. Journal of Extracellular Vesicles, 7(1), 1440132. doi:10.1080/20013078.2018.1440132
  • Subra, C., Laulagnier, K., Perret, B., & Record, M. (2007). Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie, 89(2), 205–212. doi:10.1016/j.biochi.2006.10.014
  • Suetsugu, A., Honma, K., Saji, S., Moriwaki, H., Ochiya, T., & Hoffman, R. M. (2013). Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Advanced Drug Delivery Reviews, 65(3), 383–390. doi:http://dx.doi.org/10.1016/j.addr.2012.08.007
  • Sukhanova, A., Bozrova, S., Sokolov, P., Berestovoy, M., Karaulov, A., & Nabiev, I. (2018). Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Research Letters, 13(1), 44. doi:10.1186/s11671-018-2457-x
  • Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C., … Zhang, H. G. (2010). A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy : The Journal of the American Society of Gene Therapy, 18(9), 1606–1614. doi:10.1038/mt.2010.105
  • Takahashi, Y., Nishikawa, M., Shinotsuka, H., Matsui, Y., Ohara, S., Imai, T., & Takakura, Y. (2013). Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. Journal of Biotechnology, 165(2), 77–84. doi:10.1016/j.jbiotec.2013.03.013
  • Tang, K., Zhang, Y., Zhang, H., Xu, P., Liu, J., Ma, J., … Huang, B. (2012). Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nature Communications, 3, 1282. doi:10.1038/ncomms2282
  • Taraboletti, G., D’Ascenzo, S., Giusti, I., Marchetti, D., Borsotti, P., Millimaggi, D., … Dolo, V. (2006). Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia (New York, N.Y.), 8(2), 96–103. doi:10.1593/neo.05583
  • Tatischeff, I., Larquet, E., Falcon-Perez, J. M., Turpin, P. Y., & Kruglik, S. G. (2012). Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. Journal of Extracell Vesicles, 1, 19179. doi:10.3402/jev.v1i0.19179
  • Thery, C., Boussac, M., Veron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J., & Amigorena, S. (2001). Proteomic analysis of dendritic cell-derived exosomes: A secreted subcellular compartment distinct from apoptotic vesicles. Journal of Immunology (baltimore, Md. : 1950), 166(12), 7309–7318. doi:10.4049/jimmunol.166.12.7309
  • Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., … Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. doi:10.1080/20013078.2018.1535750
  • Tian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G. J., … Nie, G. (2014). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 35(7), 2383–2390. doi:http://dx.doi.org/10.1016/j.biomaterials.2013.11.083
  • Tinkle, S., McNeil, S. E., Muhlebach, S., Bawa, R., Borchard, G., Barenholz, Y. C., … Desai, N. (2014). Nanomedicines: Addressing the scientific and regulatory gap. Annals of the New York Academy of Sciences, 1313, 35–56. doi:10.1111/nyas.12403
  • Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., … Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319(5867), 1244–1247. doi:10.1126/science.1153124
  • Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659. doi:10.1038/ncb1596
  • van der Meel, R., Fens, M. H., Vader, P., van Solinge, W. W., Eniola-Adefeso, O., & Schiffelers, R. M. (2014). Extracellular vesicles as drug delivery systems: Lessons from the liposome field. Journal of Controlled Release : Official Journal of the Controlled Release Society, 195, 72–85. doi:10.1016/j.jconrel.2014.07.049
  • van der Pol, L., Stork, M., & van der Ley, P. (2015). Outer membrane vesicles as platform vaccine technology. Biotechnology Journal, 10(11), 1689–1706. doi:10.1002/biot.201400395
  • Varga, Z., Gyurko, I., Paloczi, K., Buzas, E. I., Horvath, I., Hegedus, N., … Szigeti, K. (2016). Radiolabeling of extracellular vesicles with (99m)Tc for quantitative in vivo imaging studies. Cancer Biotherapy & Radiopharmaceuticals, 31(5), 168–173. doi:10.1089/cbr.2016.2009
  • Viaud, S., Terme, M., Flament, C., Taieb, J., Andre, F., Novault, S., … Chaput, N. (2009). Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: A role for NKG2D ligands and IL-15Ralpha. PloS One, 4(3), e4942. doi:10.1371/journal.pone.0004942
  • Wang, B., Zhuang, X., Deng, Z. B., Jiang, H., Mu, J., Wang, Q., … Zhang, H. G. (2014). Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Molecular Therapy : The Journal of the American Society of Gene Therapy, 22(3), 522–534. doi:10.1038/mt.2013.190
  • Wang, L. Y., Shi, X. Y., Yang, C. S., & Huang, D. M. (2013). Versatile RBC-derived vesicles as nanoparticle vector of photosensitizers for photodynamic therapy. Nanoscale, 5(1), 416–421. doi:10.1039/c2nr32506c
  • Wiklander, O. P. B., Nordin, J. Z., O’Loughlin, A., Gustafsson, Y., Corso, G., Mäger, I., … Andaloussi, S. E. L. (2015). Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. Journal of Extracellular Vesicles, 4. doi:10.3402/jev.v3404.26316
  • Wolfers, J., Lozier, A., Raposo, G., Regnault, A., Thery, C., Masurier, C., … Zitvogel, L. (2001). Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Medicine, 7(3), 297–303. doi:10.1038/85438
  • Wu, T., & Tang, M. (2018). Review of the effects of manufactured nanoparticles on mammalian target organs. Journal of Applied Toxicology : JAT, 38(1), 25–40. doi:10.1002/jat.3499
  • Xin, Y., Yin, M., Zhao, L., Meng, F., & Luo, L. (2017). Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biology & Medicine, 14(3), 228–241. doi:10.20892/j.issn.2095-3941.2017.0052
  • Yuana, Y., Boing, A. N., Grootemaat, A. E., van der Pol, E., Hau, C. M., Cizmar, P., … Nieuwland, R. (2015). Handling and storage of human body fluids for analysis of extracellular vesicles. Journal of Extracellular Vesicles, 4, 29260. doi:10.3402/jev.v4.29260
  • Yuana, Y., Jiang, L., Lammertink, B. H. A., Vader, P., Deckers, R., Bos, C., … Moonen, C. T. (2017). Microbubbles-Assisted ultrasound triggers the release of extracellular vesicles. International Journal of Molecular Sciences, 18(8). doi:10.3390/ijms18081610
  • Yuana, Y., Levels, J., Grootemaat, A., Sturk, A., & Nieuwland, R. (2014). Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. Journal of Extracell Vesicles, 3, 23262. doi:10.3402/jev.v3.23262
  • Yuana, Y., Sturk, A., & Nieuwland, R. (2013). Extracellular vesicles in physiological and pathological conditions. Blood Reviews, 27(1), 31–39. doi:10.1016/j.blre.2012.12.002
  • Zhu, W., Huang, L., Li, Y., Zhang, X., Gu, J., Yan, Y., … Xu, W. (2012). Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Letters, 315(1), 28–37. doi:10.1016/j.canlet.2011.10.002
  • Zhu, X., Badawi, M., Pomeroy, S., Sutaria, D. S., Xie, Z., Baek, A., … Phelps, M. A. (2017). Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. Journal of Extracellular Vesicles, 6(1), 1324730. doi:10.1080/20013078.2017.1324730
  • Zhuang, X., Xiang, X., Grizzle, W., Sun, D., Zhang, S., Axtell, R. C., … Zhang, H.-G. (2011). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Molecular Therapy, 19(10), 1769–1779. doi:10.1038/mt.2011.164
  • Zonneveld, M. I., Brisson, A. R., van Herwijnen, M. J., Tan, S., van de Lest, C. H., Redegeld, F. A., … Nolte-’t Hoen, E. N. (2014). Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. Journal of Extracell Vesicles, 3. doi:10.3402/jev.v3.24215