42
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructural features and mechanical properties of spray -formed hypereutectic Al-Si-Ti alloy

, ORCID Icon, &
Accepted 09 Apr 2024, Published online: 19 Apr 2024

References

  • Miladinović S, Stojanović B, Gajević S, et al. Hyper eutectic aluminum alloys and composites: a review. Silicon. 2022;15(6):2507–2527. doi: 10.1007/s12633-022-02216-2
  • Goudar DM, Magalad VT, Kurahatti RV. Study of microstructure and tribological behaviour of spray cast high silicon hypereutectic Al-Si alloy. Adv Mater Process Technol. 2022;8(2):1245–1254. doi: 10.1080/2374068X.2020.1855402
  • Cai Z, Wang R, Zhang C, et al. Characterization of rapidly solidified Al-27 Si hypereutectic alloy: effect of solidification condition. In: JMEPEG. Vol. 24. ASM International; 2015. pp. 1226–1236. doi: 10.1007/s11665-015-1386-4
  • Piotr N, Skrzekut T, W˛edrychowicz M. Microstructure and mechanical properties of Al-Si alloys produced by rapid solidification and hot extrusion. Materials. 2023;16(15):5223. doi: 10.3390/ma16155223
  • Srinivas B, Janardhana R. Effect of strontium modifier on the microstructure, mechanical properties and fractography analysis of as-cast Al-Si7Mg0.3 alloy. Adv Mater Process Technol. 2023. doi: 10.1080/2374068X.2023.2201534
  • Feng HK, Yu SR, Li YL, et al. Effect of ultrasonic treatment on microstructures of hypereutectic Al–si alloy. Journal of materials processing technology 208. J Mater Process Technol. 2008;208(1–3):330–335. doi: 10.1016/j.jmatprotec.2007.12.121
  • Hu X, Song D, Wang H, et al. Effect of ultrasonic-assisted modification treatment on the microstructure and properties of A356 alloy. Materials. 2022;15(10):3714. doi: 10.3390/ma15103714
  • Li Q, Li B, Liu J, et al. Modification of hypereutectic Al–20 wt%Si alloy based on the addition of yttrium and Al–5Ti–1B modifiers mixing melt. Int J Metal cast. 2018;13(2):367–383. doi: 10.1007/s40962-018-0242-3
  • Zuo M, Zhang Z-S, Teng X-Y, et al. Refinement of primary Si in Cu– 50Si alloys with novel Al–Zr–P master alloy. Rare Met. 2013;32(3):252–257. doi: 10.1007/s12598-013-0046-9
  • Ajide OO, Adedokun OC, Idusuyi N, et al. Examining the mechanical response and microstructural evolution of heat-treated Al-5Si-3Cu alloy for automotive applications. Adv Mater Process Technol. 2023;1–12. doi: 10.1080/2374068X.2023.2184602
  • Callegari B, Nunes Lima T, Santiago Coelho R. The influence of alloying elements on the microstructure and properties of Al-Si-based casting alloys: a review. Metals. 2023;13(7):1174. doi: 10.3390/met13071174
  • Boyer RR. An overview on the use of titanium in the aerospace industry. Mater Sci Eng A. 1996;213(1–2):103–114. doi: 10.1016/0921-5093(96)10233-1
  • Fan J, Guo J, Wang S, et al. Microstructure evolution and interfacial reaction of TiAl–Si alloy solidified in alumina crucible. Mater Sci Technol. 2015;31(14):1727–1734. doi: 10.1179/1743284714Y.0000000748
  • Zhang Y, Yan F, Zhao Y-H. Chun-li song and Hua Hou, effect of Ti on microstructure and mechanical properties of die-cast Al-mg-zn-si alloy, mater. Res Express. 2020;7(3):036526. doi: 10.1088/2053-1591/ab7f5d
  • Saheb N, Laoui T, Daud AR, et al. Microstructure and hardness behaviours of Ti-containing Al-Si alloys. Philos Mag A. 2002;82(4):803–814. doi: 10.1080/01418610208243203
  • Ghomashchi R. The evolution of AlTiSi intermetallic phases in Ti-added A356 Al-Si alloy. J Alloy Compound. 2012;537:255–260. doi: 10.1016/j.jallcom.2012.04.087
  • Daud AR, Saheb N. Characterisation of phases and lattice parameter measurement in the Al-rich corner of the Al–Si–Ti system. Jpn J Appl Phys. 2002;41(Part 2, No. 4A):L405–L407. doi: 10.1143/JJAP.41.L405
  • Lin X, Liu C, Che L, et al. Study on the preparation technology of centrifugal Al-18Si-X composite reinforced with in situ particles. J Phys Conf Ser. 2022;2338(1):012014. doi: 10.1088/1742-6596/2338/1/012014
  • Ahmed EM. Physical properties of as melt spun Al–7 wt.% Si–x wt.% Ti. Mater Lett. 2008;62(6–7):960–963. doi: 10.1016/j.matlet.2007.07.040
  • Qi JF, Liu CY, Chen ZW, et al. Enhancement in strength and thermal stability of selective laser melted Al–12Si by introducing titanium nanoparticles. Mater Sci Eng A. 2022;855:143833. doi: 10.1016/j.msea.2022.143833
  • Li Y, Gu D, Zhang H, et al. Effect of trace addition of ceramic on microstructure development and mechanical properties of selective laser melted AlSi10Mg Alloy. Chin J Mech Eng. 2020;33(1):1–13. doi: 10.1186/s10033-020-00448-0
  • Zeren M, Karakulak E. Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al–si alloys. J Alloys Compd. 2008;450(1–2):255–259. doi: 10.1016/j.jallcom.2006.10.131
  • Gao T, Li P, Li Y, et al. Influence of Si and Ti contents on the microstructure, microhardness and performance of TiAlSi intermetallics in Al–Si–Ti alloys. J Alloys Compd. 2011;509(31):8013–8017. doi: 10.1016/j.jallcom.2006.10.131
  • Dhahir Subhi A, Abbar Khleif A. Qasim saad abdul-wahid, microstructural investigation and wear characteristics of Al-Si-Ti cast alloys. Eng Trans. 2020;68(4):385–395. doi: 10.24423/EngTrans.1156.20201029
  • Knaislová A, PavelNovákl MC, Jaworska Dalibor Vojtěch L. Development of TiAl–Si Alloys—A review. Materials. 2021;14(4):1030. doi: 10.3390/ma14041030
  • Kelly A, Mi J, Sinha G, et al. An Al alloy-Ti microfilament composite manufactured by co-spray-forming and accumulative deformation processing. Proceedings of the 12th International Conference on Aluminum Alloys; Yokohama, Japan: 2010. p. 850–855.
  • Goudar DM, Srivastava VC, Rudrakshi GB. Effect of atomization parameters on size and morphology of Al-17Si alloy powder produced by free fall atomizer. Eng J. 2017;21(1):155–168. doi: 10.4186/ej.2017.21.1.155
  • Chuenarrom C, Benjakul P. Paitoon daosodsai.effect of indentation load and time on knoop and vickers microhardness tests for enamel and dentin. Mater Res. 2009;12:473–476. doi: 10.1590/S1516-14392009000400016
  • Kahrobaee Z, Palm M. Experimental investigation of Ti–Al–Si phase equilibria at 800–1200 °C. J Alloys Compd. 2022;924:166223. doi: 10.1016/j.jallcom.2022.166223
  • Hazra B, Bera S, Kumar B. Show Enhanced elevated temperature wear resistance of Al−17Si−5Cu alloy after a novel short duration heat treatment. Int J Miner Metall Mater. 2019;26(3):360–368. doi: 10.1007/s12613-019-1745-5
  • Prakash Gupta S. Intermetallic compounds in diffusion couples of Ti with an Al–Si eutectic alloy. Mater Charact. 2003;49(4):321–330. doi: 10.1016/S1044-5803(02)00342-X
  • YingshuoNiu JY, Liu Y, Zhang B, et al. Microstructure, mechanical properties and wear behaviour of Al–20Si–3Fe alloy prepared by spray Conform. Mater Res Express. 2019;6(8):086578. doi: 10.1088/2053-1591/ab1d15
  • Venkata Ramana Reddy B, Ranjan Maity S, Patnaik L, et al. Enhancement of microstructure and mechanical performance of spray formed Al-6Si-18Pb alloy by warm rolling. Adv Mater Process Technol. 2022;8(sup4):2262–2276. doi: 10.1080/2374068X.2022.2036490
  • Raju K, Ojha SN, Harsha P. Spray-formingof aluminum alloys and its composites: An overview. J Mater Sci. 2008;43(8):2509–2521. doi: 10.1007/s10853-008-2464-x
  • Shen X, Liu S, Wang X, et al. Effect of cooling rate on the microstructure evolution and mechanical properties of iron-rich Al–si alloy. Materials. 2022;15(2):411. doi: 10.3390/ma15020411
  • Raghukiran N, Kumar R. Processing and dry sliding wear performance of spray deposited hyper-eutectic aluminum–silicon alloys. J Mater Process Technol. 2013;213(3):401–410. doi: 10.1016/j.jmatprotec.2012.10.007
  • Karbalaei Akbari M, Baharvandi HR, Shirvanimoghaddam K. Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater Design. 2015;66:150–161. doi: 10.1016/j.matdes.2014.10.048
  • Chao W, Guang-Lei L, WanHao LY-S, et al. Effect of heat treatment on microstructure and thermal Fa tigue properties of Al-Si-Cu-MgAlloys. High Temp Mater Proc. 2018;37(4):289–298. doi: 10.1515/htmp-2016-0199
  • Ma S, Wang Y, Wang X. The in-situ formation of Al3Ti reinforcing particulates in an Al-7wt% Si alloy and their effects on mechanical properties. J Alloys Compd. 2019;792:365–374. doi: 10.1016/j.jallcom.2019.04.064
  • Fang L, Zhang X, Ren L, et al. Effect of Ni addition on tensile properties of squeeze cast Al alloy A380. Adv Mater Process Technol. 2018;4(2):200–209. doi: 10.1080/2374068X.2017.1411746
  • Srivastava VC, Mandal RK, Ojha SN, et al. Microstructural modifications induced during spray deposition of Al–Si–Fe alloys and their mechanical properties. Mater Sci Eng A. 2006;471(1–2):38–49. doi: 10.1016/j.msea.2007.04.109
  • Bjurenstedt A, Ghassemali E, Seifeddine S, et al. The effect of Fe-rich intermetallics on crack initia tion in cast aluminum: an in-situ tensile study. Mater Sci Eng A. 2019;756:502–507. doi: 10.1016/j.msea.2018.07.044

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.