114
Views
5
CrossRef citations to date
0
Altmetric
Articles

Degradation of tetracycline antibiotics by advanced oxidation processes: application of MnO2 nanomaterials

, , &
Pages 32-42 | Received 19 Nov 2017, Accepted 25 Jan 2018, Published online: 26 Mar 2018

References

  • Ahmadi M, Ramezani Motlagh H, Jaafarzadeh N, Mostoufi A, Saeedi R, Barzegar G, Jorfi S. 2017. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J Environ Manage. 186:55–63.10.1016/j.jenvman.2016.09.088
  • Ai C, Zhou D, Wang Q, Shao X, Lei Y. 2015. Optimization of operating parameters for photocatalytic degradation of tetracycline using In2S3 under natural solar radiation. Sol Energy. 113:34–42.10.1016/j.solener.2014.12.022
  • Cao G, Su L, Zhang X, Li H. 2010. Hydrothermal synthesis and catalytic properties of α- and β-MnO2 nanorods. Mater Res Bull. 45:425–428.10.1016/j.materresbull.2009.12.016
  • Chen WR, Huang CH. 2011. Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide. Environ Pollut. 159:1092–1100.10.1016/j.envpol.2011.02.027
  • Chen H, He J, Zhang C, He H. 2007. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. J Phys Chem C. 111:18033–18038.10.1021/jp076113n
  • Chen G, Zhao L, Dong YH. 2011. Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide. J Hazard Mater. 193:128–138.10.1016/j.jhazmat.2011.07.039
  • Costanzo SD, Murby J, Bates J. 2005. Ecosystem response to antibiotics entering the aquatic environment. Mar Pollut Bull. 51:218–223.10.1016/j.marpolbul.2004.10.038
  • Daghrir R, Drogui P. 2013. Tetracycline antibiotics in the environment: a review. Environ Chem Lett. 11:209–227.10.1007/s10311-013-0404-8
  • Dalmázio I, Almeida MO, Augusti R, Alves TMA. 2007. Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry. J Am Soc Mass Spectrom. 18:679–687.10.1016/j.jasms.2006.12.001
  • Dong Y, Yang H, He K, Song S, Zhang A. 2009. β-MnO2 nanowires: a novel ozonation catalyst for water treatment. Appl Catal B Environ. 85:155–161.10.1016/j.apcatb.2008.07.007
  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE, editors. 2005. Standard methods for the examination of water and wastewater. 21st ed . Washington (DC): American Public Health Association.
  • Halling-Sorensen B, Nielsen SN, Lanzky PF, Ingerslev F, Holten Lutzhoft HC, Jorgensen SE. 1998. Occurence, fate and effects of pharmaceuticals substance in the environment – A review. Chemosphere. 36: 357–393.
  • Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M. 2006. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng J Int Ozone Assoc. 28:353–414.10.1080/01919510600985937
  • Jeong J, Song W, Cooper WJ, Jung J, Greaves J. 2010. Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere. 78:533–540.10.1016/j.chemosphere.2009.11.024
  • Jiao S, Zheng S, Yin D, Wang L, Chen L. 2008. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere. 73:377–382.10.1016/j.chemosphere.2008.05.042
  • Karnjanapiboonwong A, Suski JG, Shah AA, Cai QS, Morse AN, Anderson TA. 2011. Occurrence of PPCPs at a wastewater treatment plant and in soil and groundwater at a land application site. Water Air Soil Pollut. 216:257–273.10.1007/s11270-010-0532-8
  • Kümmerer K. 2009a. Antibiotics in the aquatic environment – A review – Part II. Chemosphere. 75:435–441.10.1016/j.chemosphere.2008.12.006
  • Kümmerer K. 2009b. Antibiotics in the aquatic environment – A review – Part I. Chemosphere. 75:417–434.10.1016/j.chemosphere.2008.11.086
  • Leavey-Roback SL, Krasner SW, Suffet IMH. 2016. Veterinary antibiotics used in animal agriculture as NDMA precursors. Chemosphere. 164:330–338.10.1016/j.chemosphere.2016.08.070
  • Li F, Liu C, Liang C, Li X, Zhang L. 2008. The oxidative degradation of 2-mercaptobenzothiazole at the interface of β-MnO2 and water. J Hazard Mater. 154:1098–1105.10.1016/j.jhazmat.2007.11.015
  • Lin K, Liu W, Gan J. 2009. Oxidative removal of bisphenol a by manganese dioxide: efficacy, products, and pathways. Environ Sci Technol. 43:3860–3864.10.1021/es900235f
  • Liu J-L, Wong M-H. 2013. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int. 59:208–224.10.1016/j.envint.2013.06.012
  • Liu H, Yang Y, Kang J, Fan M, Qu J. 2012. Removal of tetracycline from water by Fe-Mn binary oxide. J Environ Sci. 24:242–247.10.1016/S1001-0742(11)60763-8
  • López-Peñalver JJ, Sánchez-Polo M, Gómez-Pacheco CV, Rivera-Utrilla J. 2010. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes. J Chem Technol Biotechnol. 85:1325–1333.10.1002/jctb.v85:10
  • Luo S, Duan L, Sun B, Wei M, Li X, Xu A. 2015. Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate. Appl Catal B Environ. 164:92–99.10.1016/j.apcatb.2014.09.008
  • Mahamallik P, Saha S, Pal A. 2015. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly. Chem Eng J. 276:155–165.10.1016/j.cej.2015.04.064
  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R. 2013. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere. 93:1268–1287.10.1016/j.chemosphere.2013.07.059
  • Rubert KF, Pedersen JA. 2006. Kinetics of oxytetracycline reaction with a hydrous manganese oxide. Environ Sci Technol. 40:7216–7221.10.1021/es060357o
  • Saha S, Pal A. 2014. Microporous assembly of MnO2 nanosheets for malachite green degradation. Sep Purif Technol. 134:26–36.10.1016/j.seppur.2014.07.021
  • Saputra E, Muhammad S, Sun H, Ang HM, Tade MO, Wang S. 2013. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environ Sci Technol. 47:5882–5887.10.1021/es400878c
  • Singh SB, Young K, Silver LL. 2017. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem Pharmacol. 133:63–73.10.1016/j.bcp.2017.01.003
  • Sinha AK, Pradhan M, Pal T. 2013. Morphological evolution of two-dimensional MnO2 nanosheets and their shape transformation to one-dimensional ultralong MnO2 nanowires for robust catalytic activity. J Phys Chem C. 117:23976–23986.10.1021/jp403527p
  • Sui N, Duan Y, Jiao X, Chen D. 2009. Large-scale preparation and catalytic properties of one-dimensional. J Phys Chem C. 113: 8560–8565.
  • Wang H, Zhang D, Mou S, Song W, Al-Misned FA, Mortuza MG, Pan X. 2015. Simultaneous removal of tetracycline hydrochloride and As(III) using poorly-crystalline manganese dioxide. Chemosphere. 136:102–110.10.1016/j.chemosphere.2015.04.070
  • Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD. 2009. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ. 407:2711–2723.10.1016/j.scitotenv.2008.11.059
  • Watts RJ, Sarasa J, Loge FJ, Teel AL. 2005. Oxidative and reductive pathways in manganese-catalyzed fenton’s reactions. J Environ Eng. 131:158–164.10.1061/(ASCE)0733-9372(2005)131:1(158)
  • Xu L, Xu C, Zhao M, Qiu Y, Sheng GD. 2008. Oxidative removal of aqueous steroid estrogens by manganese oxides. Water Res. 42:5038–5044.10.1016/j.watres.2008.09.016
  • Yu F, Li Y, Han S, Ma J. 2016. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere. 153:365–385.10.1016/j.chemosphere.2016.03.083
  • Zhang H, Huang CH. 2003. Oxidative transformation of triclosan and chlorophene by manganese oxides. Environ Sci Technol. 37:2421–2430.10.1021/es026190q
  • Zhang H, Huang CH. 2005. Reactivity and transformation of antibacterial N -oxides in the presence of manganese oxide. Environ Sci Technol. 39:593–601.10.1021/es048753z
  • Zhang W, Yang Z, Wang X, Zhang Y, Wen X, Yang S. 2006. Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catal Commun. 7:408–412.10.1016/j.catcom.2005.12.008
  • Zhang H, Chen WR, Huang CH. 2008. Kinetic modeling of oxidation of antibacterial agents by manganese oxide. Environ Sci Technol. 42:5548–5554.10.1021/es703143 g

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.