Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 5, 2020 - Issue 2
160
Views
5
CrossRef citations to date
0
Altmetric
Review

Proteomics-inspired precision medicine for treating and understanding multiple myeloma

, &
Pages 67-85 | Received 30 Nov 2019, Accepted 17 Feb 2020, Published online: 24 Feb 2020

References

  • Anderson KC, Carrasco RD. Pathogenesis of myeloma. Annu Rev Pathol. 2011;6:249–274.
  • Mateos MV, Landgren O. MGUS and smoldering multiple myeloma: diagnosis and epidemiology. Cancer Treat Res. 2016;169:3–12.
  • Rajkumar SV. Multiple myeloma:2018 update on diagnosis, risk-stratification, and management. Am J Hematol. 2018;93(8):981–1114.
  • Kyle RA, Remstein ED, Therneau TM, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med. 2007;356(25):2582–2590.
  • Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48.
  • Rajan AM, Rajkumar SV. Interpretation of cytogenetic results in multiple myeloma for clinical practice. Blood Cancer J. 2015;5:e365.
  • Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12(5):335–348.
  • Guang MHZ, McCann A, Bianchi G, et al. Overcoming multiple myeloma drug resistance in the era of cancer ‘omics’. Leuk Lymphoma. 2018;59(3):542–561.
  • Anderson KC. Progress and paradigms in multiple myeloma. Clin Cancer Res. 2016;22(22):5419–5427.
  • Kyle RA, Rajkumar SV. Multiple myeloma. Blood. 2008;111(6):2962–2972.
  • Le GN, Bones J, Coyne M, et al. Current and future biomarkers for risk-stratification and treatment personalisation in multiple myeloma. Mol Omics. 2019;15(1):7–20.
  • Durie BG, Hoering A, Abidi MH, et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet. 2017;389(10068):519–527.
  • Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international Myeloma Working Group study. Leukemia. 2012;26(1):149–157.
  • Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget. 2013;4(12):2186–2207.
  • Lohr JG, Stojanov P, Carter S, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25(1):91–101.
  • Kint N, Vlayen S, Delforge M. The treatment of multiple myeloma in an era of precision medicine. Expert Rev Precis Med Drug Dev. 2019;4(3):153–162.
  • Corre J, Cleynen A, Robiou Du Pont S, et al. Multiple myeloma clonal evolution in homogeneously treated patients. Leukemia. 2018;32(12):2636–2647.
  • Nooka AK, Kastritis E, Dimopoulos MA, et al. Treatment options for relapsed and refractory multiple myeloma. Blood. 2015;125(20):3085–3099.
  • Goldschmidt H, Weisel KC, Vellenga E, et al. Bortezomib before and after high-dose therapy in myeloma: long-term results from the phase III HOVON-65/GMMG-HD4 trial. Leukemia. 2018;32(2):383–390.
  • Hanamura I, Stewart JP, Huang Y, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006;108(5):1724–1732.
  • Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210–2221.
  • Avet-Loiseau H, Leleu X, Roussel M, et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J Clin Oncol. 2010;28(30):4630–4634.
  • Rosinol L, Oriol A, Teruel AI, et al. Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. Blood. 2012;120(8):1589–1596.
  • Reece D, Song KW, Fu T, et al. Influence of cytogenetics in patients with relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone: adverse effect of deletion 17p13. Blood. 2009;114(3):522–525.
  • Jaksic W, Trudel S, Chang H, et al. Clinical outcomes in t(4;14) multiple myeloma: a chemotherapy-sensitive disease characterized by rapid relapse and alkylating agent resistance. J Clin Oncol. 2005;23(28):7069–7073.
  • Rajkumar SV. Myeloma today: disease definitions and treatment advances. Am J Hematol. 2016;91(1):90–100.
  • Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36(3):842–854.
  • Greipp PR, Miguel JS, Durie BGM, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–3420.
  • Hari PN, Zhang M-J, Roy V, et al. Is the International staging system superior to the Durie-Salmon staging system? A comparison in multiple myeloma patients undergoing autologous transplant. Leukemia. 2009;23(8):1528–1534.
  • Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: a report from international Myeloma Working Group. J Clin Oncol. 2015;33(26):2863–2869.
  • Dispenzieri A, Rajkumar SV, Gertz MA, et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc. 2007;82(3):323–341.
  • Roussel M, Lauwers-Cances V, Robillard N, et al. Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: a phase II study by the Intergroupe francophone du myelome. J Clin Oncol. 2014;32(25):2712–2717.
  • Landgren O, Kyle RA, Pfeiffer RM, et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009;113(22):5412–5417.
  • Weiss BM, Abadie J, Verma P, et al. A monoclonal gammopathy precedes multiple myeloma in most patients. Blood. 2009;113(22):5418–5422.
  • Rajkumar SV, Kyle RA, Therneau TM, et al. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood. 2005;106(3):812–817.
  • Turesson I, Kovalchik SA, Pfeiffer RM, et al. Monoclonal gammopathy of undetermined significance and risk of lymphoid and myeloid malignancies: 728 cases followed up to 30 years in Sweden. Blood. 2014;123(3):338–345.
  • Bolli N, Maura F, Minvielle S, et al. Genomic patterns of progression in smoldering multiple myeloma. Nat Commun. 2018;9(1):3363.
  • Lonial S, et al. E3A06: randomized phase III trial of lenalidomide versus observation alone in patients with asymptomatic high-risk smoldering multiple myeloma. J Clin Oncol. 2019;37(15_suppl): 8001–8001.
  • Mateos MV, Hernández MT, Giraldo P, et al. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med. 2013;369(5):438–447.
  • Perez-Persona E, Vidriales M-B, Mateo G, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007;110(7):2586–2592.
  • Rajkumar SV, Landgren O, Mateos MV. Smoldering multiple myeloma. Blood. 2015;125(20):3069–3075.
  • Cherry BM, Rosiñol L, Oriol A, et al. Modeling progression risk for smoldering multiple myeloma: results from a prospective clinical study. Leuk Lymphoma. 2013;54(10):2215–2218.
  • Miguel JS, Mateos MV, Gonzalez V, et al. Updated risk stratification model for smoldering multiple myeloma (SMM) incorporating the revised IMWG diagnostic criteria. J Clin Oncol. 2019;37(15_suppl): 8000–8000.
  • Lakshman A, Rajkumar SV, Buadi FK, et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J. 2018;8(6):59.
  • Barnidge DR, Tschumper RC, Theis JD, et al. Monitoring M-proteins in patients with multiple myeloma using heavy-chain variable region clonotypic peptides and LC-MS/MS. J Proteome Res. 2014;13(4):1905–1910.
  • Mills JR, Kohlhagen MC, Dasari S, et al. Comprehensive assessment of M-proteins using nanobody enrichment coupled to MALDI-TOF mass spectrometry. Clin Chem. 2016;62(10):1334–1344.
  • Milani P, Murray DL, Barnidge DR, et al. The utility of MASS-FIX to detect and monitor monoclonal proteins in the clinic. Am J Hematol. 2017;92(8):772–779.
  • Thoren KL. Mass spectrometry methods for detecting monoclonal immunoglobulins in multiple myeloma minimal residual disease. Semin Hematol. 2018;55(1):41–43.
  • Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373(13):1207–1219.
  • Lonial S, Weiss BM, Usmani SZ, et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet. 2016;387(10027):1551–1560.
  • Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(14):1319–1331.
  • Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(8):754–766.
  • Chari A, Suvannasankha A, Fay JW, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood. 2017;130(8):974–981.
  • Facon T, Kumar S, Plesner T, et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N Engl J Med. 2019;380(22):2104–2115.
  • Mateos MV, Dimopoulos MA, Cavo M, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018;378(6):518–528.
  • Moreau P, Attal M, Hulin C, et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet. 2019;394(10192):29–38.
  • Murata K, McCash SI, Carroll B, et al. Treatment of multiple myeloma with monoclonal antibodies and the dilemma of false positive M-spikes in peripheral blood. Clin Biochem. 2018;51:66–71.
  • Willrich MA, Ladwig PM, Andreguetto BD, et al. Monoclonal antibody therapeutics as potential interferences on protein electrophoresis and immunofixation. Clin Chem Lab Med. 2016;54(6):1085–1093.
  • Tang F, Malek E, Math S, et al. Interference of therapeutic monoclonal antibodies with routine serum protein electrophoresis and immunofixation in patients with myeloma: frequency and duration of detection of daratumumab and elotuzumab. Am J Clin Pathol. 2018;150(2):121–129.
  • Moore LM, Cho S, Thoren KL. MALDI-TOF mass spectrometry distinguishes daratumumab from M-proteins. Clin Chim Acta. 2019;492:91–94.
  • McCudden C, Axel AE, Slaets D, et al. Monitoring multiple myeloma patients treated with daratumumab: teasing out monoclonal antibody interference. Clin Chem Lab Med. 2016;54(6):1095–1104.
  • Caillon H, Irimia A, Simon JS, et al. Overcoming the interference of daratumumab with immunofixation electrophoresis (IFE) using an industry-developed dira test: hydrashift 2/4 daratumumab. Blood. 2016;128(22): 2063–2063.
  • Kunacheewa C, Lin P, Manasanch EE. Minimal residual disease in multiple myeloma 2019. Adv Cell Gene Ther. 2020;3(1):e71.
  • Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e346.
  • Lahuerta JJ, Paiva B, Vidriales M-B, et al. Depth of response in multiple myeloma: a pooled analysis of three PETHEMA/GEM clinical trials. J Clin Oncol. 2017;35(25):2900–2910.
  • Fukumoto K, Fujisawa M, Suehara Y, et al. Prognostic impact of immunophenotypic complete response in patients with multiple myeloma achieving better than complete response. Leuk Lymphoma. 2016;57(8):1786–1792.
  • Paiva B, Martinez-Lopez J, Vidriales M-B, et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol. 2011;29(12):1627–1633.
  • Rawstron AC, Davies FE, DasGupta R, et al. Flow cytometric disease monitoring in multiple myeloma: the relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood. 2002;100(9):3095–3100.
  • Swedin A, Lenhoff S, Olofsson T, et al. Clinical utility of immunoglobulin heavy chain gene rearrangement identification for tumour cell detection in multiple myeloma. Br J Haematol. 1998;103(4):1145–1151.
  • Landgren O, Rustad EH. Meeting report: advances in minimal residual disease testing in multiple myeloma 2018. Adv cell Gene Ther. 2019;2(1):e26.
  • Ghai A, Maji D, Cho N, et al. Preclinical development of CD38-targeted [Zr]Zr-DFO-daratumumab for imaging multiple myeloma. J Nucl Med. 2018;59(2):216–222.
  • Bailly C, Gouard S, Guérard F, et al. What is the best radionuclide for immuno-PET of multiple myeloma? A comparison study between (89)Zr- and (64)Cu-Labeled Anti-CD138 in a Preclinical syngeneic model. Int J Mol Sci. 2019;20(10):2564.
  • Ulaner G, Sobol N, O’Donoghue J, et al. Preclinical development and first-in-human imaging of 89Zr-Daratumumab for CD38 targeted imaging of myeloma. J Nucl Med. 2019;60(supplement 1):203.
  • Caserta E, Chea J, Minnix M, et al. Copper 64-labeled daratumumab as a PET/CT imaging tracer for multiple myeloma. Blood. 2018;131(7):741–745.
  • Plesner T, Krejcik J. Daratumumab for the treatment of multiple myeloma. Front Immunol. 2018;9:1228.
  • Nijhof IS, Casneuf T, van Velzen J, et al. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood. 2016;128(7):959–970.
  • Singh N, Agrawal N, Mehta A, et al. CD38-negative myeloma with anaplastic morphology at presentation: a case report. Indian J Hematol Blood Transfus. 2018;34(2):362–364.
  • Minarik J, Novak M, Flodr P, et al. CD38-negative relapse in multiple myeloma after daratumumab-based chemotherapy. Eur J Haematol. 2017;99(2):186–189.
  • Mykytiv V, Alwaheed A, Mohd Hashim NA. Double CD38(-)/CD138(-) negative multiple myeloma. Hematol Oncol Stem Cell Ther. 2019;12(1):64–66.
  • Barnidge DR, Dasari S, Botz CM, et al. Using mass spectrometry to monitor monoclonal immunoglobulins in patients with a monoclonal gammopathy. J Proteome Res. 2014;13(3):1419–1427.
  • Mills JR, Barnidge DR, Dispenzieri A, et al. High sensitivity blood-based M-protein detection in sCR patients with multiple myeloma. Blood Cancer J. 2017;7(8):e590.
  • Bergen HR 3rd, Dasari S, Dispenzieri A, et al. Clonotypic light chain peptides identified for monitoring minimal residual disease in multiple myeloma without bone marrow aspiration. Clin Chem. 2016;62(1):243–251.
  • Köcher T, Superti-Furga G. Mass spectrometry–based functional proteomics: from molecular machines to protein networks. Nat Methods. 2007;4(10):807–815.
  • Lonial S, Nooka AK. Myeloma is not a single disease. J Oncol Pract. 2016;12(4):287–292.
  • Guang MHZ, Kavanagh EL, Dunne LP, et al. Targeting proteotoxic stress in cancer: a review of the role that protein quality control pathways play in oncogenesis. Cancers (Basel). 2019;11(1):66.
  • Garrels JI. Proteome. In: Brenner S, Miller JH, editors. Encyclopedia of genetics. New York: Academic Press; 2001. p. 1575–1578.
  • Zybailov BL, Byrd AK, Glazko GV, et al. Protein-protein interaction analysis for functional characterization of helicases. Methods. 2016;108:56–64.
  • Hayes S, Malacrida B, Kiely M, et al. Studying protein-protein interactions: progress, pitfalls and solutions. Biochem Soc Trans. 2016;44(4):994–1004.
  • Ge F, Li W-L, Bi L-J, et al. Identification of novel 14-3-3ζ interacting proteins by quantitative immunoprecipitation combined with knockdown (QUICK). J Proteome Res. 2010;9(11):5848–5858.
  • Zhu YX, Braggio E, Shi C-X, et al. Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma. Blood. 2014;124(4):536–545.
  • Kronke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–305.
  • Winter GE, Buckley DL, Paulk J, et al. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. 2015;348(6241):1376–1381.
  • Ge F, Xiao C-L, Yin X-F, et al. Phosphoproteomic analysis of primary human multiple myeloma cells. J Proteomics. 2010;73(7):1381–1390.
  • Ge F, et al. Quantitative phosphoproteomics of proteasome inhibition in multiple myeloma cells. PLoS One. 2010;5(9):e13095.
  • St-Germain JR, Taylor P, Tong J, et al. Multiple myeloma phosphotyrosine proteomic profile associated with FGFR3 expression, ligand activation, and drug inhibition. Proc Natl Acad Sci U S A. 2009;106(47):20127–20132.
  • Pollett JB, Trudel S, Stern D, et al. Overexpression of the myeloma-associated oncogene fibroblast growth factor receptor 3 confers dexamethasone resistance. Blood. 2002;100(10):3819–3821.
  • Jin LL, Tong J, Prakash A, et al. Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry. J Proteome Res. 2010;9(5):2752–2761.
  • Li Z-W, Sanchez E, Wang C, et al. Synergistic anti-myeloma effects of the lyn kinase inhibitor INNO-406 in combination with doxorubicin, melphalan and bortezomib. Blood. 2010;116(21): 5015–5015.
  • Lin Y-HT, Way GP, Barwick BG, et al. Integrated phosphoproteomics and transcriptional classifiers reveal hidden RAS signaling dynamics in multiple myeloma. Blood adv. 2019;3(21):f3214–322.
  • Kobata A, Amano J. Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol. 2005;83(4):429–439.
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520.
  • Shields RL, Lai J, Keck R, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277(30):26733–26740.
  • van de Bovenkamp FS, Hafkenscheid L, Rispens T, et al. The emerging importance of IgG fab glycosylation in immunity. J Immunol. 2016;196(4):1435–1441.
  • Fleming SC, Smith S, Knowles D, et al. Increased sialylation of oligosaccharides on IgG paraproteins–a potential new tumour marker in multiple myeloma. J Clin Pathol. 1998;51(11):825–830.
  • Aurer I, Lauc G, Dumić J, et al. Aberrant glycosylation of Igg heavy chain in multiple myeloma. Coll Antropol. 2007;31(1):247–251.
  • Chen J, Fang M, Zhao Y-P, et al. Serum N-glycans: a new diagnostic biomarker for light chain multiple myeloma. PLoS One. 2015;10(6):e0127022.
  • Mittermayr S, Lê GN, Clarke C, et al. Polyclonal immunoglobulin G N-glycosylation in the pathogenesis of plasma cell disorders. J Proteome Res. 2017;16(2):748–762.
  • Azab AK, Quang P, Azab F, et al. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood. 2012;119(6):1468–1478.
  • Glavey SV, Manier S, Natoni A, et al. The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma. Blood. 2014;124(11):1765–1776.
  • Glavey S, Wu P, Murillo LS, et al. Low expression of the FUCA1 gene is an adverse prognostic factor in myeloma and combined with high sialyltransferase gene expression identifies patients at increased risk of early disease progression and death. Blood. 2013;122(21): 1864–1864.
  • Swatek KN, Komander D. Ubiquitin modifications. Cell Res. 2016;26(4):399–422.
  • Jia H, Liu C, Ge F, et al. Identification of ubiquitinated proteins from human multiple myeloma U266 cells by proteomics. Biomed Environ Sci. 2011;24(4):422–430.
  • Jian Y, CHEN Y, GENG C, et al. Target and resistance-related proteins of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand on myeloma cell lines. Biomed Rep. 2016;4(6):723–727.
  • Mitsiades CS, Treon SP, Mitsiades N, et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood. 2001;98(3):795–804.
  • Ishida T. Therapeutic antibodies for multiple myeloma. Jpn J Clin Oncol. 2018;48(11):957–963.
  • Susanibar Adaniya SP, Cohen AD, Garfall AL. Chimeric antigen receptor T cell immunotherapy for multiple myeloma: A review of current data and potential clinical applications. Am J Hematol. 2019;94(S1):S28–S33.
  • Costa F, Das R, Kini Bailur J, et al. Checkpoint inhibition in myeloma: opportunities and challenges. Front Immunol. 2018;9:2204.
  • Abdullah LN, Chow EK-H. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2013;2(1):3.
  • Micallef J, Taccone M, Mukherjee J, et al. Epidermal growth factor receptor variant III-induced glioma invasion is mediated through myristoylated alanine-rich protein kinase C substrate overexpression. Cancer Res. 2009;69(19):7548–7556.
  • Abraham J, Salama NN, Azab AK. The role of P-glycoprotein in drug resistance in multiple myeloma. Leuk Lymphoma. 2015;56(1):26–33.
  • Tan S, Tan HT, Chung MC. Membrane proteins and membrane proteomics. Proteomics. 2008;8(19):3924–3932.
  • Xie Z, Gunaratne J, Cheong LL, et al. Plasma membrane proteomics identifies biomarkers associated with MMSET overexpression in T(4;14) multiple myeloma. Oncotarget. 2013;4(7):1008–1018.
  • Taniwaki M, Yoshida M, Matsumoto Y, et al. Elotuzumab for the treatment of relapsed or refractory multiple myeloma, with special reference to its modes of action and SLAMF7 signaling. Mediterr J Hematol Infect Dis. 2018;10(1):e2018014.
  • Cosemans C, Oben B, Arijs I, et al. Prognostic biomarkers in the progression from MGUS to multiple myeloma: a systematic review. Clin Lymphoma Myeloma Leuk. 2018;18(4):235–248.
  • Kate Sasser T, Casneuf T, Amaratunga D, et al. Development of a serum biomarker panel that predicts imminent risk of multiple myeloma (MM) progression from premalignancy. Blood. 2013;122(21): 3115–3115.
  • Glavey SV, Naba A, Manier S, et al. Proteomic characterization of human multiple myeloma bone marrow extracellular matrix. Leukemia. 2017;31(11):2426–2434.
  • Zingone A, Wang W, Corrigan-Cummins M, et al. Altered cytokine and chemokine profiles in multiple myeloma and its precursor disease. Cytokine. 2014;69(2):294–297.
  • Mailankody S, Devlin SM, Korde N, et al. Proteomic profiling in plasma cell disorders: a feasibility study. Leuk Lymphoma. 2017;58(7):1757–1759.
  • Xiao CL, Zhang Z-P, Xiong S, et al. Comparative proteomic analysis to discover potential therapeutic targets in human multiple myeloma. Proteomics Clin Appl. 2009;3(11):1348–1360.
  • Wang QT, Li Y-Z, Liang Y-F, et al. Construction of a multiple myeloma diagnostic model by magnetic bead-based MALDI-TOF mass spectrometry of serum and pattern recognition software. Anat Rec (Hoboken). 2009;292(4):604–610.
  • Steiner N, Müller U, Hajek R, et al. The metabolomic plasma profile of myeloma patients is considerably different from healthy subjects and reveals potential new therapeutic targets. PLoS One. 2018;13(8):e0202045.
  • Moon YW, Hajjar J, Hwu P, et al. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J Immunother Cancer. 2015;3:51.
  • Johnson TS, Munn DH. Host indoleamine 2,3-dioxygenase: contribution to systemic acquired tumor tolerance. Immunol Invest. 2012;41(6–7):765–797.
  • Bai J, Yang Y, Wang J, et al. Variability of serum novel serum peptide biomarkers correlates with the disease states of multiple myeloma. Clin Proteomics. 2019;16(1):17.
  • Leung N, Bridoux F, Batuman V, et al. The evaluation of monoclonal gammopathy of renal significance: a consensus report of the international kidney and monoclonal gammopathy research group. Nat Rev Nephrol. 2019;15(1):45–59.
  • Li SJ, Chen H-P, Chen Y-H, et al. Renal involvement in non-Hodgkin lymphoma: proven by renal biopsy. PLoS One. 2014;9(4):e95190.
  • Poitou-Verkinder AL, Francois A, Drieux F, et al. The spectrum of kidney pathology in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma: a 25-year multicenter experience. PLoS One. 2015;10(3):e0119156.
  • Da’as N, Polliack A, Cohen Y, et al. Kidney involvement and renal manifestations in non-Hodgkin’s lymphoma and lymphocytic leukemia: a retrospective study in 700 patients. Eur J Haematol. 2001;67(3):158–164.
  • Luciano RL, Brewster UC. Kidney involvement in leukemia and lymphoma. Adv Chronic Kidney Dis. 2014;21(1):27–35.
  • Audard V, Georges B, Vanhille P, et al. Renal lesions associated with IgM-secreting monoclonal proliferations: revisiting the disease spectrum. Clin J Am Soc Nephrol. 2008;3(5):1339–1349.
  • Chauvet S, Bridoux F, Ecotière L, et al. Kidney diseases associated with monoclonal immunoglobulin M-secreting B-cell lymphoproliferative disorders: a case series of 35 patients. Am J Kidney Dis. 2015;66(5):756–767.
  • Vos JM, Gustine J, Rennke HG, et al. Renal disease related to Waldenstrom macroglobulinaemia: incidence, pathology and clinical outcomes. Br J Haematol. 2016;175(4):623–630.
  • Rajkumar SV. Updated diagnostic criteria and staging system for multiple myeloma. Am Soc Clin Oncol Educ Book. 2016;36:e418–e423.
  • Kyle RA, Gertz MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol. 1995;32(1):45–59.
  • Vela-Ojeda J, García-Ruiz Esparza MA, Padilla-González Y, et al. Multiple myeloma-associated amyloidosis is an independent high-risk prognostic factor. Ann Hematol. 2009;88(1):59–66.
  • Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016;387(10038):2641–2654.
  • Wechalekar AD. Biomarkers in AL amyloidosis: is the summit in sight? Blood. 2018;131(14):1502–1503.
  • Kumar S, Dispenzieri A, Lacy MQ, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol. 2012;30(9):989–995.
  • Kristen AV, Brokbals E, Aus Dem Siepen F, et al. Cardiac amyloid load: a prognostic and predictive biomarker in patients with light-chain amyloidosis. J Am Coll Cardiol. 2016;68(1):13–24.
  • Kim D, Lee GY, Choi J-O, et al. Prognostic values of novel biomarkers in patients with AL amyloidosis. Sci Rep. 2019;9(1):12200.
  • Ramirez-Alvarado M, Barnidge DR, Murray DL, et al. Assessment of renal response with urinary exosomes in patients with AL amyloidosis: A proof of concept. Am J Hematol. 2017;92(6):536–541.
  • Kourelis T, Murray DL, Dasari S, et al. MASS-FIX may allow identification of patients at risk for light chain amyloidosis before the onset of symptoms. Am J Hematol. 2018;93(11):E368–E370.
  • Omtvedt LA, Bailey D, Renouf DV, et al. Glycosylation of immunoglobulin light chains associated with amyloidosis. Amyloid. 2000;7(4):227–244.
  • Mansour A, Wakkach A, Blin-Wakkach C. Emerging roles of osteoclasts in the modulation of bone microenvironment and immune suppression in multiple myeloma. Front Immunol. 2017;8:954.
  • Corso A, Arcaini L, Mangiacavalli S, et al. Biochemical markers of bone disease in asymptomatic early stage multiple myeloma. A study on their role in identifying high risk patients. Haematologica. 2001;86(4):394–398.
  • Jakob C, Zavrski I, Heider U, et al. Bone resorption parameters [carboxy-terminal telopeptide of type-I collagen (ICTP), amino-terminal collagen type-I telopeptide (NTx), and deoxypyridinoline (Dpd)] in MGUS and multiple myeloma. Eur J Haematol. 2002;69(1):37–42.
  • Abildgaard N, Brixen K, Kristensen JE, et al. Comparison of five biochemical markers of bone resorption in multiple myeloma: elevated pre-treatment levels of S-ICTP and U-Ntx are predictive for early progression of the bone disease during standard chemotherapy. Br J Haematol. 2003;120(2):235–242.
  • Jakob C, Sterz J, Liebisch P, et al. Incorporation of the bone marker carboxy-terminal telopeptide of type-1 collagen improves prognostic information of the international staging system in newly diagnosed symptomatic multiple myeloma. Leukemia. 2008;22(9):1767–1772.
  • Schütt P, Rebmann V, Brandhorst D, et al. The clinical significance of soluble human leukocyte antitgen class-I, ICTP, and RANKL molecules in multiple myeloma patients. Hum Immunol. 2008;69(2):79–87.
  • Patel CG, Yee AJ, Scullen TA, et al. Biomarkers of bone remodeling in multiple myeloma patients to tailor bisphosphonate therapy. Clin Cancer Res. 2014;20(15):3955–3961.
  • Lin JH. Bisphosphonates: a review of their pharmacokinetic properties. Bone. 1996;18(2):75–85.
  • Bhattacharyya S, Epstein J, Suva LJ. Biomarkers that discriminate multiple myeloma patients with or without skeletal involvement detected using SELDI-TOF mass spectrometry and statistical and machine learning tools. Dis Markers. 2006;22(4):245–255.
  • Dowling P, Hayes C, Ting K, et al. Identification of proteins found to be significantly altered when comparing the serum proteome from multiple myeloma patients with varying degrees of bone disease. BMC Genomics. 2014;15:904.
  • Yang Y, Chen Y, Saha MN, et al. Targeting phospho-MARCKS overcomes drug-resistance and induces antitumor activity in preclinical models of multiple myeloma. Leukemia. 2015;29(3):715–726.
  • Ting KR, Henry M, Meiller J, et al. Novel panel of protein biomarkers to predict response to bortezomib-containing induction regimens in multiple myeloma patients. BBA Clin. 2017;8:28–34.
  • Hsieh FY, Tengstrand E, Pekol TM, et al. Elucidation of potential bortezomib response markers in mutliple myeloma patients. J Pharm Biomed Anal. 2009;49(1):115–122.
  • Dytfeld D, Luczak M, Wrobel T, et al. Comparative proteomic profiling of refractory/relapsed multiple myeloma reveals biomarkers involved in resistance to bortezomib-based therapy. Oncotarget. 2016;7(35):56726–56736.
  • Ho M, Chen T, Liu J, et al. Targeting histone deacetylase 3 (HDAC3) in the bone marrow microenvironment inhibits multiple myeloma proliferation by modulating exosomes and IL-6 trans-signaling. Leukemia. 2020;34(1):196–2.
  • Frassanito MA, De Veirman K, Desantis V, et al. Halting pro-survival autophagy by TGFbeta inhibition in bone marrow fibroblasts overcomes bortezomib resistance in multiple myeloma patients. Leukemia. 2016;30(3):640–648.
  • Jones DR, Wu Z, Chauhan D, et al. A nano ultra-performance liquid chromatography-high resolution mass spectrometry approach for global metabolomic profiling and case study on drug-resistant multiple myeloma. Anal Chem. 2014;86(7):3667–3675.
  • Maiso P, Huynh D, Moschetta M, et al. Metabolic signature identifies novel targets for drug resistance in multiple myeloma. Cancer Res. 2015;75(10):2071–2082.
  • Rajpal R, Dowling P, Meiller J, et al. A novel panel of protein biomarkers for predicting response to thalidomide-based therapy in newly diagnosed multiple myeloma patients. Proteomics. 2011;11(8):1391–1402.
  • Zhou N, Gutierrez-Uzquiza A, Zheng XY, et al. RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation. Leukemia. 2019;33(8):2006–2021.
  • Rees-Unwin KS, Craven RA, Davenport E, et al. Proteomic evaluation of pathways associated with dexamethasone-mediated apoptosis and resistance in multiple myeloma. Br J Haematol. 2007;139(4):559–567.
  • Harshman SW, Canella A, Ciarlariello PD, et al. Proteomic characterization of circulating extracellular vesicles identifies novel serum myeloma associated markers. J Proteomics. 2016;136:89–98.
  • Hertweck MK, Erdfelder F, Kreuzer KA. CD44 in hematological neoplasias. Ann Hematol. 2011;90(5):493–508.
  • Ohwada C, Nakaseko C, Koizumi M, et al. CD44 and hyaluronan engagement promotes dexamethasone resistance in human myeloma cells. Eur J Haematol. 2008;80(3):245–250.
  • Harshman SW, Canella A, Ciarlariello PD, et al. Characterization of multiple myeloma vesicles by label-free relative quantitation. Proteomics. 2013;13(20):3013–3029.
  • Moschetta M, Basile A, Ferrucci A, et al. Novel targeting of phospho-cMET overcomes drug resistance and induces antitumor activity in multiple myeloma. Clin Cancer Res. 2013;19(16):4371–4382.
  • Zub KA, Sousa MMLD, Sarno A, et al. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells. PLoS One. 2015;10(3):e0119857.
  • Ge F, Lu XP, Zeng HL, et al. Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells. J Proteome Res. 2009;8(6):3006–3019.
  • Chen Y, Huang R, Ding J, et al. Multiple myeloma acquires resistance to EGFR inhibitor via induction of pentose phosphate pathway. Sci Rep. 2015;5(1):9925.
  • Caron M, Choquet-Kastylevsky G, Joubert-Caron R. Cancer immunomics using autoantibody signatures for biomarker discovery. Mol Cell Proteomics. 2007;6(7):1115–1122.
  • Nishimura Y, Tomita Y, Yuno A, et al. Cancer immunotherapy using novel tumor-associated antigenic peptides identified by genome-wide cDNA microarray analyses. Cancer Sci. 2015;106(5):505–511.
  • Mu B, Zhang H, Cai X, et al. Screening of multiple myeloma by polyclonal rabbit anti-human plasmacytoma cell immunoglobulin. PLoS One. 2013;8(4):e59117.
  • De Sousa KP, Doolan DL. Immunomics: a 21st century approach to vaccine development for complex pathogens. Parasitology. 2016;143(2):236–244.
  • Gfeller D, Bassani-Sternberg M, Schmidt J, et al. Current tools for predicting cancer-specific T cell immunity. Oncoimmunology. 2016;5(7):e1177691.
  • Ichinohe T, Miyama T, Kawase T, et al. Next-generation immune repertoire sequencing as a clue to elucidate the landscape of immune modulation by host-gut microbiome interactions. Front Immunol. 2018;9:668.
  • Walz S, Stickel JS, Kowalewski DJ, et al. The antigenic landscape of multiple myeloma: mass spectrometry (re)defines targets for T-cell-based immunotherapy. Blood. 2015;126(10):1203–1213.
  • Newell EW, Sigal N, Nair N, et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat Biotechnol. 2013;31(7):623–629.
  • Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using stagetips. Nat Protoc. 2007;2(8):1896–1906.
  • Manier S, Park J, Capelletti M, et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018;9(1):1691.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.