2,279
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Recent research advances on simulation modeling of temperature distribution in microwave ablation of lung tumors

, , , , , & show all

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249.
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.
  • Alexander ES, Dupuy DE. Lung cancer ablation: technologies and techniques. Semin Intervent Radiol. 2013;30(2):141–150.
  • Bartlett EC, Rahman S, Ridge CA. Percutaneous image-guided thermal ablation of lung cancer: what is the evidence?. Lung Cancer. 2023;176:14–23.
  • Lin M, Eiken P, Blackmon S. Image guided thermal ablation in lung cancer treatment. J Thorac Dis. 2020;12(11):7039–7047.
  • Moore W, Talati R, Bhattacharji P, et al. Five-year survival after cryoablation of stage I non–small cell lung cancer in medically inoperable patients. J Vasc Interv Radiol. 2015;26(3):312–319.
  • Jiang B, Mcclure MA, Chen T, et al. Efficacy and safety of thermal ablation of lung malignancies: a network meta-analysis. Ann Thorac Med. 2018;13(4):243–250.
  • Steinke K, Haghighi KS, Wulf S, et al. Effect of vessel diameter on the creation of ovine lung radiofrequency lesions in vivo: preliminary results. J Surg Res. 2005;124(1):85–91.
  • Gillams AR, Lees WR. Radiofrequency ablation of lung metastases: factors influencing success. Eur Radiol. 2008;18(4):672–677.
  • Andreano A, Huang Y, Meloni MF, et al. Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue. Med Phys. 2010;37(6):2967–2973.
  • Brace CL, Hinshaw JL, Laeseke PF, et al. Pulmonary thermal ablation: comparison of radiofrequency and microwave devices by using gross pathologic and CT findings in a swine model. Radiology. 2009;251(3):705–711.
  • Hu H, Nan Q, Tian Z, et al. Study on the microwave ablation effect of inflated porcine lung. Appl Sci. 2022;12:5916.
  • Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? . Curr Probl Diagn Radiol. 2009;38(3):135–143.
  • Planché O, Teriitehau C, Boudabous S, et al. In vivo evaluation of lung microwave ablation in a porcine tumor mimic model. Cardiovasc Intervent Radiol. 2013;36(1):221–228.
  • Crocetti L, Bozzi E, Faviana P, et al. Thermal ablation of lung tissue: in vivo experimental comparison of microwave and radiofrequency. Cardiovasc Intervent Radiol. 2010;33(4):818–827.
  • Gao X, Tian Z, Cheng Y, et al. Experimental and numerical study of microwave ablation on ex-vivo porcine lung. Electromagn Biol Med. 2019;38(4):249–261.
  • Dupuy DE. Image-guided thermal ablation of lung malignancies. Radiology. 2011;260(3):633–655.
  • Pfannenstiel A, Keast T, Kramer S, et al. Flexible microwave ablation applicator for the treatment of pulmonary malignancies. In: Energy-based treatment of tissue and assessment IX. Vol. 10066. California, United States: SPIE; 2017. p. 189–201.
  • Deshazer G, Merck D, Hagmann M, et al. Physical modeling of microwave ablation zone clinical margin variance. Med Phys. 2016;43(4):1764–1776.
  • Cesareo R, Palermo A, Benvenuto D, et al. Efficacy of radiofrequency ablation in autonomous functioning thyroid nodules. A systematic review and meta-analysis. Rev Endocr Metab Disord. 2019;20(1):37–44.
  • Rossmann C, Haemmerich D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit Rev Biomed Eng. 2014;42(6):467–492.
  • O'Rourke AP, Lazebnik M, Bertram JM, et al. Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Phys Med Biol. 2007;52(15):4707–4719.
  • Radmilović-Radjenović M, Sabo M, Prnova M, et al. Finite element analysis of the microwave ablation method for enhanced lung cancer treatment. Cancers. 2021;13:3500.
  • Selmi M, Bin Dukhyil AA, Belmabrouk H. Numerical analysis of human cancer therapy using microwave ablation. Appl Sci. 2019;10:211.
  • Neagu V. A study of microwave ablation antenna optimization. In: 2017 E-health and bioengineering conference (EHB). Sinaia, Romania: IEEE; 2017. p. 41–44.
  • Yang D, Cao M. Effect of changes in lung physical properties on microwave ablation zone during respiration. Biomed Eng Lett. 2020;10(2):285–298.
  • Phairoh C, Sanpanich A, Kajornpredanon Y, et al. Airflow effect on microwave ablation in lung model. In: 2015 8th biomedical engineering international conference (BMEiCON). Pattaya, Thailand: IEEE; 2015. p. 1–4.
  • Liu D, Adams MS, Diederich CJ. Endobronchial high-intensity ultrasound for thermal therapy of pulmonary malignancies: simulations with patient-specific lung models. Int J Hyperthermia. 2019;36:1107–1120.
  • Duck FA. Physical properties of tissues: a comprehensive reference book. England: Academic Press; 2013.
  • Mcintosh RL, Anderson V. A comprehensive tissue properties database provided for the thermal assessment of a human at rest. Biophys Rev Lett. 2010;5:129–151.
  • Giering K, Lamprecht I, Minet O, et al. Determination of the specific heat capacity of healthy and tumorous human tissue. Thermochim Acta. 1995;251:199–205.
  • Wu CH, Lindsey DC, Traber DL, et al. Measurement of bronchial blood flow with radioactive microspheres in awake sheep. J Appl Physiol (1985). 1988;65(3):1131–1139.
  • Williams LR, Leggett RW. Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas. 1989;10(3):187–217.
  • Avishek S, Samataray S. Sensitivity analysis of critical parameters affecting the efficacy of microwave thermal ablation on lungs. In: Current advances in mechanical engineering. Singapore: Springer; 2021. p. 293–303.
  • Keangin P, Manop P, Nonthakhamchan T, et al. Experimental study of microwave ablation in ex vivo tissues. In: IOP conference series: materials science and engineering. Vol. 501. England: IOP Publishing; 2019. p. 012038.
  • Hasgall PA, Di Gennaro F, Baumgartner C, et al. IT’IS database for thermal and electromagnetic parameters of biological tissues. Version 4.1; 2022 [accessed 2022 Feb 22]. Available from: https://itis.swiss/virtual-population/tissue-properties/database
  • Singh S, Repaka R. Numerical study to establish relationship between coagulation volume and target tip temperature during temperature-controlled radiofrequency ablation. Electromagn Biol Med. 2018;37(1):13–22.
  • Zorbas G, Samaras T. Simulation of radiofrequency ablation in real human anatomy. Int J Hyperthermia. 2014;30(8):570–578.
  • Singh S, Repaka R, Al‐Jumaily A. Sensitivity analysis of critical parameters affecting the efficacy of microwave ablation using Taguchi method. Int J RF Microw Comput‐Aided Eng. 2019;29:e21581.
  • Sebek J, Taeprasartsit P, Wibowo H, et al. Microwave ablation of lung tumors: a probabilistic approach for simulation-based treatment planning. Med Phys. 2021;48(7):3991–4003.
  • Hall SK, Ooi EH, Payne SJ. Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. Int J Hyperthermia. 2015;31(5):538–550.
  • Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol. 1996;41(11):2271–2293.
  • Tehrani MHH, Soltani M, Kashkooli FM, et al. Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-a computational approach. PLoS One. 2020;15(6):e0233219.
  • Choi J, Morrissey M, Bischof JC. Thermal processing of biological tissue at high temperatures: impact of protein denaturation and water loss on the thermal properties of human and porcine liver in the range 25-80 °C. J Heat Transf. 2013;135:061302–061308.
  • Bianchi L, Cavarzan F, Ciampitti L, et al. Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review. Int J Hyperthermia. 2022;39(1):297–340.
  • Bonello J, Elahi MA, Porter E, et al. An investigation of the variation of dielectric properties of ovine lung tissue with temperature. Biomed Phys Eng Exp. 2019;5:045024.
  • Bianchi L, Bontempi M, De Simone S, et al. Temperature dependence of thermal properties of ex vivo porcine heart and lung in hyperthermia and ablative temperature ranges. Ann Biomed Eng. 2023:1–18.
  • Taeprasartsit P, Pathompatai C, Jusomjai K, et al. A personalized approach for microwave ablation treatment planning fusing radiomics and bioheat transfer modeling. In: Medical imaging 2020: image-guided procedures, robotic interventions, and modeling. Vol. 11315. Texas, United States: SPIE; 2020. p. 780–795.
  • Habert P, Di Bisceglie M, Hak JF, et al. Percutaneous lung and liver CT-guided ablation on swine model using microwave ablation to determine ablation size for clinical practice. Int J Hyperthermia. 2021;38(1):1140–1148.
  • Wang L, Zhang L, Wang Z. Transplanted pulmonary cancer model in experimental animals: recent progress in research. J Intervent Radiol. 2015;24(7):569–573.
  • Tian Z, Cheng Y, Dong T, et al. Numerical study for lung microwave ablation in different thermal and electrical properties. In: World congress on medical physics and biomedical engineering 2018. Singapore: Springer; 2019. p. 563–566.
  • Gao H, Wu S, Wang X, et al. Temperature simulation of microwave ablation based on improved specific absorption rate method compared to phantom measurements. Comput Assist Surg. 2017;22(sup1):9–17.
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93–122.
  • Tucci C, Trujillo M, Berjano E, et al. Pennes’ bioheat equation vs. porous media approach in computer modeling of radiofrequency tumor ablation. Sci Rep. 2021;11(1):13.
  • Valvano JW. Encyclopedia of medical devices and instrumentation. Bioheat Transf. 2006;1:188–197.
  • Yang D, Converse MC, Mahvi DM, et al. Expanding the bioheat equation to include tissue internal water evaporation during heating. IEEE Trans Biomed Eng. 2007;54(8):1382–1388.
  • Truong VG, Kim H, Park JS, et al. Multiple cylindrical interstitial laser ablations (CILAs) of porcine pancreas in ex vivo and in vivo models. Int J Hyperthermia. 2021;38(1):1313–1321.
  • Wang K, Tavakkoli F, Wang S, et al. Analysis and analytical characterization of bioheat transfer during radiofrequency ablation. J Biomech. 2015;48(6):930–940.
  • Mai X, Wu N, Nan Q, et al. Simulation study of microwave ablation of porous lung tissue. Appl Sci. 2023;13:625.
  • Wolf FJ, Grand DJ, Machan JT, et al. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology. 2008;247(3):871–879.
  • Zhang B, Moser MAJ, Zhang EM, et al. A review of radiofrequency ablation: large target tissue necrosis and mathematical modelling. Phys Med. 2016;32(8):961–971.
  • Vogl TJ, Nour-Eldin NEA, Hammerstingl RM, et al. Microwave ablation (MWA): basics, technique and results in primary and metastatic liver neoplasms-review article. Rofo. 2017;189(11):1055–1066.
  • Ahmed M, Solbiati L, Brace CL, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria-a 10-year update. Radiology. 2014;273:241–260.
  • Sun Y, Cheng Z, Dong L, et al. Comparison of temperature curve and ablation zone between 915- and 2450-MHz cooled-shaft microwave antenna: results in ex vivo porcine livers. Eur J Radiol. 2012;81(3):553–557.
  • Sebek J, Bortel R, Prakash P. Broadband lung dielectric properties over the ablative temperature range: experimental measurements and parametric models. Med Phys. 2019;46(10):4291–4303.
  • Diederich CJ. Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int J Hyperthermia. 2005;21(8):745–753.
  • Vogl TJ, Nour-Eldin NEA, Albrecht MH, et al. Thermal ablation of lung tumors: focus on microwave ablation. Rofo. 2017;189(9):828–843.
  • Radmilović-Radjenović M, Radjenović D, Radjenović B. Finite element analysis of the effect of microwave ablation on the liver, lung, kidney, and bone malignant tissues. Europhys Lett. 2022;136:28001.
  • Sebek J, Kramer S, Rocha R, et al. Bronchoscopically delivered microwave ablation in an in vivo porcine lung model. ERJ Open Research. 2020;6:00146–2020.
  • Shen X, Chen T, Yang B, et al. Magnetic resonance imaging-guided microwave ablation for lung tumor: a case report. Quant Imaging Med Surg. 2021;11(6):2780–2784.
  • Sanpanich A, Khongkhanon C, Kajornpredanon Y, et al. Thermal ablation for cancer treatment by using microwave energy in a simple lung model. In: The 7th 2014 biomedical engineering international conference. Fukuoka, Japan: IEEE; 2014. p. 1–4.
  • Anai H, Uchida BT, Pavcnik D, et al. Effects of blood flow and/or ventilation restriction on radiofrequency coagulation size in the lung: an experimental study in swine. Cardiovasc Intervent Radiol. 2006;29(5):838–845.
  • Wang J, Wu S, Wu Z, et al. Influences of blood flow parameters on temperature distribution during liver tumor microwave ablation. Front Biosci Landmark. 2021;26:504–516.
  • Vaidya N, Baragona M, Lavezzo V, et al. Simulation study of the cooling effect of blood vessels and blood coagulation in hepatic radio-frequency ablation. Int J Hyperthermia. 2021;38(1):95–104.
  • Wu X, Liu B, Xu B. Theoretical evaluation of high frequency microwave ablation applied in cancer therapy. Appl Therm Eng. 2016;107:501–507.
  • Chiang J, Wang P, Brace CL. Computational modelling of microwave tumour ablations. Int J Hyperthermia. 2013;29(4):308–317.
  • Selmi M, Bajahzar A, Belmabrouk H. Effects of target temperature on thermal damage during temperature-controlled MWA of liver tumor. Case Stud Therm Eng. 2022;31:101821.
  • Wang X, Gao H, Wu S, et al. Numerical evaluation of ablation zone under different tip temperatures during radiofrequency ablation. Math Biosci Eng. 2019;16(4):2514–2531.
  • Hinshaw JL, Lubner MG, Ziemlewicz TJ, et al. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation-what should you use and why? . Radiographics. 2014;34(5):1344–1362.
  • Boskovic T, Stanic J, Pena-Karan S, et al. Pneumothorax after transthoracic needle biopsy of lung lesions under CT guidance. J Thorac Dis. 2014;6:s99.
  • Izaaryene J, Cohen F, Souteyrand P, et al. Pathological effects of lung radiofrequency ablation that contribute to pneumothorax, using a porcine model. Int J Hyperthermia. 2017;33(7):713–716.
  • Hiraki T, Tajiri N, Mimura H, et al. Pneumothorax, pleural effusion, and chest tube placement after radiofrequency ablation of lung tumors: incidence and risk factors. Radiology. 2006;241(1):275–283.
  • Chaddha U, Hogarth DK, Murgu S. Bronchoscopic ablative therapies for malignant central airway obstruction and peripheral lung tumors. Ann Am Thorac Soc. 2019;16(10):1220–1229.
  • Yuan HB, Wang XY, Sun JY, et al. Flexible bronchoscopy-guided microwave ablation in peripheral porcine lung: a new minimally-invasive ablation. Transl Lung Cancer Res. 2019;8:787.